几种气体传感器的研究进展

几种气体传感器的研究进展
几种气体传感器的研究进展

一、前言

1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。

下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。

二、气体传感器的分类和工作原理

气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。

电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间

接的检测。

接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。

电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。

红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

式中,a m—摩尔分子吸收系数;C—气体浓度;L—光和气体的作用长度;β—瑞利散射系数;γ—米氏散射系数;δ—气体密度波动造成的吸收系数;I0、I—分别是输入输出光强。

声表面波传感器的关键是SAW(surface acoustic wave)振荡器,它由压电材料基片和沉积在基片上不同功能的叉指换能器所组成,由延迟型和振子型两种振荡器。SAW传感器自身固有一个振荡频率,当外界待测量变化时,会引起振荡频率的变化,从而测出气体浓度。

三、几种常见气体的传感器

我们这里只介绍用于检测几种具有代表性的有毒气体或大气污染气体(CO、NOx、SO2、CO2)和可燃烧性气体(H2、CH4)的气体传感器。检测这些气体,有利于提高人们生活的质量,保护周围的生态环境,保障机器的正常安全生产,甚至保护人民的生命安全。

1.CO 传感器和最新敏感材料

对CO气体检测的适用方法有比色法、半导体法、红外吸收探测法、电化学气体传感器检测法等。

比色法是根据CO气体是还原性气体,能使氧化物发生反应,因而使化合物颜色改变,通过颜色变化来测定气体的浓度,这种传感器的主要优点是没有电功耗。

半导体CO传感器,通过溶胶-凝胶法获得SnO2基材料,在基材料中掺杂金属催化剂来测定气体。现国外有研究对SnO2基材料中掺杂Pt、Pd、Au等,并发现当传感器工作在220℃时,在SnO2中掺杂2%的Pt时,传感器对CO具有最大的敏感度。由于气体传感器的交叉感应,使得CO传感器对很多气体如H2、CO2、H2O等都有感应,但是采用上面的方法使得对其他气体的敏感度下降很多。

CO电化学气体传感器敏感电极如常用的金属材料电化学电极有Pt、Au、W、Ag、Ir、Cu 等过渡金属元素,这类元素具有空余的d、f电子轨道和多余的d、f电子,可在氧化还原的过程中提供电子空位或电子,也可以形成络合物,具有较强的催化能力。又研制了一种新型的CO电化学式气体传感器,即把多壁碳纳米管自组装到铂微电极上,制备多壁碳纳米管粉

末微电极,以其为工作电极,Ag/AgCl为参比电极,Pt丝为对比电极,多孔聚四氟乙烯膜作为透气膜制成传感器,对CO具有显著的电化学催化效应,其响应时间短,重复性好。

利用CO气体近红外吸收机理,研究了一种光谱吸收型光纤CO气体传感器,该仪器检测灵敏度可达到0.2×10-6。

另一种光学型传感器是用溶胶—凝胶盐酸催化法和超声制得SiO2 薄膜,将薄膜浸入氯化钯、氯化铜混合溶液,匀速提拉,干燥后制得敏感膜,利用钯盐与CO反应,生成钯单质,引起吸光度变化。

现知国外有研究,采用超频率音响增强电镀铁酸盐方法获得磁敏感膜,磁饱和度和矫顽磁力决定对气体的响应敏感度。当温度加热到85℃时,得到最大响应,检测范围333ppm~

5000ppm。

2.CO2 传感器和最新敏感材料

目前人们已经研究开发出了红外线吸收法、电化学式、热传导式、电容式及固体电介质CO2传感器及检测仪,其中红外线吸收法和色谱法方法与CO基本相似。

固体电解质CO2气体传感器是由Gauthier提出的。初期用K2CO3固体电解质制备的电位型CO2传感器,受共存水蒸气影响很大,难以实用;后来有人利用稳定化锆酸盐ZrO2-MgO

设计一种CO2敏感传感器,LaF3单晶与金属碳酸盐相结合制成的CO2传感器具有良好的

气敏特性,在此基础上有人提出利用稳定化锆酸盐/碳酸盐相结合成的传感器。

1990年日本山添等人采用NASICON(Na+超导体)固体电解质和二元碳酸盐(BaCO3

Na2CO3)电极,使传感器响应特性有了大的改进。但是,这类电位型的固态CO2传感器需要在高温(400~600℃)下工作,且只适宜于检测低浓度CO2,应用范围受到限制。

现有采用聚丙烯腈(PAN )、二甲亚砜(DM SO)和高氯酸四丁基铵(TBA P)制备了一种新型固体聚合物电解质。以恰当用量配比PAN(DM SO)2(TBA P)2聚合物电解质呈有高达10- 4S·cm- 1的室温离子电导率和好的空间网状多孔结构,由其在金微电极上成膜构成的全固态电化学体系,在常温下对CO2气体有良好的电流响应特性,消除了传统电化学

传感器因电解液渗漏或干涸带来的弊端,又具有体积小、使用方便的独到优点。

电容式传感器是利用金属氧化物一般比其碳酸盐的介电常数要大,利用电容的变化来检测CO2。报道采用溶胶—凝胶法,以醋酸钡和钛酸丁脂为原材料,乙醇和醋酸为溶剂制备了BaTiO3纳米晶材料。采用这种纳米晶材料为基体,制备电容式CO2气体传感器。

光纤CO2传感器利用CO2与水结合后,生成的碳酸酸性很弱,其酸性的检测多采用灵敏度较高的荧光法,如杨荣华等人研制的基于荧光碎灭原理的固定有叶琳的聚氯乙烯敏感膜,其原理是利用环糊精对叶琳的荧光增强效应,且该荧光能被溶液中二氧化碳碎灭,该膜响应速度快、重现性好、抗干扰能力强,测定碳酸的范围达到了4.75×10-7~3.90×10-5mol/L,这对化学传感器来说是一个较好的性能指标。该方法克服了化学发光传感器消耗试剂的不足,不必连续不断地在反应区加送试剂。

