雷达图标教程

雷达图标教程
雷达图标教程

超详细Photoshop图标制作教程-雷达图标

时间:2011-01-16 12:19 来源:站酷作者:修炎真吾点击:1706次

关键词:photoshop.图标制作教程

大体看了下,这篇photoshop图标制作教程,写的非常详细,怎么操作都展示的一清二楚,希望大家好好学习一下。

在本教程中,我们将展示一种苹果水晶风格的雷达图标制作方法。最终效果如下:(原教程中有一些步骤含糊不清,并且和最后的源文件不一致,翻译时我做了适当的调整)

第1步:

在Photoshop中新建一个大小为 1024×1024 的空白文档。添加一个纹理背景(原作者使用了一个之前教程中制作的类布纹纹理),只要贴合整体风格即可。

第2步:

使用椭圆形选择工具在画布正中央拖出一个大小为 500×500 左右的圆。然后填充为黑色。命名为circle。

第3步:

为了创建图标的边框,我们复制刚刚填充的圆,然后缩小到合适的尺寸形成一个内圆,命名为inner circle。

然后,在图层面板上,右键点击inner circle的缩略图,在弹出菜单上选择选择像素从而建立一个马上要用到的选区。

第4步:

隐藏这个图层后,点击circle图层激活,接着执行图层> 图层蒙版> 隐藏选区。这样就以蒙版的形式得到了一个圆环,也就是我们要做的图标的边框。

第5步:

通过调整circle图层的图层样式得到金属质感的边框。样式中要运用到投影、内阴影、斜面和浮雕、颜色叠加。具体设置如下图:

a:设置一个柔和的投影

b:设置内阴影,注意等高线的调整。

c:调整斜面和浮雕,通过它达到立体的金属效果,其中阴影设置下的角度、高度和光泽等高线是关键。

d:最后添加颜色叠加,以达到整体的色泽度。颜色是#525252。

第6步:

最后得到了如下效果。

第7步:

这时候取消对inner circle图层的隐藏。接着复制它,得到的新图层命名为small circle。在新图层上执行图层> 图层样式> 渐变叠加。鼠标拖动渐变,让高光的区域稍微靠近下方,具体设置和颜色值如下图:

第8步:

在small circle上新建一个空白层,然后按住ctrl键点击图层面板上small circle的缩略图得到选区,接下来需要使用笔刷工具在选区内刷出按钮的高光效果。笔刷硬度调整为0%,颜色为#7a5511,流量可以尽量小一点,这样可以多刷几遍,以获得最优的效果。层命名为top light。

第9步:

接下来添加边框上的颜色,做出一种反射的效果。

添加一个新图层,命名为border light。按住ctrl键点击circle图层缩略图,得到选区,以此为border light层的图层蒙版。接着按住ctrl键点击innercircle图层缩略图,得到选区,在border light图层蒙版上填充黑色,最后得到一个环形的蒙版。

这样,我们使用笔刷在图层上进行制作放光效果,就不会超出边框区域。笔刷设置基本和上一步一样,可以根据自己想要的效果做修改。

第10步:

接下来我们开始制作雷达盘面上的元素。首先在图层面板上创建新组,命名为elements,并且把组的混合模式改为颜色减淡。为了保证所有绘制的元素都在盘面内,我们给这个图层图添加一个图层蒙版,选区使用small circle的即可。

然后开始添加雷达的坐标轴。在elements组内,新建图层,命名为x line。使用矩形选择工具,画出一条细线,用白色填充。接着执行滤镜> 模糊> 高斯模糊,模糊值使用0.5px。最后把x line 图层的不透明度改为70%。微微发光的效果得以呈现。最后复制x line图层为y line,旋转到垂直的位置,这样完整的坐标轴就完成了。

第11步:

选择椭圆工具(U),在盘面中央拖出一个圆形,填充调为0%。添加图层样式,具体设置如下:a:外发光

b:内发光

c:描边,大小可以根据喜好在1~3之间设置。

第12步:

因为是矢量的形状图层,所以做好第一个圆形后,直接再复制一个圆形,调大尺寸,最后得到这样的效果:

第13步:

坐标经纬度都制作完成后,我们添加雷达上的目标点。这一步很简单。新建一个图层,命名为spot,直接使用硬度为0%的白色笔刷,将大小调整好后,在你喜欢的位置上分别画上目标点(不透明度和流量均为100%的时候,你只需要鼠标点一下就好了)。

第14步:

添加一些刻度尺,以增加图标的真实感(你也可以添加其他元素,如果你熟悉雷达的话,:-D)。制作方法和前面做坐标轴相同。

第15步:

