金属材料脆性断裂机理的实验研究_李智慧

金属材料脆性断裂机理的实验研究_李智慧
金属材料脆性断裂机理的实验研究_李智慧

基金项目:国家自然科学基金资助(10972180)

来稿日期:2010-07-06 修回日期:2011-12-09

第一作者简介:李智慧,女,1981年生,西安理工大学土木建筑工程学院,博士生;研究方向—固体力学及岩土工程。 通讯作者:师俊平, E-mail :shijp@https://www.360docs.net/doc/225447169.html,

应 用 力 学 学 报

CHINESE JOURNAL OF APPLIED MECHANICS

第29卷 第1期2012年2月

V ol.29 No.1Feb. 2012

文章编号:1000- 4939(2012) 01-0048-06

金属材料脆性断裂机理的实验研究

李智慧 师俊平 汤安民

(西安理工大学 710048 西安)

摘要:材料的脆性断裂有许多准则和模型,但对脆断机理和变化规律缺乏合理的描述,给工程应用带来不便。本文对典型脆性材料球墨铸铁、灰铸铁分别进行了拉扭双轴断裂实验和常规拉伸、扭转破坏实验;对韧性金属材料合金钢进行了单轴拉伸颈缩破坏实验。通过上述实验分析了脆性材料和韧性材料发生脆性断裂的机理特征并选择应力三维度作为应力状态参数描述危险点的应力状态,同时考察了脆性材料和韧性材料发生脆性断裂的主导因素。结果表明:韧性材料45#钢和14CrNiMoV 合金钢在颈缩断面心部应力三维度值较大时发生脆性拉断,而在颈缩断面边缘处应力三维度值较小时发生剪断;脆性材料球墨铸铁在应力三维度值为0.0~0.33之间变化时均发生脆性断裂;灰铸铁在应力三维度值大于0.0时发生脆性拉断,而在应力三维度值小于0.0时发生剪断。因此可以认为,材料的细观组织结构和危险点应力状态是影响断裂机理及变化规律的主要因素。对于同种材料,随着应力三维度代数值从小向大变化材料的断裂机制由塑性剪切断裂逐渐转变为脆性断裂。本文通过对几种材料的脆性断裂危险点和断裂方向的研究给出了脆断宏观破坏条件。 关键词:金属材料;脆性断裂;断裂机理;应力三维度;断裂条件 中图分类号:O346.1 文献标识码: A

1 引 言

由于金属材料物理本质的复杂性,其脆性断裂一直成为倍受关注的研究难点。国内外学者针对裂纹体和无裂纹体的脆性断裂问题进行了大量的研究,至今已有大量准则和模型用来解释不同的脆断试验现象 [1-2],其中比较著名的是Sih G C 针对裂纹体提出的最大周向应力理论[3]和应变能密度因子理

论[4]。

Sih G C 指出裂端应变能密度最小处,往往是形变能密度较小处、体变能密度较大处该处是材料脆性断裂的启裂点。这符合脆性断裂的经典概念。Rice 认同以上思想,定义了应力三维度R σ的表达式,即

m e R σσσ= (1)

其中:m σ为平均应力,()1233m σσσσ=++;e σ为等效应力,

e σ=

Rice 还进一步提出复合型裂纹启裂方向沿裂端应力

三维度最大值方向的理论[5]

。这一理论在实验验证时,与裂纹体I 型实验符合较好,而与II 型实验不相符合,由此这一理论思想只得搁浅。但从材料的细观断裂机理研究结论看,Sih G C 和Rice 关于脆性断裂的思想认识并没有错,问题在于长期以来人们对裂纹开裂方向的认识出现了失误[6]。近期国内外许多学者已采用应力三维度作为应力状态参数,开展裂纹体与无裂体不同断裂形式的试验

李智慧,等:金属材料脆性断裂机理的实验研究 第1期

49

研究

[7-11]

。本文利用Rice 定义的应力三维度R σ的

代数值反映受力构件内各处材料所处的应力状态,

考察了金属材料脆断机理和应力三维度之间的关系。应力三维度值大,应力状态偏于受拉状态;应力三维度值小,应力状态偏于受压状态。根据已有实验结论,脆性材料在常规拉伸、扭转实验中均发生脆性拉断;而韧性金属材料单向拉伸时出现颈缩,试件最终在颈缩处拉断。由于颈缩区的形成,心部材料处于三向受拉,周边材料处于两向受拉。通过单拉实验可观察到韧性材料在三向拉伸时的脆性断裂情况。因此文中选择典型脆性材料球墨铸铁和灰铸铁进行常规拉伸、扭转和拉扭双轴破坏实验,对常见塑性材料45#钢和14CrNiMoV 合金钢进行单向拉伸实验,研究脆性和韧性材料脆断机理随应力三维度的变化规律。通过实验发现:在应力三维度不高时,铸铁等脆性材料发生解理脆断;在应力三维度较高时,中、高强度钢等韧性材料也发生准解理、孔洞正断等准脆断。而对于同种材料,其断裂机理则随应力三维度的变化规律性地变化。材料的细观组织结构和危险点应力三维度是影响断裂机理及变化规律的主要因素。依据实验结果:预测了材料脆断危险点在结构内应力集中严重处即应力三维度较大值处,三轴拉应力是引起脆性断裂的主要因素;

建立了脆性断裂的宏观破坏条件,并将其预测的断裂方向和临界载荷与试验结果对比后发现其误差很小,从而证明了该准则预测脆性断裂的合理性。

2 脆性材料不同受力形式的脆性断裂

2.1 球墨铸铁拉扭组合受力下的断裂实验 球墨铸铁是铸铁经球化和孕育处理后得到的球状石墨,铸铁的机械性能得到有效提高,特别是提高了塑性和韧性。虽然仍属于脆性材料,但比一般脆性材料均匀性好、强度高。因此实验中选择对球墨铸铁进行不同拉扭比的拉扭双轴破坏试验,观察随拉扭比变化(应力三维度不同)其脆性断裂危险点、断裂方向、临界拉力和扭矩的变化规律。将球铁QT400材料加工成光滑圆试棒d =10mm ,利用858MINIBIONIX II 拉扭双轴试验机,

进行不同拉扭

比例下的断裂试验。试件在单拉、纯扭及在三种不

同拉扭比例下加载破坏时,断裂过程中均无颈缩现

象出现,断裂形式均为正拉断。断面图像如图1

,统计计算试验结果见表1。

图1 球铁单拉到纯扭不同应力状态下破坏的断面图像

表1 QT400球铁拉扭双轴破坏实验结果

P /T 0.0 0.17 0.38 0.72

∞ P b /kN 0.0 15.5 25.3 34.4 42.1

T b /N.m 115.5 90.3 66.7 47.2 0.0

σ1/MPa

588.5 568.6 555.0 544.4536.6σ2/MPa 0 0 0 0 0 σ3/MPa

-588.5 -371.6 -214.4 -106.20.0 R σ 0.0 0.08 0.16 0.24 0.33α1/° 42° 38° 32° 22°0°α2/° 45° 39° 33° 24°0°