3.H2传感器和最新敏感材料

采用NO直接氧化制备氮化氧化物作为绝缘层制备高性能Si基MOS肖特基二极管式气体传感器,这种肖特基二极管式气体传感器具有高的响应灵敏度和好的响应重复性,可以探测浓度约为10-6的氢气。

现在对特定的高温环境下,检测气体有采用碳化硅代替硅,利用Pt作为电极,利用N2O氧化工艺制备金属-绝缘体-SiC肖特基势垒二极管气体传感器超薄栅介质,这种传感器能在高温下稳定工作。

将光纤传输、标准具透射、钯膜的氢吸附、吸收光谱定量分析各种技术运用为一体,开发出了这种传感器。用一束单色光照射标准具,敏感材料钯吸附了H2,氢气就会吸收单色光,分析吸收谱线刻知氢气浓度。

国外用Pd/PVDF膜制备了激光振幅可调的光学氢气传感器。该传感器的检测范围为0.2%~100%。

Sb2O5-H2OH3PO4复合氧化物为固态电解质,利用混合压膜和蒸发的方法制作传感催化电极和参考电极,研制了室温全固态电解质氢气传感器。也有用质子交换膜为电解质,碳纸和铂黑分别为电极的扩散层和催化层,制作了恒电位式氢气传感器。通过在工作电极前面加设

聚乙烯膜,增大氢气扩散阻力,可以将氢气氧化电流与氢气浓度之间的线性关系提高到氢气浓度。

半导体氢敏传感器是以金属钯(Pd)作为栅极,由Pd-TiO2/SiO2-Si构成场效应管,当钯栅场效应管吸收氢气时,将使半导体的导电电子比例发生变化,因而使氢敏元件的阻值也随着被测氢气的浓度变化而变化,这种钯极场效应管对氢气十分敏感,它具有吸附环境中氢气的功能,而对其他气体则表现惰性。这种氢敏场效应管的特点是选择性强、灵敏度高、响应速度快、稳定性好等。其主要结构如图1所示。

为提高灵敏度,将PtO-Pt纳米粒子膜与TiO2、SnO2纳米粒子膜复合,使膜层结构得以优化,研制出具有双层结构复合膜的新型气体传感器,实验结果表明,PtO-Pt纳米粒子膜的催化作用能显著提高TiO2 和SnO2膜的氢敏性能,TiO2/PtO-Pt复合膜和SnO2/ PtO-Pt复合膜对空气中的氢气有很高的选择性。

4.CH4传感器和最新敏感材料

主要有SnO2半导体传感器,为了提高灵敏度加入少量的Pd、Sb、Y、Nb和In(现有报道三价铁离子P型掺杂)等元素并进行外层催化处理,催化层由Al2O3和Pt组成,研制成能够探测(50~10000)×10-6甲烷;此外还加入适量的溶剂SnCl2 和少量的硅胶增强机械强度和表面孔隙率,元件采用Pt- Ir丝作为加热器,为了适合恶劣的环境,加隔膜,如图2所示。

光纤甲烷传感器,主要工作原理根据比尔-朗伯定理,实际应用时要解决参数过多的情况,所以有差分吸收法、透射法和利用二次谐波检测的方法。

其中差分法根据的是波长分布相近的两个单色光,最终得以下公式,采用双光路方法提高检测强度:

式中,α—在一定波长下的单位浓度单位长度介质的吸收系数;λ1、λ2—相隔极近的两个波长;I(λ1)、I(λ2)—两种波长的透射光强。

而透射式对同一束光进行暂波调制,达到与差分一样的效果。基于二次谐波检测技术采用分布反馈式半导体激光器作为光源,通过光源调制实现气体浓度的谐波检测,利用二次谐波与一次谐波的比值来消除由光源的不稳定和变化所引起的检测误差。

光纤光栅是光纤芯区折射率受永久性、周期性调制的一种特种光纤,光纤光栅甲烷传感器以光纤光栅传感器对传感信息采用波长编码,因此它不受电磁噪声和光强波动的干扰,并且便于利用复用(波分、时分、空分)技术实现对多种传感量的准分布多点测量。满足公式λB= 2neff Λ的波长才能被反射出来,其他的光线具有很好的投射率,从而提高检测的精度。式中λB为Bragg波长(即光栅反射对应于自由空间中的中心波长),Λ为光栅周期,neff 为纤芯的有效折射率。

国外有报道采用催化剂边界生长的ZnO薄膜技术,根据ZnO薄膜的电阻大小来响应和检测气体。另根据气体有特殊的选择性,研制聚合体膜通检测出气体渗透压力,从而得出气体浓度。新的检测方法有强度调制激光二极管作为光源,特殊的聚合体Cryptophane A 和更大的有机Cryptophane E分子对甲烷气体分子吸收,Cryptophane是一种特殊的有空穴合成有机体,如图4所示。

5.SO2 传感器和最新敏感材料

目前,用于SO2 气体浓度/体积分数测量方法很多,这里主要介绍一下叉指电容法、光学检测法、声表面波法、电解质法。

SO2叉指电容法,是根据SO2化学电子层特性,其与有机物结合,会导致介电常数的变化。根据电容的变化,测量气体的浓度,现在浓度测量比较精确的是采用聚苯芬。

光学检测比较常用的是红外线吸收法和光干涉法。其中红外吸收式传感器包括两个构造形式完全相同的光学系统,一束红外光入射到密封着某种气体的比较槽内,另一束红外光入射到通有被测气体的槽内。两个光学系统的光源同时以固定周期开闭。由于不同种类的气体对不同波长的红外光具有不同的吸收特性,同时同种气体而不同浓度对红外光的吸收量也彼此相