添加扫描线。用矩形工具(U)拉出一个细长的长方条,用直接选择工具把长方体调整为扇面形状。然后旋转45°,将其放置到原点的位置,记得不要添加什么图层样式,只是单纯的白色底。

第16步:

制作扫射的面积效果。没什么难度,主要就是控制钢笔工具画出来形状的平滑度,要和圆弧贴合。命名为scan area,需要注意的是,如果图层仍在elements图层组内,我们需要将它移出图层组,放置到elements的上方,混合模式改为滤色。

第17步:

把填充调为0%,接着设置图层样式,其中只有渐变填充效果,注意这里设置的是不常用的颜色减淡(添加)模式,样式为角度为,勾选图层对齐,如果渐变没有和坐标原点贴合,可以用鼠标拖动直至贴合状态。

第18步:

反过头来我们处理雷达盘面外侧的黑色区域。还是使用椭圆工具(U)拖出一个正中央的圆形,大小保持在比黑色区域小一点即可。为了后面的颜色效果,先要将形状图层的颜色定位绿色,值为

#24FA38 。

然后使用small circle的选区给它添加图层蒙版,图层命名为inner border后进行图层样式设置,其中的选项值需要根据你制作时候图标的大小进行调整,否则效果会不一致。

第19步:

具体样式如下:

探地雷达成像算法研究

探地雷达成像算法研究 摘要 探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。 本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。

Imaging Algorithm of Ground Penetrating Radar ABSTRACT GPR (Ground Penetrating Radar, referred GPR) set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint underground targets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used. In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain, etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.

雷达系统建模与仿真报告模板.doc

设计报告一十种随机数的产生 一概述 . 概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。 下面对雷达中常用的模型进行建模: 均匀分布 高斯分布 指数分布 广义指数分布 瑞利分布 广义瑞利分布 Swerling 分布 t分布 对数一正态分布 韦布尔分布 二随机分布模型的产生思想及建立 . 产生随机数最常用的是在(0,1) 区间内均匀分布的随机数,其他分布的随机数可利用均匀分布随机数来产生。 均匀分布 1>( 0, 1)区间的均匀分布: 用混合同余法产生(0,1)之间均匀分布的随机数,伪随机数通常是利用递推公式产生的,所用的混和同余法的递推公式为: x n 1 = x n +C(Mod m)

其中,C是非负整数。通过适当选取参数 C可以改善随机数的统计性质。一般取作小于 M的任意奇数正整数,最好使其与模 M互素。其他参数的选择 (1)的选取与计算机的字长有关。 (2) x(1) 一般取为奇数。 用Matlab 来实现,编程语言用 Matlab 语言,可以用 hist 数的直方图(即统计理论概率分布的一个样本的概率密度函数) 函数画出产生随机,直观地看出产 生随机数的有效程度。其产生程序如下: c=3;lamade=4*200+1; x(1)=11; M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M); end; x=x./M; hist(x,10); mean(x) var(x) 运行结果如下: 均值 =方差= 2> (a,b )区间的均匀分布: 利用已产生的( 0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)均匀分布的随机数。 其概率密度函数如下: 1 p( x) b a a x b 0 x a, x b 其产生程序如下: c=3;lamade=4*201+1; a=6;b=10; x(1)=11;M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M);

SAR合成孔径雷达图像点目标仿真报告(附matlab代码)

SAR 图像点目标仿真报告 徐一凡 1 SAR 原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。 SAR 回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定: 2r r C B ρ= ,式中r ρ表示雷达的距离分辨率,r B 表示雷达发射信号带宽,C 表示光速。同样,SAR 回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:a a a v B ρ= ,式中a ρ表示雷达的方位分辨率,a B 表示雷达方位向多谱勒带宽,a v 表示方位向SAR 平台速度。在小斜视角的情况下,方位分辨率近似表示为2 a D ρ=,其中D 为方位向合成孔径的长度。 2 SAR 的几何关系 雷达位置和波束在地面覆盖区域的简单几何模型如图1所示。此次仿真考虑的是正侧视的条带式仿真,也就是说倾斜角为零,SAR 波束中心和SAR 平台运动方向垂直的情况。 图1 雷达数据获取的几何关系 建立坐标系XYZ 如图2所示,其中XOY 平面为地平面;SAR 平台距地平面高H ,以速度V 沿X 轴正向匀速飞行;P 点为SAR 平台的位置矢量,设其坐标为(x,y,z); T 点为目标的位置矢量,设其坐标为(,,)T T T x y z ;由几何关系,目标与SAR 平台的斜距为: R PT == 由图可知:0,,0T y z H z ===;令x vs =?, 其中v 为平台速度,s 为慢时间变量(slow time ) ,