表1中:P /T 为试验中设定的拉力与扭矩载荷比值;P b 与T b 分别为试件断裂时的拉力值和扭矩值;σ1、σ2和σ3为试件断裂时的主应力值;R σ为

不同拉扭比下断裂点的应力三维度值;α1为试验中测得不同拉扭比例时断裂面与横截面的夹角;α2为

计算的不同拉扭比下试件中断裂点上最大拉应力

σ1作用面与横截面的夹角。实验结果表明:随拉扭

载荷比的变化,试件从纯扭转向单向拉伸变化过程

中试件断裂面从与横截面成42°方位逐渐变化为沿横截面断开,断裂面与最大拉应力作用面基本一致;断裂均为正拉断;试件断裂时主应力极限值随

应力三维度改变作规律性的变化。

2.2 灰铸铁不同受力条件下的断裂

对灰铸铁HT200材料分别进行了常规拉伸、扭

转、压缩破坏实验。试件在单拉与扭转时,断裂面

应 用 力 学 学 报50 第29卷

宏观上沿最大拉应力作用面,断口形貌见图2。断面主要以片状断层和少量孔洞组成。

电镜结果表明:片状断层是由片状石墨在拉应力作用下的脆性破碎形成,并在基体上引发沿晶与穿晶断裂;而少量大小不等的孔洞则主要产生在珠光体基体上。试件在单压时断裂起源于试件中部,如图3所示;启裂处断裂面方向宏观上沿最大剪应力

τmax 作用面方向,断口形貌见图4,断裂形式为剪断。

当灰铸铁材质较差时,单压情况下也会出现沿纵向面断裂的情况,如图

5所示。这与许多岩石单压断裂特征相似,其原因是材料组织晶粒粗大,单压过程中硬的珠光体晶粒楔入软的石墨体中,使试件中产生了附加拉应力,导致材料发生拉断。

图2 铸铁拉断断口形貌

图3 铸铁单压剪断起裂

图4 铸铁单压剪断断口形貌

图5 铸铁单压纵向开裂

3 韧性金属材料的拉断

对韧性金属材料进行单向拉伸,达到最大载荷时,试件上出现局部大塑性变形形成颈缩,试件的最终断裂发生在颈缩区。颈缩变形改变了试件单拉受力状态,颈缩部位心部材料处于三向受拉(R σ值高),周边材料处于两向受拉[10]。由于颈缩区的形成,通过单拉试验,则可观察到韧性材料在应力三维度较高时的断裂情况。

45#

钢试件进行单向拉伸,颈缩区断口形状为杯锥状,其心部为正断区,周边为剪断区,正断区的断口形貌见图6。

试件颈缩后按Bridgman

公式计

算,三向受拉的心部R σ值为0.64,材料细观断裂机理基本为孔洞型正拉断。受两向拉伸的周边材料断

裂形式为孔洞型剪断,断口形貌如图7所示。

图6 45#钢孔洞正断断口形貌

图7 45#钢孔洞剪断断口形貌

对14CrNiMoV 合金钢试件进行单向拉伸,得出:抗拉强度极限σb =1220MPa ;延伸率δ=20%;断面收缩率ψ=64%;材料有着较高的强度和韧性。颈缩区断口形状如图8所示,其断口大部分区域为准解理正断区。准解理正断断口形貌见图9,边上有很窄的剪断区为孔洞剪断。断口心部R σ值为0.75,其断裂过程为:在二相粒子与基体结合处由于变形不协调产生微裂纹,出现局部高应力集中。受较高三轴拉应力的影响,材料断裂过程塑性变形较小,不能有效化解应力集中,从而使微裂纹扩展发生断裂。断裂面方向细观上主要受局部组织界面

李智慧,等:金属材料脆性断裂机理的实验研究 第1期

51

影响,宏观上与最大拉应力作用面方向相一致。 一般塑性理论认为,韧性材料单向拉伸时发生

屈服破坏,屈服仅与应力偏量有关,与应力球量无

关。本文对韧性材料14CrNiMoV 合金钢和45#钢进行单拉颈缩实验发现,在应力三维度值较高的颈缩

断面心部也发生脆性拉断,且脆断主要受应力球量

三轴拉应力控制,与应力偏量无关。

图8 合金钢颈缩区断口形状

图9 合金钢正断断口形貌

4 材料脆断的主要影响因素分析

4.1 组织结构、应力状态对脆断的影响规律 分析以上实验结果并结合细观断裂机理及宏观断裂形式可知,材料细观组织结构、受力应力状态形式是影响材料断裂的两大主要因素。

灰铸铁在单拉、扭转时发生的脆断断裂启裂于不同的片状石墨层上。片状石墨受拉应力作用发生破碎是其主要断裂形式,石墨层断面之间则存在沿晶断裂、穿晶断裂、少量孔洞正断等多种断裂形式。电镜观察发现断口上各石墨片断裂面方向、各断面间连接方向并无规律,随机性强,可能仅与其局部组织结构、晶体界面方向相关;但宏观上观察断裂面基本与最大拉应力作用面相一致。球墨铸铁拉扭组合时发生的脆断断裂启裂于拉应力作用的石墨球与基体的界面上。启裂处的石墨球与基体脱开形成裂缝,当断裂面扩展到基体上时,由于基体材料塑

性变形多而产生与灰铸铁断口相似的孔洞与孔洞扩张的断裂形式,宏观上观察断裂面与最大拉应力作用面相一致。

45#钢、14CrNiMoV 合金钢的准脆性断裂均发生在颈缩区最小截面处。由于颈缩区心部受三轴拉应力,断裂过程中塑性变形小,在细观缺陷处易形成较高的应力集中,断裂起源于截面心部。45#钢材料有着良好的塑性,应力集中引发的微裂纹均发展为韧窝孔洞,孔洞的扩张与连接也主要受最大拉应力影响而以横向为主。孔洞正断区宏观上断面也与最大拉应力作用面一致,在断口周边材料受两向拉应力,R σ为0.4左右,三轴拉应力降低,塑性变形增加,材料断裂机理发生改变,以孔洞剪断为主。14CrNiMoV 材料强度高、断面收缩率大、试件颈缩程度高,使颈缩心部形成较高的三向拉伸应力状态,也使得断裂过程产生的塑性变形较少。启裂的微裂纹主要沿晶界扩展,断裂过程中也有穿晶、孔洞等形式。断裂面不但细观上完全由组织结构所确定,在宏观小范围内观察也无规律,很难用宏观应力场主应力方向解释;对该材料正火处理后,塑性有所提高、断面上孔洞正断区域大大增加、宏观断裂面与最大拉应力面相一致。