异。通过测量槽和比较槽的改变量来检测出是哪种气体。光干涉法同样根据朗伯特—比尔吸收定律,在此不再赘述。

SO2声表面波传感器,通常采用双通道法来压制共膜比,气体敏感膜有采用CdS膜,此传感器测量精度高达,测量分辨率为10-6/Hz。

结合光纤传感器和光声理论研制出高灵敏度光声光纤SO2传感器,在常温下测出浓度为10-6的SO2。电解质早期的液态Li2SO4-K2SO4-Na2SO4,固体电解质有NASICON和LaF3。固态电解质SO2传感器分全固态、半固态SO2传感器,现工作电极采用较多的是Nafion膜,亦有采用V2O5,研制的传感器均优于全液态控制SO2传感器,而固态控制型响应时间、结构性能更好,但响应灵敏度不如液态和半固态。

6.氮氧化合物传感器和最新敏感材料

主要测量方法有压电石英晶体NO2传感器,通过在石英谐振器的两面金电极上修饰对NO2待测组分有较强吸附富集作用的功能层,当待测NO2与功能层接触时发生吸附,引起石英谐振器表面质量负载的增加,从而使压电传感器的振荡频率下降,频率的漂移量与表面负载量有公式,从而可推测气体的浓度。

半导体NO2传感器,WO3对NO2有很好的敏感性,但是WO3制备方式和敏感膜的制作技术影响传感器的气敏性能。

在WO3中掺杂SiO2(含w%)1%~5%,而且敏感膜颗粒为纳米级时气敏特性最好。采用溅射工艺的In2O3、ZnO作下电极,真空蒸发CuPc薄膜作为敏感功能层,上电极为AL叉指电极。

NOx电化学传感器,固体电解质有采用NASICON超离子导体与亚硝酸钠作为敏感膜检测NOx,具有很好的选择性、响应性;基于稳定氧化锆制备的NOx固体电解质传感器则具有良好的化学和机械稳定性;现在研究较多的是现研究最多的是用Nafion膜作为固体聚合物电解质。

四、其他气体的新型传感器

还有一些气体非常重要,比如H2S、O2、O3、酒精等。

采用钨酸钠盐酸热解法制备WO3微粉中加入一定量的SnO2及ThO2等掺杂剂后,对H2S 有很好的气敏性能;用ZnS在600℃烧结制得烧结型ZnO元件,对H2S气体不仅具有良好的敏感性,而且具有很高的选择性。

超声辐射结合溶胶-凝胶法合成的纳米氧化铟材料,用此材料制成的气敏元件,对酒精的气敏特性可以达到商品化的要求,可用于开发新型酒敏元件。

对于氧气的检测方法有很多,固体电解质法,敏感材料CaO-ZrO2、YF6、LaF3;TiO2 烧结体或厚膜可以在高温下检测O2。有用钌(II)邻菲咯啉配合物作为指示剂,研制一种基于荧光猝灭原理的光纤氧气传感器,有较强的抗干扰能力、较好的重复性和稳定性。

用反应溅射法、溶胶-凝胶法、CVD 等沉积工艺制备了In2O3 基的气敏薄膜,能够检测

O3,WO3 基气敏薄膜也成为主要的研究对象。

五、新型传感器工艺

在微电子和微机械迅速发展的基础上,基于MEMS 的新型微结构气敏传感器,主要有硅基微结构气敏传感器和硅微结构气敏传感器。硅基微结构气敏传感器是衬底为硅,敏感层为非硅材料的微结构气敏传感器。主要有金属氧化物半导体、固体电解质型、电容型、谐振器型。硅微结构:主要是金属氧化物-半导体-场效应管(MOSFET)型和钯金属-绝缘体-半导体(MIS)二极管型。

MEMS 技术将传感器与IC 电路集成一起,而且精度高、体积小、质量轻功耗低、选择性高、稳定型高,同种器件之间的互换型高,可以批量生产。所以是传感器工艺的发展方向,而且基本所有的传感器都可以用MEMS 技术生产。

随着MEMS 技术和纳米技术的发展,将会给气敏传感器的发展提供更广阔的的前景。同时实现传感器陈列,也就是电子鼻集成成为可能,并将有很大的发展空间,给传感器带来新的发展篇章。

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

气体传感器发展方向的深度分析.

气体传感器发展方向的深度分析 近年来,由于在工业生产、家庭安全、环境监测和医疗等领域对气体传感器的精度、性能、稳定性方面的要求越来越高,因此对气体传感器的研究和开发也越来越重要。随着先进科学技术的应用,气体传感器发展的趋势是微型化、智能化和多功能化。深入研究和掌握有机、无机、生物和各种材料的特性及相互作用,理解各类气体传感器的工作原理和作用机理,正确选择各类传感器的敏感材料,灵活运用微机械加工技术、敏感薄膜形成技术、微电子技术、光纤技术等,使传感器性能最优化是气体传感器的发展方 向。新气敏材料与制作工艺的研究开发对气体传感器材料的研究表明,金属氧化物半导体材料Zn0,SIlo2,Fe203等己趋于成熟化,特别是在C比,C2H5OH,CO等气体检测方面。现在这方面的工作主要有两个方向:一是利用化学修饰改性方法,对现有气体敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性;二是研制开发新的气体敏感膜材料,如复合型和混合型半导体气敏材料、高分子气敏材料,使得这些新材料对不同气体具有高灵敏度、高选择性、高稳定性。由于有机高分子敏感材料具有材料丰富、成本低、制膜工艺简单、易于与其它技术兼容、在常温下工作等优点,已成为研究的热点。新型气体传感器的研制用传统的作用原理和某些新效应,优先使用晶体材料(硅、石英、陶瓷等),采用先进的加工技术和微结构设计,研制新型传感器及传感器系统,如光波导气体传感器、高分子声表面波和石英谐振式气体传感器的开发与使用,微生物气体传感器和仿生气体传感器的研究。随着新材料、新工艺和新技术的应用,气体传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点。气体传感器智能化随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。