雷达图像 处理

与光学图像相比,SAR图像视觉可读性较差,并且受到相干斑噪声及阴影、透视收缩、迎坡缩短、顶底倒置等几何特征的影响。因此对SAR雷达图像的图像增强与边缘检测将有别于一般的光学图像。 首先,图像增强技术是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,它是一种将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,使之改善图像质量,丰富信息量,加强图像判读和识别效果的图像处理方法。从纯技术上讲,图像技术分为频域处理法和空域处理法。 空域图像增强是直接对图像中的像素进行处理,基本上是以灰度影射变化为基础的,所用的影射变换取决于增强的目的。具体来说,空域法包括点运算和模板处理,其中点运算时针对每个像素点进行处理的,与周围的像素点无关。空域增强方法大致分为3种,它们分别是用于扩展对比度的灰度变换、清除噪声的各种平滑方法和增强边缘的各种锐化技术。灰度变换主要利用点运算来修改图像像素的灰度,是一种基于图像变换的操作;而平滑和锐化都是利用模板来修改像素灰度,是基于图像滤波的操作。 频域处理法的基础是卷积定理。传统的频域法是将需要增强的图像进行傅里叶变换或者离散余弦变换,或者是小波变换,然后将其与一个转移函数相乘,再将结果进行反变换得到增强的图像。 在空域图像增强中,形态学的基本思想是使用具有一定形态的结构元素度量和提取图像中的对应形状,从而达到图像进行分析和识别的目的,利用不同的数学形态学变换滤波方法在对S AR图像直接进行平滑滤波的应用中取得较好的结果。算法简单,物理意义明显。 形态学的基本思想是使用具有一定形态的结构元素度量和提取图像中的对应形状,从而达到图像进行分析和识别的目的。由于形态学算子实质上是表达物体或形状的集合与结构元素之间的相互作用,结构元素的形态就决定了这种运算所提取的信号的形态信息。因此数学形态学对信号的处理具有直观上的简单性和数学上的严谨性,在描述信号形态特征上具有独特的优势。同时,形态学中的形态滤波器可借助于先验的几何特征信息,利用形态学算子有效地滤除噪声,又保留图像中的原有信息。因此在图像平滑滤波、分割、识别、形状描述等方面得到了广泛的应用,它最显著的特点是直接处理图像表面的几何形状,具有快速、健壮和精确的特性。 本文将开运算和闭运算的另外一种组合方法——交替顺序滤波运用到s AR图像增强处理中。它是用一系列不断增大的结构元素来执行开闭滤波。具体过程如下:本文开始使用的是一个2 ×2较小的结构元素,然后增加其大小,直到其大小与获得单个开闭滤波器最佳效果所用的3 ×3结构元素的大小相同为止。 在频域图像增强中,小波变换的时域与频域是具有多分辨率的时频分析方法,我们可以利用它的这个特性来对信号做高通滤波和低通滤波,得到原始信号的逼近信号和细节信号。对一幅图像sar进行基于小波变换的增强处理,主要步骤:1、对图像用mallat快速算法进行小波分解;2、选取增强系数;3、对处理后的小波系数进行小波逆变换,得到增强图像。多尺度积用于图像边缘检测。但小波变换各向同性的性质导致方向选择性差,不能有效地捕捉轮廓信息。 其次图像边缘检测边缘的种类分为两种,一种为阶跃性边缘,它两边的像素的灰度值有着显著的不同;另一种成为屋顶状边缘,它位于灰度值从增加到减少的变化转折点。边缘特征提取的常用方法有Sobel算子和Cannny算子,其中canny算子对高斯加性噪声有一定的抑制作用,提取的边缘方向和位置信息比较准确,但是SAR的噪声为Gamma分布的乘性噪声,

雷达动态探测目标的仿真建模

雷达动态探测目标的仿真建模 谢卫,陈怀新 (中国电子科技集团公司第十研究所,成都 610036) 摘要:通过对雷达动态探测目标过程分析,提出了雷达探测目标仿真模型的方法,实现了雷达目标检测、多目标滤波跟踪、资源调度管理等数字模型。实际表明这些模型满足数据融合中雷达探测目标数据的需求,并且建模方法对数据融合传感器模型建立具有实际指导意义。关键词:雷达;建模;仿真;数据融合 Radar detection of targets dynamic simulation modeling XIE Wei,CHEN Huai-xin (CETC No.10th Research Institute, Chengdu, China; ) Abstract:With the analysis of the process of radar dynamic detecting targets, a method of the simulation model based on of radar detect targets is presented, some mathematic models (such as target indication by radar, variable number of targets tracking, resource management based on Scheduling algorithm) are realized. An actual experiment that the simulation data provided by radar detecting model can supply for the study of data fusion was made, simultaneity modeling method has a certain actual instructing meaning at the aspect of sensor detecting model of data fusion. Key words: radar; modeling; simulation; data fusion 1 引言 现代战场上各种目标的出现,要求利用多种传感器组网来采集信息并加以融合,充分利用不同目标各个方向、不同频段的反射特性,最大限度地提取信息,满足战场需要。对于数据融合来说真实的战场目标和传感器探测数据,是检验其有效性的最好条件。然而这样的真实数据很少,而且成本也较高,在融合算法的前期研究和实验阶段,就需要我们较真实的模拟多中传感器的探测数据。雷达是战争中至关重要的侦察手段,本文以雷达为列,分析其数据处理流程,并进行仿真建模。 2 雷达探测仿真建模 雷达探测功能仿真是通过仿真目标回波、接收机噪声、干扰、杂波等信号的幅度信息来复现雷达的检测过程。一般采用基于Monte Carlo的方法来实现,其流程如下图所示:

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

探地雷达在地下管线探测中的应用

探地雷达在地下管线探测中的应用 张进华,马广玲,姚成虎,缪建文 (南京市测绘勘察研究院,江苏南京 210005) 摘 要:探地雷达技术是如今适应快速、准确、无损地探测地下障碍物而迅速发展的电磁技术。本文通过结合工程实例来探讨探地雷达在地下管线探测中的广泛应用。 关键词:探地雷达;地下管线探测;异常反射 1 前 言 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标体或界面进行定位的电磁技术。探地雷达以其探测的高分辨率和高工作效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展以及工程实践的增多和经验的丰富积累,探地雷达技术进一步发展,仪器不断更新,应用范围逐步扩大,现已被广泛应用于工程地质勘察、建筑结构调查、无损检测、生态环境等众多领域。本文将以探地雷达在地下管线探测中的应用,说明探地雷达可以有效解决工程上的许多疑难问题,并总结了相关经验和应用效果。 2 探地雷达的原理及工作方法 探地雷达由地面上的发射天线将高频带短脉冲形式的高频电磁波定向送入地下,高频电磁波遇到存在电性差异的地下地层或目标体反射后返回地面,由接收天线接收。高频电磁波在传播时,其路径、电磁场强度与波形将随所通过介质的电性及几何形态而变化,故通过对时域波形的采集、处理与分析,可确定地下界面或地质体的空间位置及结构。 探地雷达通常以脉冲反射波的波形形式记录。波形的正负峰分别以黑白表示,或者以灰阶或彩色表示,这样同相轴或等灰线、等色线即可形象地表征出地下反射面或目标体。在波形图上各测点均以测线的铅垂反向记录波形,构成雷达剖面。根据雷达剖面图便可 收稿日期:2003-07-09判断地下不明障碍物。探地雷达在地下介质中的传播遵循波动方程理论。探地雷达的探测效果主要取决于地下目标体与周围介质的电磁性质差异、目标体的深度与介质对电磁波的吸收作用、目标体的几何形态及规模、干扰波的类型、强度及特点等因素。 探地雷达具有不同的野外工作方法,根据工作区的具体情况可选择剖面法、多次覆盖法以及宽角法等测量方式。实际工作中,测量参数(发射接收天线距、时窗、测点点距、天线中心频率、采样率等)可根据不同要求进行选择,从而得到不同分辨率及不同探测精度的雷达剖面。通常在进入工作区前,应有目的地进行类似场地条件的参数选择试验,以达到最佳探测效果。在进入工作区后应根据实际需要布置测线和测点,并让测线和测点尽量通过被测目的物。在不明显的目的物上进行探测时应尽量加密线距和点距,以利于后面的资料处理与解释。 3 探地雷达的数据资料解释处理及在地下管线探测中的应用效果 近几年来,我们采用加拿大生产的pulse EKKO-100A型探地雷达从事了数百次的地下管线探测工作,取得了丰富的探地雷达探测资料及很好的应用效果。 3.1 资料的处理及解释 探地雷达探测资料的解释包括数据处理和图像解释两部分内容。由于地下介质相当于一个复杂的滤波器,介质对电磁波的不同程度吸收及介质的不均匀性, 63城 市 勘 测2004年