由以上试验可知材质差的材料组织粗大、均匀性差易于脆断,反之则不易发生脆断。材质较差的灰铸铁在单压时会因附加拉应力作用发生拉断,而HT200灰铸铁则在单压时发生剪断,在纯扭、单拉时发生拉断。许多钢材在单拉、双拉时会发生有孔洞的剪断,而在三向受拉时发生沿晶断裂、穿晶断裂、孔洞正断。应力状态对材料断裂的影响是有规

律的[10-12]。

用应力三维度R σ作为应力状态参数,R σ值越大则材料受三轴拉应力程度高,断裂过程塑性

变形少,材料易于发生脆断;反之R σ值小或为负值时,材料受拉程度小或偏于受压则不易发生脆断。 4.2 脆断的危险点、断裂方向和宏观断裂条件 材料不同的组织结构和不同的应力状态形式会在结构中引起不同程度的应力集中、在断裂过程中产生不同大小的塑性变形,从而影响材料断裂机理。应力集中程度高、塑性变形小,材料易于脆断;相反,断裂过程中塑性变形较多时断裂会从脆断转向剪切断裂。可以认为结构中微裂纹萌生处或脆断危险点就在应力集中程度高、塑性变形小的地方。对于晶粒粗大或存在较多的未知缺陷的材料,这时由连续介质理论给出的应力场已不能反映结构中的实际应力场,则脆断危险点不易确定;对于材质较

应 用 力 学 学 报52 第29卷

好的大量金属材料,连续介质假设可使用,则R σ取极大值处是结构中应力集中程度高、塑性变形小的地方,为脆断危险点。

从细观上看,脆断的初始断裂方向主要受局部组织结构和实际应力场的影响。用连续介质理论计算的应力场只是一个宏观上的统计平均值,用其不能说明细观上脆断的断裂面方向。但综合以上几种材料断口形式,从宏观大范围看,材料的脆断面与应力场最大拉应力作用面接近一致。因此建立宏观脆断条件时可以近似地认为脆性断裂面方向为最大拉应力作用面方向。

对于金属材料发生的解理脆断、孔洞准脆断,虽然细观断裂机理复杂、破坏条件不易确定。由于宏观上连续介质假设可近似成立,所以可认为断裂危险点在结构内应力三维度取极大值处。最大拉应力σ1是引起材料断裂的主要因素,其他两个主应力σ2、σ3为次要影响因素。断裂条件可简单写成

rm 123()b c σσσσ=++≤

(2)

式中:σrm 为与应力三维度准则对应的相当应力;b

为σ2、σ3断裂影响系数(0

rm 1230.09()534.8σσσσ=++≤ (3) 用球铁QT400拉扭双轴破坏试验结果对式(3)进行验证,在塑性变形较小的脆断范围内,该条件可适应于不同应力状态下的断裂问题。即材料发生脆断时,在任何应力状态下,构件内危险点上相当应力rm σ达到其极限值c 时材料发生断裂,由此给出误差η的计算公式

=100%rm c c

ση?× (4) 计算结果见表2。

表2 不同应力状态下应力三维度准则误差计算 P /T 0.0 0.17 0.38 0.72 ∞

R σ 0.0 0.08 0.16 0.24 0.33

σ1/MPa 588.5 568.6 555.0 544.4 536.6σ2/MPa 0 0 0 0 0

σ3/MPa -588.5 -371.6

-214.4 -106.2

σrm /MPa 535.5 535.2 535.7 534.8 536.6

η /(%) 0.1 0.1 0.2 0 0.3

由表2的计算结果可见,式(2)作为应力三维度准则适用于不同应力状态下的脆断问题且误差很小。断裂试件的极限相当应力rm σ随应力状态的改变而变化,为一曲线关系。单参数断裂准则仅考虑了单一应力状态情况,不能反映这一变化,而上述准则使用了两个参数b 与c ,用线性关系近似地代替了曲线关系。应力三维度准则考虑了材料的断裂机理,在塑性变形较小的脆断范围内可适应于不同应力状态下的断裂问题。但它不适用于应力三维度较小时材料发生剪切断裂的情况。

5 结 论

对脆性材料球墨铸铁、灰铸铁和韧性材料45#钢、14CrNiMoV 合金钢设计进行了不同加载方式的脆性断裂实验研究。分析了材料发生脆性断裂的机理特征并选择应力三维度作为应力状态参数描述危险点的应力状态。考察了脆性断裂机理随应力三维度的变化规律并给出了脆性断裂的宏观破坏条件。得到如下结论。

1) 危险点应力状态和材料的细观组织结构是影响脆断发生的主要因素。脆性材料在应力三维度不高时发生解理脆断。如球墨铸铁在应力三维度值在0-0.33之间变化时均发生脆断,灰铸铁在应力三维

度值大于0时发生脆性拉断;而在应力三维度较高时,中、高强度钢等韧性材料也发生准解理、孔洞正断等脆性断裂。如45#钢在颈缩断面心部应力三维度值等于0.64时发生脆性拉断,14CrNiMoV 合金钢在颈缩断面心部应力三维度值等于0.75时发生脆性拉断。

2) 对同种材料,随应力三维度代数值从大到小变

化其断裂机制由脆性拉断转变为塑性剪切断裂。如灰铸铁在应力三维度值等于0.33(单拉)时发生脆性拉断,而在应力三维度值等于-0.33(单拉)时发生剪断;45#钢和14CrNiMoV 合金钢在颈缩断面心部应力三维度值较大时发生脆性拉断,而在颈缩断面边缘处应力三维度值较小时发生剪断。

3) 实验和应力场计算分析结果表明:材料脆断的危险点在结构内应力集中严重处即应力三维度较大值处;断裂面方向与最大拉应力作用面相一致;三轴拉应力是引起脆性断裂的主要因素。

李智慧,等:金属材料脆性断裂机理的实验研究

第1期53

参 考 文 献

[1]Bao Yingbin,Tomasz Wierzbicki.A comparative study on various

ductile crack formation criteria[J].Journal of Engineering Materials and Technology,2004,126:314-324.

[2]蒋玉川,徐双武,陈辉.脆性材料复合型裂纹的断裂准则[J].工

程力学,2008,25(4):50-54.

[3]Sih G C,Liebowitz H.On the Griffith energy criterion for brittle

fracture [J].International Journal of Solids and Structures,1967,

3(1):1-22.

[4]Sih G C,Macdonald B.Fracture mechanics applied to engineering

problems-strain energy density fracture criterion[J].Engineering Fracture Mechanics,1974,6(2):361-386.

[5]Rice J R.Thermodynamics of the quasi-static growth of Griffith

cracks [J].Journal of the Mechanics and Physics of Solids,1978,

26(2):61-78.