化学传感器的研究背景及发展趋势

引言 化学传感器(Chemical sensor)是由化学敏感层和物理转换器结合而成的,是能提供化学组成的直接信息的传感器件。它用来某种化学物质敏感并将其浓度转换为电信号进行检测来进行化学测量。化学传感器在生产流程分析、环境污染监测、矿产资源的探测、气象观测和遥测、工业自动化、医学上远距离诊断和实时监测、农业上生鲜保存和鱼群探测、防盗、安全报警和节能等多个方面有重要应用。 对化学传感器的研究是近年来由化学、生物学、电学、热学微电子技术、薄膜技术等多学科互相渗透和结合而形成的一门新兴学科。化学传感器的历史并不长,但世界各国对这门新学科的开发研究,投以大量的人力、物力和财力。研究人员俱增,正在向产业化方面开展有效的工作。化学传感器是当今传感器领域中最活跃最有成效的领域。 化学传感器的重要意义在于可把化学组分及其含量直接转化为模拟量(电信号),通常具有体积小、灵敏度高、测量范围宽、价格低廉,易于实现自动化测量和在线或原位连续检测等特点。国内外科研人员很早就致力于研究化学传感器的检测方法和控制方法,研制各式各样的化学传感器分析仪器,并广泛应用于环境监测、生产过程中的监控及气体成分分析、气体泄漏报警等。 第一章化学传感器的研究背景 1.1 化学传感器的产生与发展阶段 1906年Cremer首次发现了玻璃膜电极的氢离子选择性应答现象。随着研究的不断深入,1930年,使用玻璃薄膜的pH值传感器进人了实用化阶段。以后直至1960年,化学传感器的研究进展十分缓慢。1961年,Pungor发现了卤化银薄膜的离子选择性应答现象,1962年,日本学者清山发现了氧化锌对可燃性气体的选择性应答现象,这一切都为气体传感器的应用研究开辟了道路。 真正意义上的化学传感器的发展可分为两个阶段,在60年代和70年代,化学

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

气体传感器研究现状

气体传感器研究现状: 1.气相色谱仪 该类仪器可以检N,4co、CO:场等多种气体。测量范围大而且精度很高,但成本较高,目前国内一台这样的仪器要8—9万元。这种仪器的缺点是:体积较大,无法方便携带:工作环境要求很高,无法进行野外探测;测量时要先对气体取样,无法实时探测;功率很大一般达Nzsoow要与计算机相连。这种仪器目前主要应用在实验室内。 2.载体催化原理的甲烷检测仪 载体催化型甲烷检测原理:甲烷和氧气在载体催化元件表面反应,放出反 应热,使元件温度上升,元件的温度增量将会引起元件的电阻增加,通过测量电阻增量就可以测定甲烷浓度。载体催化原理是目前实际应用中性能较为有效和可靠的一种探测可然性气体浓度的一种方法。 20世纪80年代初,世界各产煤国均先后完成了传统光干涉向载体催化型 的过渡。该类仪器以其信号输出易处理、灵敏度高、响应时间短、受湿度和温度影响较小、结构坚固、便于使用、价格低廉等一系列优点成为目前国内外瓦斯检测的主要仪器,这种原理的检测仪,也是当前国内外测量低浓度甲烷使用最普遍最成功的一种。 该类仪器的缺点:测量范围小、易受到高浓度瓦斯和硫化物的中毒以及存 在零点漂移和灵敏度问题。 3.热导原理的甲烷检测仪 热导原理的甲烷检测仪器:通过利用所测气体与空气的热导率差异,得到 与被测气体甲烷浓度相关的电信号,就可以确定甲烷浓度。热导式气体检测仪是将待测气体送入气室,气室中有热敏元件:如铂丝或钨丝,对热敏元件加热到一定温度,当待测气体的导热系数较高时,热量更容易从热敏元件上散发,使其阻值减小,通过惠更斯电桥测量这一阻值变化可得到被测气体的浓度值。 这种检测原理的优点:是热敏元件工作温度低(低于200度),工作电压不高,所以极易制成矿用本质安全型,而且热敏元件为半永久性元件,使用寿命长。 其缺点:是检测低温浓度甲烷时输出信号小,仪器的零点漂移是一个较难克服的问题,同时对低浓度瓦斯反应不准确,且极易受水蒸气(湿度)和二氧化 碳等气体的影响。 4. 光干涉原理的甲烷检测仪 光干涉原理的甲烷检测仪:利用光波在空气和瓦斯中的传播速度不同,产 生的光程差引起干涉条纹的移动来测量甲烷浓度。一束入射光经过适当的光学系统后被分解为两束相干光,一路通过被测气体气室,另一路通过参考气室。由于满足相干条件,两者相遇就会产生干涉条纹。由于待测气体中瓦斯浓度不同,干涉条纹的位置就不同,因此,根据干涉条纹的位置就可以测定瓦斯的浓度。光干涉原理的检测仪于1927年在日本制造成功,目前我国不但可以大批量生产,而且在品种、质量和规格上都处于比较先进的行列。 优点:测量范围广泛,使用寿命长;由于使用的是压力校准法,无需标注 氧气,现场使用方便。 缺点:受氧气和二氧化碳含量的影响,选择性较差:受温度和气压影响易 产生误差等。且目前,把干涉信号进一步变成电信号还有一些困难,因此,光干涉型瓦斯检测仪很少用于瓦斯遥测等方面。