图像识别技术

伴随着通信技术与信息处理技术的迅猛发展,越来越多的纸质文档通过数字采集设备转换成文本图像,从而使文本图像数据能够快捷的在网络、卫星、传真通信信道中传输,因此,文本图像已逐渐成一个重要的信息来源。但是,现有的文本图像处理系统自动化程度低,且通用性不高,无法满足文本图像处理广泛性与实时性的要求。因此,研究如何对文本图像进行分析与处理,以便高效、快捷的获取文本图像的信息,是一项十分有意义的研究课题。本文在总结已有研究成果的基础上对文本图像的识别检索、预处理、版面分析和表格图像识别展开研究。所做的主要工作如下:1.依据图像的灰度分布和结构特征差异,对基于图像信息度量的文本图像识别检索算法进行改进,构造一种基于信息度量与Radon变换的文本图像识别检索算法。该算法综合利用文本图像与连续色调】图像的灰度分布与结构特征差异进行文本图像的识别检索。实验结果表明,所构造算法可有效降低文本图像识别检索的误识率。2.对基于Hough变换的文本图像倾斜检 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模 式的目标和对像的技术。 图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字 母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明, 视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向 突然改变的地方,这些地方的信息量最大。由此可见,在图像识别过程中,知觉 机制必须排除输入的多余信息,抽出关键的信息。 图像识别的目的在于用计算机自动处理图像信息,以代替人去完成图像分类 及辨识的任务。数字图像处理与识别技术是模式识别领域一个重要的研究方向, 近几十年来,图像识别技术取得了深入和迅速的发展,并广泛应用于图像遥感、机 器人视觉、生物医学、地质勘探等多个领域。 随着图像识别技术在多领域的发展,由其在计算机视觉和图像处理研究中,已经取得了一定的研究成果。Mallat在小波变换中滤波器的设计、Belhumeur在Fisher变换中的识别模型和Largrange优化方式建立支持向量机。本文在总结上述研究成果的基础上,首先对摄像头采集的数据进行了处理,完成JPEG的编码,详细讨论了JPEG图像解码的过程并实现了其算法。

侧视雷达图像的几何特征

3.2.3 侧视雷达图像的几何特征 侧视雷达图像在垂直飞行方向(y)的像点位置是以飞机的目标的斜距来确定,见图3-27所示,称之为斜距投影。图像点的斜距算至地面距离为: (3-17) 飞行方向(x)则与推扫式扫描仪同。由于斜距投影的特性,产生以下几种图像的几何特点: 1、垂直飞行方向(y)的比例尺由小变大,见图3-28所示。地面上有A、B、C 三段距 图3-27斜距投影 离相等,投影至雷达图像上为a、b、c。由于c>b>a,因此。显然这是由于com的作用造成的。从图3-27中可知:地面上AB线段投影到影 像上为ab,比例尺为:(3-18) 弧线Aaˊ┴SB。假定:弧线近假为直线段,并且∠AaˊB也近似为直角。

则 变成通式(3-19) 考虑到实测的斜距是按比例尺缩小为影像,因此在侧视方向上的比例尺为: (3-20) 可见,°,cos,即趋于0°时比例尺大,而°,cos,即趋于90°时比例尺小。 2、山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长,与中心投影相反,还会出现不同地物点重影现象。如图3-29所示,地物点AC之间的山坡在雷达 图3-28 侧视雷达影像的比例尺 图像上被压缩,在中心投影像片上是拉伸,CD之间的山坡出现的现象正好相反。地物点A和B在雷达图像上出现重影,在中心投影像片中不会出现这种现象。

图3-29重影现象 3、高差产生的投影差亦与中心投影影像投影差位移的方向相反,位移量也不同。见图3-30所示。 投影差(3-21) 而(3-22)

图3-30投影差 由于 所以取(3-23) 当△h>0时,也大于0为正值,反之为负值。投影差改正时用加法:

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对

图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中

雷达图像处理(ENVI)

雷达图像处理ENVI ENVI提供基本的雷达图像处理功能,包括雷达数据格式支持、雷达文件定标、消除天线增益畸变、斜距校正、入射角图像生成、斑点噪声压缩、合成彩色图像等。 多标准ENVI图像处理功能也可以用于处理雷达数据的处理,如图像显示功能、图像拉伸、颜色处理、图像分类、几何校正、图像配准、卷积滤波、图像融合等。 目前,大所述雷达成像系统都是侧视成像,这种雷达系统所测量的距离是目标物到平台一侧的距离(倾斜距离),基于这种几何系统获得的图像叫斜距图像。雷达斜距数据在侧向范围有系统几何畸变,实际上,由于入射角的变化使得垂直侧向范围的地距和像素大小发生变化。因此,要使用雷达图像,必须经过从斜距到地距的校正处理。 自适应滤波器被设计成对斑点噪声压缩的同时,对图像分辨率的减少是微笑的。自适应滤波器运用围绕每个像元值标准差来计算一个新的像元值。不同于传统的低通平滑滤波,自适应滤波器在抑制噪声的通透式保留了图像的高频信息和细节。 Lee滤波器用于平滑亮度各图像密切相关的噪声数据以及附加或倍增类型的噪声。 增强型Lee滤波器可以在保持雷达图像纹理信息的同时减少斑点噪声。 Frost滤波器能在保留边缘的情况下,减少斑点噪声。 增强型Frost滤波器可以在保持雷达图像纹理信息的同时减少斑