[6]汤安民,师俊平,卢智先.韧性材料复合型断裂启裂点与开裂方

向的讨论[J].机械强度,2002,24(2):266-269.

[7]Hopperstad O S,Borvik T,Langseth M.On the influence of stress

triaxiality and strain rate on the behavior of a structural steel:Part I [J].European Journal of Mechanics A:Solids,2003,22:1-13.[8]Lee S,Ravichandran G.Crack initiation in brittle solids under

multiaxial compression [J].Engineering Fracture Mechanics,2003,70:1645-1658.

[9]Liu S,Yuh C J,Zhu X K.Tensile-shear transition in mixed-mode I/II

fracture [J].International Journal of Solids and Structures,2004, 41:6147-6172.

[10]汤安民,师俊平.几种金属材料宏观断裂形式的试验研究[J].应

用力学学报,2004,21(3):142-144.

[11]左宏,陈宜亨,郑长卿.复合型韧性断裂实验和控制参数[J].力

学学报,1999,31(5):534-540.

[12]Bao Yingbin,Tomasz Wierzbicki.On fracture locus in the equivalent

strain and stress triaxiality space[J].International Journal of Mechanical Sciences,2004,46:81-98.

No.1 CHINESE JOURNAL OF APPLIED MECHANICS v Experimental research on the brittle fracture mechanism in

metal material

Li Zhihui Shi Junping Tang Anmin

(Faculty of Architecture and Civil Engineering, Xi’an University of Technology, 710048, Xi’an, China)

Abstract: There were many criteria and models used to describe brittle fracture, but due to the fact that the lack of rational description to brittle fracture mechanism and variety law put the utilization into trouble. In this article, the tension-torsion biaxial loading test of nodular cast iron, the conventional tension, compression and torsion destructive tests of gray cast iron, and the tension necking tests of alloy steels are made, brittle fracture mechanisms of brittle and ductile materials are analyzed, stress triaxiality is chosen as the stress state parameter to describe the stress state of dangerous point, the dominant factors to control brittle fracture are investigated. The results from the tests and relevant analysis indicate that, for ductile materials 45# steel and 14CrNiMoV alloy steel, brittle traction fracture occurs in the core of necking fracture surface, where the value of stress triaxiality is larger; the shear fracture occurs in the boundary, where the value of stress triaxiality is smaller; for brittle material nodular cast iron, when the value of stress triaxiality changed from 0 to 0.33, brittle traction fracture always occurs, and for brittle material grey cast iron, when the value of stress triaxiality greater than or equal to 0, brittle fracture occurs; while the value of stress triaxiality smaller than 0, shear fracture occurs. Therefore, it is believed that microstructures of materials and stress states of dangerous points are leading factors to control brittle fracture. For the same material, the facture mechanism changes from shear fracture to brittle traction fracture with the increasing values of stress triaxiality. Finally, by investigating fracture dangerous points and fracture directions of these materials in different stress states, the fracture condition for brittle fracture is proposed.

Keywords: metal material, brittle fracture, fracture mechanism, stress triaxiality, fracture condition.

Flow simulation for micro-injection molding based on

viscoelastic model

Cao Wei1 Zhao Hongbin2 Zhang Shixun1 Ye Shubing3 Li Qian1 Shen Changyu1

(APPT NERC, Zhengzhou University, 450002, Zhengzhou, China) 1

(Jiaozuo Housing and Urban-rural Development, 454000, Jiaozuo, China) 2

(Shenzhen Zhaowei Machinery & Electronics CO. LTD., 518103, Shenzhen, China) 3

Abstract: The effects of melt viscoelastic on melt front advancement and flow balance in micro-injection molding is investigated in terms of transient, compressible and non-Newtonian flow using finite element method. The Phan-Thien-Tanner model is used to represent the rheological behavior of viscoelastic flow. The governing equations for melt flow are established based on Hele-Shaw theory. To effectively describe the microscale effects, the slip boundary condition and surface tension are added in the mathematical model for melt flow in micro-injection molding. The new variational equation for pressure including boundary conditions is generalized using integration by parts, and a semi-analytical formula is derived with undermined coefficient method. To improve the computing efficiency, an iterative strategy based on finite element method and successive over relaxation method is constructed for solving melt flow problem. Numerical simulation reveals that the melt viscoelasticity plays an important role in predicting melt pressure at gate and succeeding melt front advancement in cavity. Using viscoelastic model, the rapid increase of simulated pressure can also be controlled, and the filling difference among different cavities can be reduced. The short shot experiments are in fair agreement with the predicted melt front from viscoelastic model.

Keywords: micro-injection molding, viscoelastic, finite element method, slip-boundary condition, surface tension.

金属断口机理及分析资料报告

名词解释 延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。 蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。 准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口 沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。 解理断裂:在正应力作用下沿解理面发生的穿晶脆断。 应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断 疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。 冲击韧性:冲击过程中材料吸收的功除以断的面积。 位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断 裂机理或断裂过程。 河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。其形状类似地图上的河 流。 断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些 质点的晶体结构。 氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。 卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。 等轴韧窝:拉伸正应力作用下形成的圆形微坑。 均匀分布于断口表面,显微洞孔沿空间三 维方向均匀长大。 第一章 断裂的分类及特点 1.根据宏观现象分:脆性断裂和延伸断裂。 脆性断裂裂纹源:材料表面、部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45o . 2.根据断裂扩展途分:穿晶断裂与沿晶断裂。 穿晶断裂:裂纹穿过晶粒部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。应力腐蚀断口,氢脆断口。 3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45o交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系 Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则 相似) a Y K c c πσ?=1

HT200试棒脆性断裂失效分析

HT200试棒脆性断裂失效分析 过程装备与控制工程2013-2刘凯(22)李阔(16) 摘要:在机电装备的各类失效分析中以断裂失效最主要,危害最大,往往造成严重的后果及巨大的经济损失。试棒脆性断裂失效分析从断口的宏观外观、微观组织、受力状态等方面综合分析,解释断裂失效的原因。 关键字:HT200试棒脆性断裂失效分析 断裂是金属构件在应力作用下材料分离为互不相连的两个或两个以上部分的现象,是金属构件常见的失效形式之一,特别是脆性断裂,它是危害性甚大的失效形式。脆性断裂前构件的变形量很小,没有明显可以觉察出来的宏观变形量。断裂过程中材料吸收的能量很小,一般是在低于允许应力条件下的低能断裂。通过对HT200拉力试棒断裂失效分析包括力学性能、化学成分、金相组织、其他相关性能;断口分析、表面分析,包括金相组织、电镜分析各种分析;失效现象及原因分析等综合学习掌握关于脆性断裂的相关知识 一、试样收集与观察 HHT200拉力试棒 图示拉力试棒为液压万能试验机拉断后的试棒,其原始尺寸如下图。 HT200拉力试棒尺寸图 试棒装在液压万能试验机后,开动试验机缓慢加载。在拉伸过程中,没有肉眼可见的颈缩、屈服现象,,随着“砰”一声,试棒被拉断。拉断前的应变很小,伸长率也很小,十分典型的脆性断裂过程。 二、化学成分 脆性断裂实验所用拉力试棒为HT200材料,具体含义为灰口铸铁抗拉强度为200MPa,硬度范围为163~255HB,抗拉强度和塑性低,但铸造性能和减震性能好,主要用来铸造汽车发动机汽缸、汽缸套、车床床身等承受压力及振动部件。其具体化学成分如下表。