DNA电化学生物传感器的研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

DNA电化学生物传感器的研究进展 作者:张爱春, 周存, ZHANG Ai-chun, ZHOU Cun 作者单位:张爱春,ZHANG Ai-chun(天津工业大学,材料科学与工程学院,天津,300160), 周存,ZHOU Cun(天津工业大学,材料科学与工程学院,天津,300160;天津纺织纤维界面处理工程中心,天 津,300160) 刊名: 天津工业大学学报 英文刊名:JOURNAL OF TIANJIN POLYTECHNIC UNIVERSITY 年,卷(期):2010,29(3) 被引用次数:2次 参考文献(38条) 1.LI Feng;CHEN Wei;ZHANG Shusheng Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies[外文期刊] 2008(04) 2.黄强;刘红英;方宾电化学DNA生物传感器研究的应用前景[期刊论文]-化学进展 2009(05) 3.LI Feng;CHEN Wei;ZHANG Shusheng A simple strategy of probe DNA immobilization by diazotization-coupling on selfassembled 4-aminothiophenol for DNA electrochemical biosensor[外文期刊] 2009(07) 4.赵元弟;庞代文;王宗礼电化学脱氧核糖核酸传感器 1996(03) 5.杨海朋;陈仕国;李春辉纳米电化学生物传感器[期刊论文]-化学进展 2009(01) 6.项纯谈纳米材料修饰电极在生物电化学中的应用[期刊论文]-中国新技术新产品 2009(09) 7.PIVIDORI M I;MERKOCI A;ALEGRET S Electrochemical genosensor design:immobilisation of oligonucleotides onto transducer surfaces and detection methods[外文期刊] 2000(516) 8.任勇DNA探针在固体电极上的固定以及对转基因植物产品的检测[学位论文] 2006 9.LUCARELLI F;MARRAZZAG;TURNERA PF Carbon and sold electrodes as electrochemical transducers for DNA hybfidisation sensors[外文期刊] 2004(06) 10.XU C;CAIH;HEP Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sepuence-specific DNA detection[外文期刊] 2001(05) 11.DELL A D;Tombelli S;Minunni M Detection of clinically relevant point mutations by a novel piezoelectric biosensor[外文期刊] 2006(10) 12.ZHU N N;ZHANGA P;WANGQ J Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zireonia thin films on gold electrodes[外文期刊] 2004(02) 13.ZHANG D;CHEN Y;CHEN H Y Silica-nanoparticle-based interface for the enhanced immobilization and sequence-specific detection of DNA 2004(7/8) 14.张怀;张云怀;李静DNA共价修饰单壁碳纳米管电极的制备及与VB6相互作用的研究[期刊论文]-分析测试学报2008(08) 15.WROBLE N;DEININGER W;HEGEMANN P Covalent immobilization of oligonucleotides on electrodes[外文期刊] 2003(02) 16.KERMAN K;DILSAT O;PINAR K Voltammetric detection of DNA hybridization using methylene blue and selfassembled alkanethiol monolayer on gold eletrodes[外文期刊] 2002(01) 17.周家宏;杨辉;邢巍一个制备脱氧核苷酸修饰电极的简便方法[期刊论文]-应用化学 2001(07) 18.郝青丽;王安子;程荣恩金电极上巯基修饰单链DNA对[Fe(CN)6]3-/4-的电催化作用[期刊论文]-南京理工大学学

目前新型气体传感器的研究动态及其发展方向

目前新型气体传感器的研究动态及其发展方向 摘要:近年来,由于在工业生产、家庭安全、环境监测和医疗等领域对气体传感器的精度、性能、稳定性方面的要求越来越高,因此对气体传感器的研究和开发也越来越重要。随着先进科学技术的应用,气体传感器发展的趋势是微型化、智能化和多功能化。深入研究和掌握有机、无机、生物和各种材料的特性及相互作用,理解各类气体传感器的工作原理和作用机理,正确选择各类传感器的敏感材料,灵活运用微机械加工技术、敏感薄膜形成技术、微电子技术、光纤技术等,使传感器性能最优化是气体传感器的发展方向。 关键词:气体传感器智能化 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体的采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。 简单扩散是利用气体自然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体体积分数的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是将气体样本直接引入传感器而无需物理和化学变换。样品吸入式探头通常用于采样位置接近处理仪器或排气管道。这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计,但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某种目标气体和汽化物,如SiH4以及大多数生物溶剂,气体和汽化物样品量可能会因为其吸附作用甚至凝结在采样管壁上而减少。 气体传感器是化学传感器的一大门类。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。 1 主要特性 1.1 稳定性 稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。 1.2 灵敏度

葡萄糖电化学传感器的研究进展

葡萄糖电化学传感器的研究进展 葡萄糖电化学传感器的研究进展 李传平200941601040 (青岛大学化学化工与环境学院山东266071) 摘要葡萄糖电化学传感器是生物传感器的一种,是一门由生物、化学、医学、

电子技术等多个学科互相渗透建立起来的高新电化学技术, 它是一种将葡萄糖类酶的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置。其具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测的特点, 已在生物、医学、医药、及军事医学等领域显示出广阔的应用前景, 引起了世界各国的极大关注。【1】 关键词葡萄糖电化学传感器组成特点研究进展应用研究 生物传感器是一类特殊的化学传感器, 它是以葡萄糖酶作为生物敏感基元, 对被测目标具有高度选择性的检测器。它通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间的反应,然后将反应的程度用离散或连续的电信号表达出来, 从而得出被测物的浓度。【1】1967年S.J.乌普迪克等制出了第一个葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。经过40多年的不断发展,当今的葡萄糖电化学传感器技术除了临床葡萄糖分析,葡萄糖检测装置也应用于生物技术和食品工业。这种广泛的应用领域大大促进了葡萄糖电化学传感器的发展和多样化。 [2] 1 葡萄糖电化学生物传感器的基本组成、工作原理、特点 葡萄糖电化学生物传感器一般有两个主要组成部分: 其一是生物分子识别元件( 感受器) , 是具有分子识别能力的葡萄糖酶类; 其二是信号转换器( 换能器) , 主要有电化学电极( 如电位、电流的测量) 、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等。当待测物与分子识别元件特异性结合后, 所产生的复合物( 或光、热等) 通过信号转换器变为可以输出的电信号、光信号等, 从而达到分析检测的目的。 与传统的分析方法相比, 生物传感器这种新的检测手段具有如下优点: ( 1) 生物传感器是由选择性好的生物材料构成的分子识别元件, 因此一般不需要样品的预处理, 样品中的被测组分的分离和检测同时完成, 且测定时一般不需加入其它试剂。( 2) 由于它的体积小, 可以实现连续在线监测。( 3)响应快, 样品用量少, 且由于敏感材料是固定化的,可以反复多次使用。(4) 传感器连同测定仪的成本远低于大型的分析仪器, 便于推广普及。[3] 2 葡萄糖电化学生物传感器的发展 葡萄糖氧化酶(glucose oxidase,GOD),1928年由Muller等发现后,Nekamatsu、Konelia、Yoshio等先后对其作了大量的研究并投人生产,Fiedurek和Rogalski 等对酶单位的增加做了大量的研究工作,尤其对葡萄糖氧化酶的辅基一黄素腺嘌呤二核苷酸(FAD)做了深入的研究,并给出了详细的说明,目前该酶在临床检测和食品工业有广泛的用途。葡萄糖传感器就是利用葡萄糖氧化酶催化氧化葡萄糖的专性,检测各种物质中的葡萄糖含量,葡萄糖传感器 在生物和医学上有着极其重要的应用价值。1962年,Clark和Lyons提出将酶与电极结合,可以通过检测其酶催化反应所消耗的氧来测定葡萄糖的含量。1967年,Updike和Hicks首次研制出以铂(Pt)电极为基体的第一支葡萄糖氧化酶电极,通过检测酶反应的产物H:0:来测定葡萄糖含量。至此,葡萄糖氧化酶电极经过三代的发展。第一代酶生物传感器是以氧为中继体的电催化酶层: GOD ox +葡萄糖→GoD ed +葡萄糖 (1一1)

