铸造铝合金中的针孔及其防治

铸造铝合金中的针孔及其防治
铸造铝合金中的针孔及其防治

铸造铝合金中的针孔及其预防铸造铝合金由于其密度小,强度比高,具有良好的综合性能,因此被广泛用于航天航空、汽车制造、动力仪表、工具及民用器具等制造业。随着国民经济的发展及世界经济一体化进程的推进,其生产量和消耗量大幅增长。但是,铸造铝合金的针孔缺陷比较突出,结合在铝合金铸件生产实践中积累的经验,谈谈铝合金针铸件孔缺陷的产生和预防。

一、铸造铝合金针孔的产生

针孔是铝合金在凝固过程中,溶解在铝熔液中的气体(99%H2)逸出后又没有完全浮到铝液表面造成的。

铝合金在熔炼和浇注时,会吸入大量的氢气,冷却时则因溶解度的下降而不断析出。铝合金中溶解的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。因此铝合金液在冷却凝固过程中,当氢的含量超过了其溶解度时即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,若来不及上浮排出,就会在凝固过程中形成细小、分散的气孔,即通常所说的针孔。在氢气泡形成前达到的过饱和度是氢气泡形核数目的函数,而氧化物和其他夹杂物则起气泡核心的作用。

在一般生产条件下,特别是在厚大的砂型铸件中很难避免针孔的产生。在相对湿度大的气氛中熔炼和浇注铝合金,铸件中的针孔尤其严重。这就是干燥的季节要比多雨潮湿的时节产生的铝合金铸件针孔缺陷少些的原因。

对铝合金而言,如果结晶温度范围较大,则产生网状针孔。这是因为在一般铸造生产条件下,铸件具有宽的凝固温度范围,使铝合金容易形成发达的树枝状结晶。在凝固后期,树枝状结晶间隙部分的残留铝液可能相互隔绝,分别存在于近似封闭的小空间中,由于它们受到外界大气压力和合金液体的静压作用较小,当残留铝液进一步冷却收缩时能形成一定程度的真空,从而使合金中过饱和的氢气析出并形成针孔。

二、铸造铝合金针孔度的评定

铸造铝合金机械加工表面1cm2范围内孔洞的数量和尺寸称为针孔度。针孔对铝合金性能的影响主要表现在会使铸件组织致密度降低,力学性能下降。为此,在铝合金铸件生产实践中,加强气孔等级对力学性能影响的研究,通过控制针孔等级来保证铝合金铸件品质是非常重要的。针孔等级评定,低倍检验按GB 10851—1989进行;X 射线检验按GBll346—1989铝合金铸件针孔分级标准执行。根据《铝合金铸件针孔度目测评定法》,针孔度分为5级,参考图像附表中所示:

三、铸造铝合金针孔缺陷的防止

1.形成针孔的氢气来源与析出

铝合金中气孔的产生,是由于铝合金吸气而形成的,但分子状态的气体一般不能溶解于合金液中,只有当气体分子分解为活性原子时,才有可能溶解。合金液中气体能溶解的数量多少,不仅与分子是否容易分解为活性原子有关,还直接与气体原子类别有关。在铝合金熔炼过程中,通常接触的炉气有H2、02、H20、C02及S02等,这些气体主要是由燃料燃烧后产生的,而耐火材料、金属炉料、熔剂以及与气体接触的工具等均会带入一定量的气体。另外,新砌的炉衬、炉子的耐火材料、坩埚等,通常需要使用几天或几周的时间,其化学结合的氢才能充分从粘结剂中释放出来。一般而言,炉气成分是由燃料种类及空气量来决定的。例如,普通焦炭坩埚炉,炉气成分主

要为C0

2、S0

2

和N

2

;煤气、重油坩埚炉主要为H

2

0、N

2

;而对目前大多数熔炼厂家使用

的电炉熔炼来说,炉气成分主要是H

2

。因此,采用不同的熔炼炉生产时,铝合金的吸气量和产生气孔的程度是不同的。

率和净生产实践表明,氢能大量溶解于铝或铝合金中,是导致铝合金形成气孔的主要原因,是铝合金中最有害的气体,也是铝合金中溶解度最大的气体。在铸件凝固过程中,由于氢的析出而产生的气隙,不仅减少了铸件的实际截面积,而且是裂纹源。惰性气体不能溶于铝或铝合金,其他气体一般与铝或铝合金反应形成铝的化合物,如