试验过程中观察不到拉力试棒明显的应变过程及颈缩现象,在较小的拉应力作用下就被拉断了,没有屈服和颈缩现象,拉断前的应变很小,伸长率也很小。其拉伸时的应力-应变关系是一段微弯的曲线,没有明显的直线部分,也没有明显的屈服阶段。 铸铁在拉断时的最大应力即为其强度极限。因为没有屈服现象,强度极限σ b是衡量强度的唯一指标。σ b =Fb Ao 。 灰口铸铁σ-ε图 四、断裂试棒断口宏观形貌及其微观金相组织观察 脆性断裂是从金属构件内部原本存在的微小裂纹为裂纹源而开始的。因此,脆性断裂往往是突然发生的,断裂前基本没有肉眼可见的变形量。脆性断裂一般沿低指数晶面穿晶解理,解理是金属在正应力作用下沿解理面发生的一种低能断裂。由于解理是通过破坏原子间的键合来实现的,而密排面之间的原子间隙最大,键合力最弱,故绝大多数解理面是原子密排面。但也有一些脆性材料断裂是沿晶断裂,如晶界上有脆性物或有晶间腐蚀是,就有可能产生沿晶断裂。该拉力试棒为沿解理面断裂,故其断口的宏观形貌具有两个明显特征。一、其断口表面是明亮结晶状的,表面存在小刻面。一个多晶体金属材料的解理断口,由于其每个晶体的取向不同,所以其解理面与断裂面所取的位向也就不同,若把断口放在手中旋转时,将闪闪发亮,像存在许多分镜面。二、存在“山形”条纹。脆性材料在断裂时会从断裂源点形成“山形”裂纹。随着裂纹的发展,条纹会变粗,因此,根据断口“山形”裂纹的图形可以判断脆性断裂的裂纹扩展方向和寻找断裂起源点。综上并观察试棒断口分析可知HT200拉力试棒为典型的脆性断裂。 脆性解理断裂的电子显微断口形态的一个特征是呈现河流花样。由于金属是多晶体,取向又是无序的,解理在某一晶粒内进行时以及穿过一个晶粒向相邻晶粒传播时,均会造成解理裂缝在不同的结晶面上断开,这些解理裂缝相交处即会形成台阶。在电子显微镜中这些解理台阶呈现出形似地球上的河流状形貌,故名河流状花样。沿着解理断裂的方向河流可以合并为“主流”。解理穿越晶界时,不仅河流花样的“流向”要发生变化,而且有可能加粗或部分消失由于实际晶体内部存在许多缺陷(位错、析出物、夹杂物等),所以在一个晶粒内的解理并不

金属的断裂条件及断口

金属的断裂条件及断口 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。

机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。断裂是机器零件最危险的失效形式。按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。 韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。 宏观脆性断裂是一种危险的突然事故。脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。. 金属材料产生脆性断裂的条件 (1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。 (2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。裂纹长度裂纹越长,越容易发生脆性断裂。缺陷尖锐程度越尖锐,越容易发生脆性断裂。 (3)厚度钢板越厚,冲击韧性越低,韧-脆性转变温度越高。原因:(A)越厚,在厚度方向的收缩变形所受到的约束作用越大,

高分子材料断口研究

聚合物材料的断裂机理及其影响因素的研究 (高材11201:王小飞;指导老师:高林教授) 在结构材料的研发设计设计过程中“材料的失效”是我们的考虑重点。在较大外力的持续作用或强大外力的短期作用下,材料将会发生大变形直至宏观断裂。那么,高分子材料的断裂机理是什么,哪些因素会影响材料的断裂?本文就这些问题进行研究,并关注最新的材料断裂机理研究进展。 关键词:高分子材料、断裂机理、脆/韧性断裂、断裂影响因素 聚合物材料的塑性变形由深层的分子结构所致。聚合物基本上由长的碳链组成,从1000到100000个原子,在原子间有极强的连接。链之间的连接较弱。但是,链间的强度取决于分子的复杂性,它受到交叉联接以及代替碳原子或与之联接的特殊分子的影响。大量的实验表明,材料在断裂的过程中,空穴的扩展与塑性应变的相互影响会使断裂过程变得复杂。 脆/韧性断裂 通常,高分子材料的断裂分为脆性断裂和韧性断裂。脆性在本质上总是与材料的弹性响应相关联。断裂前式样的形变是均匀的,致使试样断裂的缝隙迅速贯穿垂直于应力方向的平面。断裂试样不显示有明显的推迟形变,断裂面光滑,相应的应力—应变关系是线形的或者微微有些非线性,断裂应变值低于5%,且所需能量也不大。而韧性断裂通常有较大的形变,这个形变在沿试样长度方向可以是不均匀的,如果发生断裂,试样断裂粗糙,常常显示有外延的形变,其应力—应变关系是非线性的,消耗的断裂能很大。一般脆性断裂是由所加应力的张应力分量引起的,韧性断裂是由切应力分量引起的。 聚合物材料断裂机理 在简单的聚合物晶粒中不能像金属晶粒中发生的那样因滑移而引起塑性变形。代之以此的是会使未折叠的或未纠缠的长链的取向产生变化,继续变形会使晶粒重新取向。断裂发生的机理有两种:i沿着链(—C—C—)的强力的连接而断裂;ii使分子团相互分离。后者涉及到打断分子间的比较弱的二次联接,也是更容易发生的。 由于形成长的分子团出现的变形会导致形成细的线,称为微丝,这是断裂的最后部分,在微丝断裂前,他们是高度地弹性伸长,并且在断裂瞬间又显著地弹回来,但其末端形成卷曲。 如果温度不是太低,则从宏观上说晶体聚合物趋向于韧性并在断裂前表现出显著的塑性形变。裂纹可以采取不同的途径穿越球粒形貌。可以在球粒之间(晶间)断裂,也可以是穿过球粒的(穿晶断裂)。一般,由于大量的塑性变形,难以从断口表面形貌鉴别出球粒。分子经历了大量的重新排列与伸长,并能由局部