光化学传感器及其最新进展

文章编号:100525630(2004)0420057205 光化学传感器及其最新进展 Ξ 徐艳平,顾铮先,陈家璧 (上海理工大学光电功能薄膜实验室,上海200093) 摘要:从传感器材料、检测方法及传感器结构几方面,围绕光化学传感器的灵敏度、选 择性和稳定性展开讨论,总结了光化学传感器近年来的最新进展,并对其今后的发展方向 做出展望。 关键词:光化学传感器;光纤传感器;表面等离子体激元共振 中图分类号:T P 212.14 文献标识码:A Recen t develop m en ts of optica l che m ica l sen sors X U Y an 2p ing ,GU ZH eng 2x ian ,CH EN J ia 2bi (L abo rato ry of Pho to 2electric Functi onal F il m s ,U niversity of Shanghai fo r Science and Techno logy ,Shanghai 200093,China ) Abstract :T he state 2of 2the 2art of op tical chem ical sen so rs is stated in th is p ap er abou t sen so r m aterials ,detecti on m ethods and sen so r structu res .T he p rop erties of op tical chem ical sen so rs such as sen sitivity ,selectivity and stab ility are discu ssed .Fu tu re p ro sp ects of op tical chem ical sen so rs are discu ssed . Key words :op tical chem ical sen so rs ;fiber op tic sen so rs ;su rface p las m on resonance 1 引 言 光化学传感器是利用敏感层与被测物质相互作用前后物理、化学性质的改变而引起的传播光诸特性的变化检测物质的一类传感器[1]。光化学传感器与其它原理的传感器相比,具有安全性好、可远距离检测、分辨力高、工作温度低、耗用功率低、可连续实时监控、易转换成电信号等优点。随着光纤技术及光集成技术的迅猛发展,光化学传感器引起了人们的极大关注,并且已经广泛地应用于工业、环境、生物医学的检测中[2]。 现首先总结了无机材料(氧化物半导体)和有机材料的应用,并介绍了溶胶凝胶工艺制备光化学传感器敏感材料方面的最新进展以及生物敏感材料。其次介绍了光谱法、干涉法、表面等离子体激元共振(su rface p las m on resonance ,SPR )等传感器检测方法的最新进展。最后对今后光化学传感器的发展做出展望。 2 传感器材料 敏感材料作为光化学传感器的重要组成部分,将直接影响传感器的各种性能,如稳定性、选择性、灵敏度和响应时间。现在研究最多的是氧化物半导体、有机半导体材料、生物识别材料等。现将从无机材料、有 第26卷 第4期 2004年8月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .26,N o.4 A ugu st,2004 Ξ收稿日期:2003209211 基金项目:上海市曙光计划资助项目(02SG 01),上海市科技发展基金资助项目(01F 032) 作者简介:徐艳平(19772),男,山东烟台人,在读博士生,主要从事光电功能薄膜及其传感器、光电精密测量与工程方面的研究。

各类气体传感器介绍

各类气体传感器介绍 一、引言 广义的说,传感器(Transducer或Sensor)是一种能把物理量或化学量转变成便于利用的电信号的器件或装置,在有些国家或科学领域,也将传感器称为变换器、检测器或探测器等。将物理量或化学量得变化转变成电信号是传感器的最终目的。 国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。国家标准GB 7765—87给传感器的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。此处的可用输出信号,一般即指易于处理和传输的电信号。从这个角度也可以说传感器即为将非电信号转换成电信号的器件。当然,可以预料,将来的“可用信号201D或许是光信息或者是更先进、更实用的其他信息。 本文主要介绍气体传感器的工作原理及应用场合,并对气体传感器的发展方向进行一些介绍。 二、工作原理 传感器之所以具有能量信息转换的机能,在于它的工作机理是基于各种物理的、化学的和生物的效应,并受相应的定律和法则所支配。了解这些定律和法则,有助于我们对传感器本质的理解和对新效应传感器的开发。传感器工作物理基础的基本定律和法则有以下四种类型: (1)守恒定律。包括能量、动量、电荷量等守恒定律。这些定律,是我们探索、研制新型传感器时,或在分析、综合现有传感器时,都必须严格遵守的基本法则。 (2)场的定律。包括运动长的运动定律,电磁场的感应定律等,气相互作用与物体在空间的位置及分布状态有关。一半可由物理方程给出,这些方程可做诶许多传感器工作的数学模型。例如:利用静电场定律研制的电容式传感器;利用电磁感性定律研制的自感、互感、电涡流式传感器;利用运动定律与电池感应定律研制的磁电式传感器等。利用场的定律构成的传感器,其形状、尺寸(结构)决定了传感器的量程、灵敏度等主要性能,故此类传感器可统称为“结构型传感器”。 (3)物质定律。它是表示各种物质本身内在性质的定律(如胡克定律、欧姆定律等),通常以这种物质所固有的物理常数加以描述。因此,这些常数的大小决定着传感器的主要性能。如:利用半导体物质法则—压阻、热阻、磁阻、光阻、湿阻等效应,可分别做成压敏、热敏、光敏、湿敏等传感器件;利用压电晶体物质法则—压电效应,可制成压电、声表面波、超声波传感器等等。这种基于物质定律的传感器,可统称为“物性型传感器”。这是当代传感器技术领域中具有广阔发展前景的传感器。 (4)统计法则。它是把围观系统与宏观系统联系起来的物理法则。这些法则,常常与传感器的工作状态有关,它是分析某些传感器的理论基础。这方面的研究尚待进一步深入。 气体传感器(Gas Sensor)是以气敏器件为核心组成的能把气体成分转换成电信号的装置。它具有响应快,定量分析方便,成本低廉,实用性广等优点,应用越来越广。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NO x、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类,如图:

气体传感器的研究及发展方向

气体传感器的研究及发展方向 引言气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。气体的采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是 引言气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体的采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。简单扩散是利用气体自然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体体积分数的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是将气体样本直接引入传感器而无需物理和化学变换。样品吸入式探头通常用于采样位置接近处理仪器或排气管道。这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计,但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某种目标气体和汽化物,如SiH4以及大多数生物溶剂,气体和汽化物样品量可能会因为其吸附作用甚至凝结在采样管壁上而减少。气体传感器是化学传感器的一大门类。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。 1 主要特性 1.1 稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。 1. 2 灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制(TLV-thresh-old limit value)或最低爆炸限(LEL-lower explosive limit)的百分比的检测要有足够的灵敏性。 1.3选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。 1.4抗腐蚀性抗腐蚀性是指传感器暴露于高

气敏传感器的近期进展

气敏传感器的近期进展Ξ 李 平,余 萍,肖定全 四川大学材料科学系,四川成都610064 摘 要: 综合介绍了气敏传感器材料及元件的最新进展,侧重于气敏材料研究工作的概述,并分析了气敏传感器的发展趋势。关键词: 气敏传感器;半导体陶瓷;敏感材料 1 引 言 现代工业的发展一方面为人类创造出巨大的财富,另一方面却给生态环境带来严重的污染。工业生产中使用的气体原料和在生产过程中产生的气体的种类和数量随着工业的发展而越来越多。这些气体中,有毒性气体和可燃性气体不仅污染环境,而且有产生爆炸、火灾使人中毒的危险。对这些气体迅速准确地检测将有效地防止此类恶性事件的发生。此外,汽车工业的蓬勃发展,家庭液化石油气、煤气和天然气的广泛使用也对气敏传感器提出了更广更高的要求。 气敏传感器所检测的气体大致分为以下几类[1~3]: 可燃性气体:液化石油气(主要成分丙烷)、煤气(主要成分为CO和H2)、天然气(主要成分CH4)、丙烷、CO、H2、CH4、丁烷、乙醇、丙酮、乙烯、甲苯、二甲苯、汽油等; 有毒性气体:H2S、CO、Cl2、HCl、AsH3(砷烷)、PH3(磷烷)等; 大气污染气体:形成酸雨的NO x、SO x、HCl,引起温室效应的CO2、CH4、NO2、O3和破坏臭氧层的碳氟化合物、卤化碳。 除检测上述3类气体外,汽车工业的发展迫切需要开发O2、NO x和空燃比(A/F)传感器;石油、化工、造纸、畜牧、皮革、鱼类等加工过程中产生的恶臭气味的监测以及饮食、香料等香味的鉴别,急需开发各种气味传感器。 2 半导体气敏传感器的分类 对气体的检测方法有电化学方法、光学方法、电学方法等十几种[4]。而一个完美的气敏传感器应有如下几个特点:(1)选择性好,能够在多种气体共存情况下仅对目标气体有明显反应; (2)灵敏度高;(3)长期工作稳定性好;(4)响应时间快;(5)寿命长;(6)成本低,使用维修方便。其中属于电学方法的半导体气敏传感器以其高灵敏度、结构简单、不需要放大电路、使用方便、价格便宜等优点,得到迅速发展。 1931年,P.Brauer发现了Cu2O的电导率随水蒸气的吸附而改变的现象[5],其后不少人进行了气敏效应的研究。到今天半导体气敏传感器已发展成一大体系。按基体材料来分,可分为金属氧化物系、有机高分子半导体系、固体电解质系等;按被测气体可分为:氧敏器件、酒敏器件、氢敏器件等;按制作方法和结构形式,可分为烧结型、薄膜型、厚膜型、结型等;按工作机理可分为:电阻型、电容型、二极管特性型、晶体管特性型、频率型、浓差电池型等。 本文主要对电阻式半导体气敏传感器和一些新型半导体气敏传感器的近期进展做扼要介绍。 2.1 金属氧化物型电阻式半导体气敏传感器 电阻式半导体气敏传感器依据的原理是材料的电阻值随环境气氛的浓度而发生改变,通过这个变化值可获得气氛的状况。通常制备成烧结型、薄膜型或厚膜型。 金属氧化物和一些有机高分子半导体气敏材料具有电阻值随环境气氛而变化的特性。金属氧化物半导体气敏材料分为简单氧化物和复合氧化物两种类型。其中简单氧化物半导体气敏材料以SnO2,ZnO,Fe2O3为代表,而复合氧化物以M0.9La0.1 SnO3(M=Sr,Ca)、Sr0.9La0.1T iO3为代表。有机高分子半导体气敏材料将在2.2中介绍。SnO2是金红石结构,N型半导体,表面电阻控制型。SnO2气敏传感器能检测H2、CH4、丙烷、丁烷、天然气等可燃性气体,CO、NH3、H2S等有毒气体,乙酸、甲苯、二甲苯、汽油等有机溶剂和氟利昂、烟雾,鱼、肉的鲜度等。SnO2气体传感器应用相当广泛,研究工作亦深入到材料微观结构、选择性和灵敏度与催化剂、添加剂关系,新型结构的气体传感器也相继出现。添加剂铂能明显提高响应速度,缩短瞬态过程。近年来采用集成电路工艺把超微粒薄膜加热器测温二极管一起集成在硅衬底上,制成对还原性气体的灵敏度比常规多晶膜高得多的气敏元件,它是一种很有发展前途的新型半导体气敏传感器。SnO2气敏传感器在如何消除环境气氛中湿度的影响方面还没有很好的解决。一旦这方面的研究工作取得突破,那么气体传感器就可能进一步应用在低浓度环境中。总之,SnO2气体传感器的研究工作正方兴未艾。 ZnO具有纤锌矿型结构,N型半导体,表面电阻控制型。它对一般还原性气体,其检测灵敏度比SnO2低,气敏器件的工作温度比SnO2高。ZnO中加入少量铂、钯等贵重金属做催化剂,可以改善气敏元件的灵敏度和选择性。加入Pt,对异丁烷、丙烷、乙烷等含有两个以上碳原子的碳氢化合物气体灵敏度较高。而且,气体分子碳原子数越多,灵敏度就越高,但对H2、CO、CH4等可燃性气体的灵敏度较低。加入Pd对异丁烷、乙烷、丙烷等两个碳原子的气体的灵敏度较低,而对H2、CO、CH4等分子中含碳原子数较少的气体灵敏度增高。掺入Ag有助于提高对可燃性气体的灵敏度,加入V2O5-MoO3对氟里昂敏感。加入Ga2O3对烷烃敏感。 α-Fe 2 O3属刚玉结构,γ-Fe2O3属尖晶石结构。α-Fe2O3稳定性好,对可燃性气体灵敏度低。用先进的材料制备方法(如sol-gel与化学气相沉淀法等)合成纳米级α-Fe2O3,对甲烷、H2、C2H5OH有很好敏感性。微粒α-Fe2O3属于表面电 Ξ基金来源:国家自然科学基金资助课题收稿日期:1998204210