点噪声。 Gamma滤波器可以用于在雷达图像中保留边缘信息的同时减少斑点噪声。 Kuan滤波器用于在雷达图像中保留边缘的情况下,减少斑点噪声。 Local Sigma滤波器能很好地保留细节并有效地减少斑点噪声,及时是在对比度较低的区域。 Bit Error Filters比特误差误差滤波器可以消除图像中的”bit-error”噪声。

【CN109903306A】一种基于探地雷达图像的层间脱空识别方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910128568.4 (22)申请日 2019.02.21 (71)申请人 东南大学 地址 210000 江苏省南京市江宁区东南大 学路2号 (72)发明人 顾兴宇 章天杰 孙小军 徐向荣  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 王恒静 (51)Int.Cl. G06T 7/136(2017.01) G06T 7/187(2017.01) G01S 13/89(2006.01) (54)发明名称 一种基于探地雷达图像的层间脱空识别方 法 (57)摘要 本发明公开了一种基于探地雷达图像的层 间脱空识别方法,该方法包括:对得到的道路探 地雷达图像转化为灰度图,并将得到的图进行中 值滤波;根据分割阈值点确定层间脱空的位置, 并将中值滤波后的图像以所述分割阈值点进行 二值化;根据估测的层间脱空所在位置,对图像 的部分像素进行删除;选定长条形结构元对图像 进行闭操作,将因分割阈值点导致分离的区域重 新组合成一个区域;对闭操作后的图像进行标记 连通域,对标记了连通域的区域进行特征识别和 提取。本发明的通过自动分析探地雷达图像,快 速准确判断出脱空区域,可节省大量人力资源; 本发明通过设定分割阈值点和闭操作结合能有 效降低脱空数量计算的错误率, 提高检测精度。权利要求书1页 说明书4页 附图4页CN 109903306 A 2019.06.18 C N 109903306 A

权 利 要 求 书1/1页CN 109903306 A 1.一种基于探地雷达图像的层间脱空识别方法,其特征在于,该方法包括以下步骤: (1)对得到的道路探地雷达图像转化为灰度图,并将得到的所述灰度图进行中值滤波; (2)根据中值滤波后的图像的频率直方图选择分割阈值点,根据所述分割阈值点确定层间脱空的位置,并将中值滤波后的图像以所述分割阈值点进行二值化; (3)根据估测的层间脱空所在位置,对图像的部分像素进行删除; (4)选定长条形结构元对步骤(3)得到的图像进行闭操作,将因分割阈值点导致分离的区域重新组合成一个区域; (5)对闭操作后的图像进行标记连通域,对标记了连通域的区域进行特征识别和提取。 2.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(2)中,分割阈值点为所述频率直方图概率为99.6%的位置处的像素值。 3.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(3)中,对图像的部分像素进行删除具体包括: (31)计算比值α,其中,d rb为道路的基层厚度,d lt为探地雷达的检测深度; (32)根据比值α得到像素删除临界值H,其中,p pd为探地雷达图像深度方向的总像素数; (33)对探地雷达图像中深度大于H的部分像素进行删除,得到截取后的探地雷达图像。 4.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(4)中,长条形结构元记为strel=[1 1 1 1 1]。 5.根据权利要求1所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(5)中,对标记了连通域的区域进行特征识别和提取包括: (51)通过预设的面积阈值筛除各个标记了连通域的区域中的杂波并判定可能脱空区域; (52)利用层间脱空区域的长条形状,通过计算(51)中确定的可能脱空区域的最小矩形的长轴和短轴的比值β,来最终判定该可能脱空区域是否为脱空区域。 6.根据权利要求5所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(51)中,若标记了连通域的区域面积小于等于面积阈值时,则该区域判定为杂波;否则,若标记了连通域的区域面积大于面积阈值时,该区域判定为可能脱空区域。 7.根据权利要求5所述的基于探地雷达图像的层间脱空识别方法,其特征在于,所述步骤(52),若β≥B,其中B为预设的临界值,则判定该区域为脱空;否则,β<B,则判定该区域不是脱空。 2

探地雷达实验数据处理报告

探地雷达数据基本处理报告 实验目的:学会探地雷达数据的基本处理步骤,掌握一定处理数据能力,学会运用软件处理收集数据,突出有效波,抵制干扰波,收集有利信息,然后可以对地下的情况进行简单的分析,进行简单地分层。实验仪器:Terra SIR-3000,处理软件:RADAN6.5.3.0软件。 实验处理过程: 第一步,装载文件,打开File—Open,加亮文件名FILE____039.DZT,点OK,选定的文件就会在屏幕上显示出来。 第二步,改变输出路径,选择菜单Window>Close ALL,即可关闭所有文件。 选择View>Customize,移动鼠标到输出如果输出路径不存在,利用WINDOWS浏览器创建一个文件夹,然后返回View>Customize选择新建立的文件目录。 第三步,改变显示参数。 1,点击显示按钮。 2,点击线扫描图标。 3,点击线扫描图标。在灰度比例尺中选择彩色表20,显示资料。点OK或者回车,退出线扫描参数对话框,再点OK退出显示参数设置资料显示。