金属断裂机理完整版

金属断裂机理完整版Newly compiled on November 23, 2020

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。

材料断裂理论与失效分析知识点

作业:(8)航空发动机涡轮盘-叶片结构 ◆材料为镍基高温合金,为什么? ◆服役环境的要素有哪些? ◆有可能发生的失效类型是什么? ◆如何设计实验确定失效的类型? ◆改进的建议和措施 一.涡轮叶片的材料 涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。所以对涡轮叶片材料就有更高的要求。 涡轮叶片的材料一般选择镍基高温合金。镍基合金就是以镍为基础,加入其他的金属,比如钨、钴、钛、铁等金属,做成以镍为基础的合金。有的镍基高温合金含镍量达到70%左右,其次Cr含量也比较高。其性能主要有: 1.物理性能。具有较高的熔点和弹性模量;各温度下均有较低的热膨胀系数,且随温度变化不大;没有磁性。 2.耐腐蚀性。镍基合金由于含Cr,在氧化性的腐蚀环境中的耐腐蚀性优于纯镍。同时,由于Ni含量高,在还原性腐蚀环境下也能维持良好的耐腐蚀性能。还具有良好的耐应力腐蚀开裂性能,也能抵抗氨气和渗氮、渗碳气氛。 3.机械性能。镍基高温合金在零下、室温及高温时都具有很好的机械性能。 4.高温特性。高温下耐氧化性极佳,对氮、氢以及渗碳也具有极佳的耐受性。 5.热处理及加工、焊接性。高温镍基合金不能通过热处理进行失效硬化,但可以进行固溶热处理和退火处理等。高温镍基合金比较容易进行热加工,冷加工性能比奥氏体不锈钢好。焊接性能与标准奥氏体钢一样,可采用TIG焊接、MIG焊接以及手工电弧焊。 总的来说,镍基合金具有优良的热强热硬性能、热稳定性能及热疲劳性能,可以承受复杂应力,组织稳定,有害相少,高温时抗氧化热腐蚀性好,蠕变特性出色,能够在相当苛刻的高温环境下进行服役。所以涡轮叶片的材料选择高温镍基合金。 二.涡轮叶片的服役环境 涡轮处于燃烧室后面的一个高温部件,而涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,即涡轮叶片的服役环境特别的复杂与恶劣。总得来说,涡轮叶片服役环境的要素主要有: 1.不均匀的高温条件下工作。涡轮处于燃烧室后面的一个高温部件,涡轮工作叶片的工作温度大约在720℃~1120℃,其在工作时已达到红热状态,并且其温度场不均匀,随着飞行状态的变化而承受不同的温度,而且还存在高温氧化,这些都使得涡轮叶片的服役环境非常恶劣。 2.高转速条件下工作。涡轮发动机靠涡轮叶片快速旋转将燃气压缩排出,装化为机械能,为航天器提供动力。 3.高应力和复杂应力条件下工作。涡轮工作叶片承受很大的离心力及其弯矩,还要承受燃气施加的很高的弯曲载荷、热应力,还有振动应力和气动力等复杂的应力作用。 4.受到燃气高频脉动及燃气腐蚀的影响。涡轮工作叶片直接接触高温高压燃气,燃烧产生的燃气含有大量的Na,V,S等热腐蚀性元素,使得涡轮工作叶片的工作环境更为苛刻。 三.可能发生的失效类型 根据涡轮叶片的服役环境,可以推断出涡轮叶片的失效方式大概分为正常失效和非正常失效两种。 1.正常失效中的叶片损伤包括由磨损、掉块、内裂等构成的表观损伤和内部冶金组织损伤两类。其中,内部冶金组织损伤是指叶片在低于规定使用温度和应力的服役环境下发生的诸如γ'相粗化,晶界及晶界碳化物形貌的变化,脆性相生成等显微组织的变化。导致的主要失效形式是蠕变失效,但同时还有高温腐蚀、热疲劳和低周疲劳及其交互作用等。蠕变损伤主要表现为蠕变孔洞和蠕变裂纹的产生。 大多数涡轮叶片的失效方式为正常失效方式,即蠕变失效、蠕变-疲劳交互作用导致的失效和腐蚀失效。 2.非正常失效是由于叶片设计不当、制备缺陷或人员操作不当引起的失效行为,主要表现为高周疲劳、超温服役引起的过热甚至过烧等失效形式。 总的来说,涡轮叶片可能的失效类型主要为:疲劳失效、蠕变失效和过载断裂等。 四.设计实验确定失效的类型 1.疲劳失效。金属零件再使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点;引起疲劳断裂的应力一般很低,端口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。典型的疲劳端口的宏观形貌结构可分为疲劳核心、疲劳源区、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等五个区域。 2.蠕变失效。蠕变断裂是材料在恒定应力(应力水平低于材料的断裂强度)作用下应变时间逐渐增加,最后发生断裂。明显的塑性变形是蠕变断裂的主要特征,在端口附近产生许多裂纹,使断裂件的表面呈现龟裂现象。

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

失效分析

失效分析 第三章失效分析的基本方法 1.按照失效件制造的全过程及使用条件的分析方法:(1)审查设计(2)材料分析(3)加工制 造缺陷分析(4)使用及维护情况分析 2.系统工程的分析思路方法:(1)失效系统工程分析法的类型(2)故障树分析法(3)模糊故 障树分析及应用 3.失效分析的程序:调查失效时间的现场;收集背景材料,深入研究分析,综合归纳所有信息 并提出初步结论;重现性试验或证明试验,确定失效原因并提出建议措施;最后写出分析报告等内容。 4.失效分析的步骤:(1)现场调查①保护现场②查明事故发生的时间、地点及失效过程③收集 残骸碎片,标出相对位置,保护好断口④选取进一步分析的试样,并注明位置及取样方法⑤询问目击者及相关有关人员,了解有关情况⑥写出现场调查报告(2)收集背景材料①设备的自然情况,包括设备名称,出厂及使用日期,设计参数及功能要求等②设备的运行记录,要特别注意载荷及其波动,温度变化,腐蚀介质等③设备的维修历史情况④设备的失效历史情况⑤设计图样及说明书、装配程序说明书、使用维护说明书等⑥材料选择及其依据⑦设备主要零部件的生产流程⑧设备服役前的经历,包括装配、包装、运输、储存、安装和调试等阶段⑨质量检验报告及有关的规范和标准。(3)技术参量复验①材料的化学成分②材料的金相组织和硬度及其分布③常规力学性能④主要零部件的几何参量及装配间隙(4)深入分析研究(5)综合分析归纳,推理判断提出初步结论(6)重现性试验或证明试验 5.断口的处理:①在干燥大气中断裂的新鲜断口,应立即放到干燥器内或真空室内保存,以防 止锈蚀,并应注意防止手指污染断口及损伤断口表面;对于在现场一时不能取样的零件尤其是断口,应采取有效的保护,防止零件或断口的二次污染或锈蚀,尽可能地将断裂件移到安全的地方,必要时可采取油脂封涂的办法保护断口。②对于断后被油污染的断口,要进行仔细清洗。③在潮湿大气中锈蚀的断口,可先用稀盐酸水溶液去除锈蚀氧化物,然后用清水冲洗,再用无水酒精冲洗并吹干。④在腐蚀环境中断裂的断口,在断口表面通常覆盖一层腐蚀产物,这层腐蚀产物对分析致断原因往往是非常重要的,因而不能轻易地将其去掉。 6.断口分析的具体任务:①确定断裂的宏观性质,是延性断裂还是脆性断裂或疲劳断裂等。② 确定断口的宏观形貌,是纤维状断口还是结晶状断口,有无放射线花样及有无剪切唇等。③查找裂纹源区的位置及数量,裂纹源的所在位置是在表面、次表面还是在内部,裂纹源是单个还是多个,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等。④确定断口的形成过程,裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等。⑤确定断裂的微观机理,是解理型、准解理型还是微孔型,是沿晶型还是穿晶型等。⑥确定断口表面产物的性质,断口上有无腐蚀产物,何种产物,该产物是否参与了断裂过程等。 7.断口的宏观分析(1)最初断裂件的宏观判断①整机残骸的失效分析;②多个同类零件损坏的 失效分析;③同一个零件上相同部位的多处发生破断时的分析。(2)主断面(主裂纹)的宏观判断①利用碎片拼凑法确定主断面;②按照“T”形汇合法确定主断面或主裂纹;③按照裂纹