A1

20

3

、A1C1

3

、A1N及A1

4

C

3

等。

在铝合金熔炼时,周围空气中的氢气含量并不多,氢的来源通常是铝与水蒸汽的

反应,而水蒸汽主要来源于炉气中的水分,设备及工具吸附的水分,一些材料的结晶水,以及铝锈Al(0H)2分解出来的水分等。

因此针孔的解决,应从防止铝合金熔液吸气和加强铝熔液除气来入手。

2.预防铝合金铸件针孔形成的主要措施

由以上分析可知,铝熔液很容易吸收氢气,极少量的水蒸汽就可以轻易毁掉整炉的铝液,因此首先要防吸气。铝合金铸件容易产生针孔缺陷,这既与铝合金本身特性

有关系,也与一系列的外界因素有关。为避免或减少铝合金在熔炼时产生针孔,保证铝合金铸件具有优良品质,可针对性地采取适当的预防措施。

(1)明确“精料、精工”原则,对炉料和熔炼设备和工具进行预处理。炉料使用前应先用吹砂或其他方法去除表面的锈迹、泥沙等污物,并进行炉料预热,预热温度为350-450℃,并保持3h以上,严防带入水分和油污等。

坩埚、锭模和熔炼工具,使用前应将表面油污、脏物等清除干净,并预热至120—250℃,涂刷防护涂料。

新坩埚、新砌炉子及有锈蚀的旧坩埚,使用前应用吹砂或其他方法将表面清除干净,并进行烘炉处理,一般应加热至700-800℃,并保温2-4h,以去除坩埚所吸附的水分及其他化学物质。熔炼工具应预热至200-400℃,保持2h以上。

(2)铝合金在熔炼时,要力求做到快速熔炼,缩短高温下停留时间。A1—Mg合金和其他铝合金熔化后保持时间过长时,需要用熔剂覆盖铝合金液面,以防止吸气,一旦在生产过程中出现异常,要及时与现场技术人员取得联系,采取果断措施予以处理。每一炉合金从开始熔化到浇注完毕的时间,砂型铸造不得超过4h,金属型铸造不得超过6h,压铸不得超过8h,合金最高温度一般不超过760t,坩埚底部涂料厚度需≥60mm。

(3)加强在潮湿季节熔炼的预防措施。在雨季或空气潮湿季节铸造铝合金,更应注意采取去气防护措施,对熔炼用具、锭模、坩埚和炉料等都要严格按规范进行预热处理,以防带人过多的水分和油污而引起各类针孔的产生。

(4)采取必要的精炼工艺,去除铝合金中的气体。一般情况下,所谓“去气”就是去除合金中的气体,“精炼”是指去除合金中的夹杂物。因铝合金熔炼时,除气和精炼两个工序多合在一起进行,故在生产实践中习惯将这两个工序称为精炼。由于铝合金中的气体主要是氢气,去气也就是去除氢气。目前去气的主要方法是通过在铝合金中加入精炼除气剂来制造大量的气体(气泡中的气体可能是铝液内部经化学反应产生的,也可能是由部分精炼除气剂直接带入的),利用分压原理,让溶解于铝液中的氢原子向气泡扩散(此时气泡的分压为零),由于气泡密度轻,当气泡上浮到铝液表面时,气泡破裂,氢气逸入大气中,最终达到去除氢气的目的。

目前,为了消除铝合金铸件针孔,最常用的办法是在熔化过程中加入氯盐和氯化物除气。采用氯盐和氯化物除气剂除气时,要用钟罩将除气剂压入距坩埚底部100mm 处,沿坩埚直径1/3(距坩埚内壁)的圆周匀速移动。为防止铝液大量喷溅,除气剂可分批加入,除气结束除渣,并按规定的时间进行静置。