基于石墨烯的光学生物传感器的研究进展_高原

DOI :10.3724/SP.J.1096.2013.20747基于石墨烯的光学生物传感器的研究进展 高原 1李艳2苏星光*2(电子科学与工程学院集成光电子国家重点实验室1,吉林大学化学学院2,长春130012)摘要近年来,随着石墨烯研究热潮的兴起,将石墨烯用于生物及化学检测的工作也日益增多。本文着重介绍了基于石墨烯及氧化石墨烯(GO )的光学生物传感器,特别是基于石墨烯的荧光共振能量转移(FRET ) 传感器以及比色法传感器的设计思想和传感特性。 关键词石墨烯;氧化石墨烯;生物传感器;荧光共振能量转移;评述 2012-07-17收稿;2012-09-30接受 本文系国家自然科学基金(Nos.2127506, 21075050)资助项目*E-mail :suxg@jlu.edu.cn 1引言 石墨烯是一种由纯碳原子的六元环平面结构构成的二维材料 [1],是零维的富勒烯、一维的碳纳米管(CNTs )以及三维石墨结构的构筑基元[2]。它具有非常大的理论比表面积、很高的杨氏模量[3]、超高的光学透过率、优良的导热性[4]和导电性,并能够通过电子转移实现荧光猝灭。目前,人们已将基于石 墨烯的材料广泛应用于诸多领域,如吸附剂 [5]、催化剂[6]、药物载体[7]等。石墨烯具有的奇特性质,使 得其能够满足高灵敏性传感器设计的需求,并已用于构建光学[8]、电化学[9]及场效应传感器[10,11]、细胞标记[12]及实时监测[13]等。本文介绍了基于石墨烯材料的光学生物传感器的研究进展,重点评述了基于石墨烯基的荧光共振能量转移(FRET )以及比色法传感器。 2基于石墨烯的荧光共振能量转移传感器 荧光共振能量转移(FRET )是能量由供体荧光团经无辐射途径转移给受体荧光团,并引起供体荧 光猝灭和受体荧光增强的光学现象, 是测量活体及体外纳米尺度距离及变化的有效手段。近年来,人们致力于开发基于石墨烯材料的FRET 传感器, 将其用于生物及化学检测。FRET 传感器主要由3部分构成:供体、受体(猝灭剂)及供受体之间的桥联媒介。在基于石墨烯的FRET 传感器中,石墨烯及其衍生物既可以作为供体,又可作为受体。一方面,石墨烯由于其结构特点,能够同时猝灭发射波长或结构不同的多种荧光团的荧光,是一种通用的猝灭剂;另一方面,石墨烯及其衍生物经过一定的化学处理,可以产生荧光信号,可作为荧光供体。基于石墨烯的FRET 生物传感器依托于一些生物分子构建的桥联基, 用于调节供体荧光团和受体之间的距离,从而引起荧光的变化。其中,DNA 、蛋白质、多肽等生物分子均 可以作为桥联基。 2.1以石墨烯作为猝灭剂 在报道的基于石墨烯材料的FRET 传感器中,以石墨烯材料作为猝灭剂的居多。氧化石墨烯(GO )是石墨烯的一种重要衍生物,是化学还原法制备石墨烯的前驱体,在石墨烯片层结构的边缘和表面带有 多种含氧基团, 如羧基、羟基、环氧基等。正是由于这些含氧基团的存在,使其较石墨烯具有更好的水溶性,可以应用于生物体系中。石墨烯及GO 由于其大面积的共轭结构,可以作为能量受体猝灭多种有机染料及量子点的荧光,是一种广适性的荧光猝灭剂。与传统的猝灭剂相比,石墨烯材料具有更高的猝灭 效率,使FRET 传感器具有背景低、信噪比高、可多重检测的显著特点 [14 16]。2.1.1基于DNA 联接研究表明,石墨烯能区分多种DNA 分子结构,包括ssDNA ,dsDNA 以及茎环 结构等[17,18]。石墨烯及GO 由于其结构特点,对带有裸露的环状结构的化合物具有强烈的吸附能力。第41卷 2013年2月分析化学(FENXI HUAXUE )特约来稿Chinese Journal of Analytical Chemistry 第2期174 180

相关文档
最新文档