金属材料的断裂韧性

金属材料的断裂韧性 摘要不同的金属材料的断裂韧性是不一样的,对不同金属材料的断裂韧性进行研究并找出影响的因素对提高金属材料断裂韧性具有非常重要的意义。根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 关键词金属材料;失效;断裂韧性;影响因素 0引言 随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。 根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 1影响金属材料断裂韧性的外部因素 1.1几何因素的影响 几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析: 1)试样厚度 目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。 2)试样的取向 在对金属材料进行取样测试的时候,试样的去向业余金属材料的断裂韧性之

第二章 材料的脆性断裂与强度

第二章材料的脆性断裂与强度 §2.1 脆性断裂现象 一、弹、粘、塑性形变 在第一章中已阐述的一些基本概念。 1.弹性形变 正应力作用下产生弹性形变,剪彩应力作用下产生弹性畸变。随着外力的移去,这两种形变都会完全恢复。 2.塑性形变 是由于晶粒内部的位错滑移产生。晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。3.粘性形变 无机材料中的晶界非晶相,以及玻璃、有机高分子材料则会产生另一种变形,称为粘性流动。 塑性形变和粘性形变是不可恢复的永久形变。 4.蠕变: 当材料长期受载,尤其在高温环境中受载,塑性形变及粘性形变将随时间而具有不同的速率,这就是材料的蠕变。蠕变的后当剪应力降低(或温度降低)时,此塑性形变及粘性流动减缓甚至终止。 蠕变的最终结果:①蠕变终止;②蠕变断裂。 二.脆性断裂行为 断裂是材料的主要破坏形式。韧性是材料抵抗断裂的能力。材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。 1.脆性断裂 脆性断裂是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。因此,防止脆断一直是人们研究的重点。2.韧性断裂 韧性断裂是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。 一些塑性较好的金属材料及高分子材料在室温下的静拉伸断裂具有典型的韧性断裂特征。 3.脆性断裂的原因 在外力作用下,任意一个结构单元上主应力面的拉应力足够大时,尤其在那些高度应力集中的特征点(例如内部和表面的缺陷和裂纹)附近的单元上,所受到的局部拉应力为平均应力的数倍时,此过分集中的拉应力如果超过材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。虽然与此同时,由于外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。因此,断裂源往往出现在材料中应力集中度很高的地方,并选择这种地方的某一个缺陷(或裂纹、伤痕)而开裂。 各种材料的断裂都是其内部裂纹扩展的结果。因而,每种材料抵抗裂纹扩展能力的高低,表示了它们韧性的好坏。韧性好的材料,裂纹扩展困难,不易断裂。脆性材料中裂纹扩展所需能量很小,容易断裂;韧性又分断裂韧性和冲击韧性两大类。断裂韧性是表征材料抵抗其内部裂纹扩展能力的性能指标;冲击韧性则是对材料在高速冲击负荷下韧性的度量。二者间存在着某种内在联系。 三.突发性断裂与裂纹的缓慢生长 裂纹的存在及其扩展行为,决定了材料抵抗断裂的能力。 1.突发性断裂 断裂时,材料的实际平均应力尚低于材料的结合强度(或称理论结合强度)。在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好等于结合强度时,裂纹产生突发性扩展。一旦扩展,引起周围应力的再分配,导致裂纹的加速扩展,出现突发性断裂,这种断裂往往并无先兆。 2.裂纹的生长

实验一脆性断裂和韧性断裂断口失效分析

实验一脆性断裂和韧性断裂断口失效分析 一、实验目的 了解模具脆性断裂和韧性断裂断口失效分析步骤以及模具脆性断裂和韧性断裂断口的宏观和微观特征。 二、实验内容及步骤 1、模具脆性断裂和韧性断裂宏观断口的观察 (1)操作前的准备工作 a.选定失效模具的待分析部位; b.选定并切割试样、清洗并擦拭干净。 (2)操作步骤 a.用放大镜或低倍显微镜观察脆性断裂和韧性断裂断口; b.记录上述所观察到的脆性断裂和韧性断裂宏观断口形貌。 2、模具脆性断裂和韧性断裂微观断口的观察 (1)操作前的准备工作 a.选定失效模具的待分析部位; b.选定并切割试样、将试样严格清洗干净; (2)操作步骤 a.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到 工作状态; b.用扫描电子显微镜观察脆性断裂和韧性断裂断口 c.记录上述所观察到的脆性断裂和韧性断裂微观断口形貌。 三、实验设备器材 1、放大镜、低倍显微镜、扫描电子显微镜、试样切割机、无水酒精、丙酮 2、脆断失效模具和韧性断裂失效模具各一副。 四、实验注意事项 1、实验前,试样表面要严格请洗; 2、使用显微镜时要细心操作,以免损坏机件。 3、遇故障及时报告指导教师。