(5)采用铸造工艺方法进行除气。通常情况下,砂型铸造也可以采用静置、多扎出气孔和加大冒口等方法进行去气。在设计金属型时就必须有排气预防措施:①利用分型面或型腔零件组合面的间隙进行排气。②开排气槽。即在分型面或型腔零件的组合面上,以及芯座与顶杆表面上做排气槽,这样既能排气,又能蓄气。③设排气孔。排气孔一般开设在金属型的最高处,或金属型内可能产生“气阻”的地方。④设置排气塞。排气塞是金属型常用的排气设施。在一平面上需要设置数个排气塞时,可用一个排气环来代替,将它设计在型腔的“气阻”处,或型腔的大平面上,以便排气畅通。

四、结语

以上分析了铝合金铸件气孔形成的主要因素,并有针对性地论述了一系列相应的预防措施,目的就是要防止在铸件中生成气孔,获得优良品质的铸件。从铸造工艺角度综合分析,预防气孔的生成和消除气孔可以用“防”、“排”、“溶”三字工艺原则来概括。

“防”:就是要防止水分及各种污物进入坩埚或熔炼炉中。

“排”:就是要排除铝液中的氧化夹杂和氢气。

“溶”:就是要使铝液中的氢在凝固时能部分或全部固溶在合金组织中,避免在铸件中形成气孔。

因此,在铝合金熔炼安排和选择“防”、“排”、“溶”三方面的工艺措施时,必须遵循“以防为主,以排为辅”的工艺

原则,但着眼点应仍放在“防”字上。

铝合金车轮低压铸造工艺

铝合金车轮低压铸造工艺 铝合金车轮制造技术是多种多样的,而铝车轮的铸造工艺,目前主要有两种:一种是金属型重力铸造,一种是低压铸造。我们主要是做汽车铝合金车轮,制造工艺采用的是低压铸造。我们教材面向的对象主要是我们公司的员工,所以对工艺技术的介绍是有针对性的,介绍的方法也是不一样的。 1 低压铸造原理 低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中流入型腔。待金属液凝固以后,将炉膛中的压缩空气释放,未凝固的金属从升液管中流回到炉中。控制流入炉膛空气的压力、速度,就可以控制金属流入型腔中的速度和压力,并能让金属在压力下结晶凝固,压力一般不超过 1 ㎏/㎝2。这种工艺特点是铸件在压力下结晶,组织致密,机械性能好;低压另一个特点就是用一个升液管将铸型直接和炉膛连通,在压力的作用下,直接浇注铸型,不用冒口,浇口也很小。所以金属的利用率高。 2 低铸汽车铝合金轮的工艺特点 汽车铝合金车轮的结构特征:汽车铝合金车轮有大有小,有正偏距,有负偏距,有二片式,有三片式,都是圆形铸件,轮缘是均匀壁厚,面积比较大,轮辐比较厚,轮辐和轮缘交接处热节都比较大。而铝轮毂的浇注系统只有一个小浇口,没有冒口。轮辐多半作为横浇道,但是轮辐的位置是由轮毂的结构所决定的,不是由铸造工艺的设计者来决定的。因此偏距小,或负偏距车轮,会让铸造工艺设计者很头痛。然而轮毂的正面为装饰面,一般要求较高,要求精加工、车亮面、抛光、电镀,而低压铸造正好可以把轮毂的正面放在下模,放在浇口的旁边,在压力下结晶,得到致密的组织。使得低压铸造轮毂正面加工以后,表面质量,表面光洁度都比较好。 3 汽车铝轮低压铸造工艺设计 工艺设计之前,轮毂设计之初,需考虑与轮毂相关的几个基本内容。首先要正确的计算结构强度,这是影响到它生产出来以后安全使用的问题,另一个重要问题是否方便于铸造工艺,是否有利于机加,抛光和电镀,是否有利于减少废品降低成本,提高铸件整体质量,设计一款美观的车轮是不能不考虑它的铸造、加工工艺性的。 4 汽车铝轮低压铸造模具设计 模具设计之前工艺方案是重大的原则问题,方案错了,整个模具设计将全功尽废,如果设计不当,不从铸造工艺角度上去考虑,会极大地影响铸造厂去生产出完美的致密的铸件来。所以在确定模具的设计方案之前,要请专家和现场工作者进行评审。根据产品结构的特点(要注意完全符合顺序凝固条件的产品结构是很少的)评审出一个能创造顺序凝固条件的模具设计方案。模具设计者要深黯与之相关的铸造设备和铸造工艺,设计者要多到现场去请现场的工作者指导。动手设计时要对以下方面进行考虑: a在轮毂的零件图上画出轮毂各部份的加工余量; b在上下模和型芯各个部位,需要考虑适当的拔模斜度; c为了考虑铸件的顺序凝固,对铸件壁厚要通过“补贴”调整圆角,减小热节等措施来尽量符合“壁厚梯度”原则,还要在铸件补缩的距离上给予适当的壁厚考虑,在必要的地方要考虑风冷或水冷,总之整个模具从轮缘到浇口要创造一个顺序凝固的温度场。 d铸型的排气,特别在大平面或死角部分; e在铸件的凸台部份考虑是否用铜块,增加冷却速度;