第四步,编辑文件头,选择Edit > File Header。察看文件头信息。

第五步,编辑文件,去除多余道。 a,利用右滑动箭头,将数据文件滑动到文件末。采用高分辨率显示器,就不必用滑动功能。 点击选择按钮,或者在数据窗口点鼠标右键,加亮选择区域。打开选择编辑块体对话框。 b,选择编辑>剪切(Edit-select,使用剪刀按钮。

被选剖面将从文件中剪切,得到新文件。 c,运用窗口振动简图切换图标,演示图像如下

第六步,突出有效波,,采用增益的方法。 1,点击显示按钮-点击线扫描图标-点击线扫描图标,在显示窗口分 别调节Color Table,Color Xform找到突出部分。

相控阵雷达系统的仿真_王桃桃

计算机与现代化 2014年第2期 JISUANJI YU XIANDAIHUA 总第222期 文章编号:1006- 2475(2014)02-0209-04收稿日期:2013-09-29作者简介:王桃桃(1989-),女,江苏沭阳人, 南京航空航天大学自动化学院硕士研究生,研究方向:雷达系统仿真;万晓冬(1960-),女,江苏南京人, 副研究员,硕士生导师,研究方向:分布式仿真技术,实时分布式数据库技术,嵌入式软件测试技术;何杰(1988- ),男,安徽铜陵人,硕士研究生,研究方向:机载红外弱小目标检测,三维视景仿真。相控阵雷达系统的仿真 王桃桃,万晓冬,何 杰 (南京航空航天大学自动化学院,江苏南京210016) 摘要:雷达的数字仿真及雷达仿真库的建立已经成为近年来雷达领域研究的热点。本文主要进行相控阵雷达系统的仿真研究。首先根据相控阵雷达的组成和原理,建立相控阵雷达的仿真模型与数学模型。然后选择Simulink 作为仿真平台,对相控阵雷达系统进行仿真与研究。仿真的模块主要有天线模块、信号环境模块、信号处理模块以及GUI 人机交互界面模块。最终在Simulink 库中生成自己的雷达子库,形成相控阵雷达系统,为后续相控阵雷达的研究奠定基础。关键词:雷达;相控阵;信号处理中图分类号:TP391.9 文献标识码:A doi :10.3969/j.issn.1006-2475.2014.02.047 Simulation of Phased Array Radar Systems WANG Tao-tao ,WAN Xiao-dong ,HE Jie (College of Automation Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China )Abstract :The digital simulation of radar and the establishment of radar simulation libraries has become research hot spot in radar field in recent years.This paper mainly focuses on phased array radar system simulation.According to the composition and prin-ciple of phased array radar ,it establishes the simulation model and mathematical model of phased array radar.Then ,the paper does simulation and research on phased array radar system by choosing Simulink as the simulation platform.The simulation mod-ule mainly includes the antenna module ,the signal environment module ,the signal processing module and GUI man-machine in-terface module.Eventually it generates radar sub-libraries and forms phased array radar system ,which lay the foundation for fol-low-up phased array radar study. Key words :radar ;phased array ;signal processing 0引言 计算机仿真技术应用于雷达源于20世纪70年代,国内雷达仿真起步较晚,仿真主要是基于SPW 、Matlab 、Simulink 、ADS 、HLA 等平台,其中Simulink 是一种在国内外得到广泛应用的计算机仿真工具,它支持线性系统和非线性系统,连续和离散事件系统,或者是两者的混合系统以及多采样率系统。ADS (Ad-vanced Design System )软件可以实现高频与低频、时域与频域、噪声、射频电路、数字信号处理电路的仿真等。SPW (Signal Processing Workspace )是用于信号处理系统设计的强有力的软件包,在雷达领域有着广泛的应用。HLA (High Level Architecture )提供了基于分布交互环境下仿真系统创建的通用技术支撑框架, 可用来快速地建造一个分布仿真系统。比较4种仿 真平台,SPW 比较昂贵,只能在Unix 操作系统下使用,HLA 通信协议复杂,不同版本的RTI 可能有无法通信的问题。Simulink 应用于雷达仿真比ADS 广泛并易于推广,所以本文采用Simulink 作为仿真平台。 为了进行后期雷达与红外的数据融合,首先需要建立雷达模块以产生雷达数据源,本文根据相控阵雷达的工作原理,采用数字仿真的方法,仿真雷达模块。首先提出相控阵雷达的仿真结构图以及给出各个模块的数学模型,然后根据数学模型,利用Simulink 仿真平台,仿真实现雷达的各组成模块,从而构建一个完整的雷达系统。同时,也可以通过使用S 函数将各个模块封装,然后建成自己的雷达仿真库,从而可以形成不同类型的雷达系统,便于更好地进行雷达系统