实验二模具表面磨损失效分析 一、实验目的 了解模具磨损失效分析步骤以及模具磨损表面的宏观和微观特征。 二、实验内容及步骤 1、模具磨损表面宏观形貌的观察 i.操作前的准备工作 1.选定失效模具的待分析部位; 2.清洗并擦拭干净。 ii.操作步骤 1.用放大镜或低倍显微镜观察模具磨损表面形貌; 2.记录上述所观察到的磨损表面形貌。 2、模具磨损表面微观形貌的观察 i.操作前的准备工作 1.选定失效模具的待分析部位; 2.将试样严格清洗干净; ii.操作步骤 1.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到 工作状态; 2.用扫描电子显微镜观察模具(或40Cr)磨损表面微观形貌; 3.记录上述所观察到的模具(或40Cr)磨损表面微观形貌。 3、磨损失效机理分析 ⅰ根据模具表面磨损失效的宏观断口分析结果,初步判定模具磨损失效的类型和失效机理。 ⅱ根据模具表面磨损失效的微观断口分析结果,准确判定模具磨损失效的类型和失效机理。 三、实验设备器材 1、放大镜、低倍显微镜、扫描电子显微镜、高纯氩气、无水酒精、丙酮 2、磨损失效模具一副或40Cr经表面强化试样。 四、实验注意事项 1、实验前,试样表面要严格请洗; 2、使用显微镜时要细心操作,以免损坏机件。 3、遇故障及时报告指导教师。

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

失效分析知识点

失效分析知识点 第一章概论 1.失效的定义:当这些零件失去其应有的功能时,则称该零件失效。 2.失效三种情况: (1).零件由于断裂、腐蚀、磨损、变形等从而完全丧失其功能; (2).零件在外部环境作用下,部分的失去其原有功能,虽然能工作,但不能完成规定功能,如由于磨损导致尺寸超差等; (3).零件能够工作,也能完成规定功能,但继续使用时,不能确保安全可靠性。 3.失效分析定义:对失效产品为寻找失效原因和预防措施所进行的一切技术活动。也就是研究失效的特征和规律,从而找出失效的模式和原因。 4.失效分析过程:事前分析(预防失效事件的发生)、事中分析(防止运行中设备发生故障)、事后分析(找出某个系统或零件失效的原因)。 5.失效分析的意义: (1).失效分析的社会经济效益:失效将造成巨大的经济损失;质量低劣、寿命短导致重大经济损失;提高设备运行和使用的安全性。 (2).失效分析有助于提高管理水平和促进产品质量提高; (3).失效分析有助于分清责任和保护用户(生产者)利益; (4).失效分析是修订产品技术规范及标准的依据; (5).失效分析对材料科学与工程的促进作用:材料强度与断裂;材料开发与工程应用。 第二章失效分析基础知识 一.机械零件失效形式与来源: 1.按照失效的外部形态分类: (1)过量变形失效:扭曲、拉长等。原因:在一定载荷下发生过量变形,零件失去应有功能不能正常使用。 (2)断裂失效:一次加载断裂(静载荷):由于载荷或应力超过当时材料的承载能力而引起; 环境介质引起的断裂:环境介质和应力共同作用引起的低应力脆断; 疲劳断裂(交变载荷):由于周期作用力引起的低应力破坏。 (3)表面损伤失效:磨损:由于两物体接触表面在接触应力下有相对运动,造成材料流失所引起的一种失效形式; 腐蚀: 环境气氛的化学和电化学作用引起。 (4).注:断裂的其他分类 断裂时变形量大小:脆性断裂、延性断裂; 裂纹走向与晶相组织的关系:穿晶断裂、沿晶断裂; 2.失效的来源:

金属断裂机理完整版

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

金属断裂与失效分析刘尚慈

金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为:

J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低等,导致裂纹沿晶界扩展。如: ①铸件表面裂纹:在1250~1450℃形成的裂纹,沿晶界延伸,周围有严重的氧化和脱碳。

金属脆性断裂失效现象

金属脆性断裂失效现象 近百年来,随着金属材料的广泛应用,曾频繁出现过不少重大的工程断裂事故,包括桥梁、储气和储油罐、管道、转子、轮船、导弹发动机壳体的断裂等,造成严重的后果和重大的经济损失。 通过对大量脆性断裂现象的分析与考查,脆性断裂的主要特征有: 1、零件断成两部分或碎成多块; 2、断裂后的残片能很好地拼凑复原,断口能很好地吻合,在断口附近没有宏观的塑性变形迹象; 3、脆断时承受的工作应力很低,一般低于材料的屈服强度,因此,人们把脆性断裂又称为“低应力脆性断裂”; 4、脆断的裂纹源总是从内部的宏观缺陷处开始; 5、温度降低,脆断倾向增加; 6、脆断断口宏观上平直,断面与正应力垂直,断口上往往能观察到放射状或人字纹条纹; 7、一旦发生开裂,裂纹便以极高的速度扩展,其扩展速度可达声速,因此带来的后果常常是灾难性的; 8、高强度钢可能发生脆性断裂,在比较低的温度下,中、低强度钢也可能发生脆性断裂。脆性断裂通常在体心立方和密排六方金属材料中出现,而面心立方金属材料只有在特定的条件下才会出现脆性断裂。 金属脆性断裂失效原因分析 1、应力分布 最大拉应力与最大切应力对形变和断裂起不同作用。最大切应力促进塑性变形,是位错移动的推动力,而最大拉应力则只促进脆性裂纹的扩展。当零件存在缺陷(如尖锐缺口、刀痕、预存裂纹、疲劳裂纹等)或零件的截面突然变化,这些部位往往引起应力集中而使应力分布不均匀,即造成三向拉应力状态,极易导致脆性断裂。因此,应力集中的作用以及除载荷作用方向以外的拉应力分量是造成金属零件在静态低负荷下产生脆性断裂的重要原因。材料的应力状态越严重,则发生解理断裂的倾向性越大。 2、温度 温度降低会引起材质本身的性能变化,如钢的屈服应力随温度降低而增加,韧性下降,解理应力也随着下降。对某些体心立方金属及合金,由于位错中心区螺位错非共面扩展为三叶位错或两叶位错,特别在低温下,这种结构的螺位错难以交滑移,使得派-纳力(在理想晶体中克服点阵阻力移动单位位错所需的临界切应力)随温度的降低迅速升高,这是这类材料的屈服强度或流变应力随温度降低而急剧升高即对温度产生强烈依赖关系,并因此导致材料脆化的主要原因。 金属零件发生低温脆断的基本条件:一是所用材料属于冷脆金属;二是环境温度较低,即零件处在脆性转变温度T c以下的环境中工作;三是零件的几何尺寸较大,即处在平面应变状态。

金属断裂机理完整版

金属断裂机理 1金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂 与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂; 断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。 按受力状态、环境介质不同,又可将断裂分为静载断裂(如拉伸断裂、扭转断裂、剪切断裂等)、冲击断裂、疲劳断裂;根据环境不同又分为低温冷脆断裂、高温蠕变断裂、应力腐蚀和氢脆断裂;而磨损和接触疲劳则为一种不完全断裂。

相关文档
最新文档