铝合金压铸件所有缺陷及对策大全

铝合金压铸件所有缺陷及对策大全 一、化学成份不合格 主要合金元素或杂质含量与技术要求不符,在对试样作化学分析或光谱分析时发现。 1、配料计算不正确,元素烧损量考虑太少,配料计算有误等; 2、原材料、回炉料的成分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔炼时间过长,幸免于难烧损严重; 7、化学分析不准确。 对策: 1)、对氧化烧损严重的金属,在配料中应按技术标准的上限或经验烧损值上限配料计算;配料后并经过较核; 2)、检查称重和化学分析、光谱分析是否正确; 3)、定期校准衡器,不准确的禁用; 4)、配料所需原料分开标注存放,按顺序排列使用; 5)、加强原材料保管,标识清晰,存放有序; 6)、合金液禁止过热或熔炼时间过长; 7)、使用前经炉前分析,分析不合格应立即调整成分,补加炉料或冲淡; 8)、熔炼沉渣及二级以上废料经重新精炼后掺加使用,比例不宜过高; 9)、注意废料或使用过程中,有砂粒、石灰、油漆混入。 二、气孔 铸件表面或内部出现的大或小的孔洞,形状比较规则;有分散的和比较集中的两类;在对铸件作X光透视或机械加工后可发现。 1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 6、模具排气能力差; 7、煤、煤气及油中的含水量超标。 对策: 1)、严禁把带有水气的炉料装入炉中,装炉前要在炉边烘干; 2)、炉子、坩埚及工具未烘干禁止使用; 3)、注意铝液过热问题,停机时间要把炉调至保温状态;

铝合金车轮低压铸造工艺讲解

铝合金车轮低压铸造工艺 目录 铝合金车轮低压铸造工艺 1 低压铸造工艺 1.1 低压铸造原理 1.2 低铸汽车铝合金轮的工艺特点 1.3 汽车铝轮低压铸造工艺设计 1.4 汽车铝轮低压铸造模具设计 1.5 铝轮低压铸造工艺过程 1. 模具检查 2. 模具喷砂 3. 模具的准备 4. 模具涂料 5. 涂料性能和配比 6. 涂料的选择 7. 模具的预热和喷涂 1.6 开机前的准备工作 1. 保温炉的准备 2. 陶瓷升液管的准备 3. 设备和工艺工装的准备

1.7 铝车轮低压铸造液面加压规范 1. 加压规范的几种类型 2. 铝车轮低压铸造加压规范的设定 3. 设计铝轮低铸加压曲线的步骤 4. 铝轮低铸工艺曲线实例 1.8 铸件缺陷分析,原因及解决办法 1. 疏松(缩松)的形成与防止 2. 缩孔的形成与防止 3. 气孔的形成与防止 4. 针孔的形成与防止 5. 轮毂的变形原因及防止 6. 漏气的产生原因及防止 7. 冷隔(冷接,对接),欠铸(浇不足,轮廓不清)的形成与防止 8. 凹(缩凹,缩陷)的形成与防止 铝合金车轮低压铸造工艺 铝合金车轮制造技术是多种多样的,而铝车轮的铸造工艺,目前主要有两种:一种是金属型重力铸造,一种是低压铸造。我们主要是做汽车铝合金车轮,制造工艺采用的 是低压铸造。我们教材面向的对象主要是我们公司的员工,所以对工艺技术的介绍是有针对性的,介绍的方法也是不一样的。 1 低压铸造工艺 1.1 低压铸造原理 低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中