图像识别技术报告

图像识别技术 课程教师:桑爱军老师 报告组成员: 五里雾

一、图像识别简介 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。 人的图像识别能力是很强的。图像距离的改变或图像在感觉器官上作用位置的改变,都会造成图像在视网膜上的大小和形状的改变。即使在这种情况下,人们仍然可以认出他们过去知觉过的图像。甚至图像识别可以不受感觉通道的限制。例如,人可以用眼看字,当别人在他背上写字时,他也可认出这个字来。 图像识别技术可能是以图像的主要特征为基础的。每个图像都有它的特征,如字母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。

在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。在文字材料的识别中,人们不仅可以把一个汉字的笔划或偏旁等单元组成一个组块,而且能把经常在一起出现的字或词组成组块单位来加以识别。 图像识别技术是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。例如模板匹配模型。这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。这个模型简单明了,也容易得到实际应用。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的图像,也能识别与模板不完全一致的图像。例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。 为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。这种模型认为,在长时记忆中存储的并不是所要识

浅谈探地雷达法检测路面结构层

浅谈探地雷达法检测路面结构层 【摘要】以探测雷达在某高速公路上的路面结构层缺陷检测为例,阐述了探测雷达在路面结构检测的原理、方法、数据结果分析等。 【关键词】探测雷达;路面结构;检测 1路面结构层缺陷检测的意义 随着我国道路交通量日益增大,车辆迅速大型化以及超载现象,使公路路面面临严峻的考验。因此路面病害检测的作用凸显出来,其中路面结构层缺陷检测是路面病害检测的一项重要内容,通过探地雷达的检测可以达到识别地下目标物和道路结构层内隐伏缺陷的目的。根据病害程度采取相应的补救措施,保证路面的通行质量同时也有利于对公路路面的设计、施工等各方面提供有力的资料和经验。本文通过探地雷达法对某高速部分路段检测为例浅谈路面结构层缺陷检测。 2设备原理 图2.1探地雷达工作原理示意图 探地雷达方法(Ground Penetration Radar,简称GPR)是一种采用短脉冲宽带高频电磁波信号检测地下介质分布的新技术。根据电磁波在有耗介质中的传播特性,通过天线连续拖动的方式以宽频带短脉冲的形式向地下发射高频电磁波,电磁波信号在地下介质内部传播时遇到不同介质的界面时,就会发生反射、透射,其反射系数(反射信号的强度)主要由上、下层介质的相对介电常数决定。上、下层介质的介电常数差异越大,反射的电磁波能量也越大;反之,越小。反射的电磁波被与发射天线同步移动的接收天线接收后,通过雷达主机精确记录反射回的电磁波的运动特征,获得地下介质的扫描图像,通过对扫描图像进行处理,对地质雷达剖面上目标层(体)的反射波时间延迟、波形特征以及剖面的宏观和微观形态组合进行解译,达到识别地下目标物和道路结构层内隐伏缺陷的目的。 电磁波在特定介质中的传播速度V是不变的,因此,根据探地雷达记录上的地面反射波与地下反射波的时间差△T,即可据下式算出地下异常的埋藏深度H: H=V·△T/2(1) 式中,H即为目标层厚度;V是电磁波在地下介质中的传播速度,由下式表示: V=C/■(2) 式中,C是电磁波在大气中的传播速度,约为3×108m/s;ε为相对介电常数,取决于地下各层构成物质的介电常数。 雷达波反射信号的振幅与反射系数成正比,在以位移电流为主的低损耗介质中,反射系数r可表示为: r=■(3) 式中,ε1、ε2为界面上、下介质的相对介电常数。对公路检测而言,ε1为面层的相对介电常数,ε2为基层的相对介电常数。由公式(3)可知,雷达波的穿透深度主要取决于地下介质的电性和中心频率。导电率越高,穿透深度越小;中心频率越高,穿透深度越小,反之亦然。反射信号的强度主要取决于上、下介质的电性差,电性差越大,反射信号越强;反之,越小。对沥青混凝土面层而言,面层与基层(稳定层)存在明显的电性差,可以预期面层底部会有强反射出现。不同面层(上、中、下)之间所用材料也存在细微差别,因此也可以得到较弱的

相关文档
最新文档