A380铸造铝合金材料标准(中文版)

1.1材料编号命名规则 CMM.A380.X.Y ┃┃┃┃ ┃┃┃┗Y 代表表面处理方式,1-钝化,2-阳极氧化,如果无表面处理,不用注释 ┃┃┗━X代表热处理方式具体代号见表1.1 ┃┗━━━A380代表材料牌号 ┗━━━━━C代表CATL,M代表Material,M代表金属Metal 举例: CMM. A380.F:代表CATL铸造铝合金,材料牌号是A380,材料状态是铸态。 铸造铝合金的热处理状态代号、类别及特性如下表1.1所示: 1.2材料编号使用规则 零件图纸中必须注明使用的材料编号,以锁定材料性能规格,如CMM.A380.F。 2引用标准 3通用性技术要求

3.1材料成分 铸造铝合金中含有Al、Si、Cu、Mn、Mg、Fe、Ni、Ti、Zn、Pb、Sn等元素,每种铝合金的化学成分的质量分数都不同。 表3.1 铸造铝合金的化学成分 3.2性能要求 铸造铝合金的主要性能参数如表3.2所示。 表3.2铸造铝合金主要参数 3.3测试方法 3.3.1化学成分 化学成分的检验方法按GB/T 20975或GB/T 7999对应的元素进行试验。在保证分析精度的条件 下,允许用其他方法分析,其化学成分应符合表中所列。分析方法可供需双方商定。化学成分检 验频率,每炉次取样一组。如有特殊需求,由供需双方商定。化学成分第一次检验不合格,允 许重新取样,如仍不合格则该炉合金成分不合格。 3.3.2拉伸试验 铸造铝合金的拉伸试样按照GB/T 1173执行,拉伸试验按GB/T228.1的规定执行,从单铸试棒上 进行取样。铸造铝合金的零件的拉伸性能检测以相应的PTS为准。 3.3.3硬度试验 铸造铝合金的硬度试验按GB/T231.1的规定执行。 4使用要求 4.1外观质量 铸造铝合金的表面缺陷要求,例如冷隔、裂纹,可以参照相应零件的技术规格书的要求。 4.2内部质量 各类铸件内部不允许存在裂纹,各类铸件内部缺陷,例如气孔、缩孔等,应符合相应铸造铝合金零件技术规格书的要求。 4.3铸件修补及矫正

各国压铸铝合金的化学成份及要求

压铸铝合金的化学成分和力学性能表 序号合金牌号合金代号 化学成份 力学性能 (不低于) 硅铜锰镁铁镍钛锌铅锡铝 抗拉强度伸长度 布氏硬度 HB5 /250 /30 1 YZA1Sil 2 YL102 10.0 13.0 ≤0.6≤0.6≤0.05≤1.2≤0.3余 220 2 60 2 YZA1Si10Mg YL104 8.0 10.5 ≤0.3 0.2 0.5 0.17 0.30 ≤1.0≤0.3≤0.05≤0.01余220 2 70 3 YZA1Si12Cu2 YL108 11.0 13.0 1.0 2.0 0.3 0.9 0.4 1.0 ≤1.0≤0.05≤1.0≤0.05≤0.01余240 1 90 4 YZA1Si9Cu4 YL112 7.5 9.5 3.0 4.0 ≤0.5≤0.3≤1.2≤0.5≤1.2≤0.1≤0.1余240 1 85 5 YZA1Si11Cu3 YL113 9.6 12.0 1.5 3.5 ≤0.5≤0.3≤1.2≤0.5≤1.0≤0.1≤0.1余230 1 80 6 YZA1Si17Cu5Mg YL11 7 16.0 18.0 4.0 5.0 ≤0.5 0.45 0.65 ≤1.2≤0.1≤0.1≤1.2余220 <1 7 YZA1Mg5Sil YL302 0.8 1.3 ≤0.1 0.1 0.4 4.5 5.5 ≤1.2≤0.2≤0.2余220 2 70 二.日本工业标准JIS H5302:2000日本压铸铝合金化学成分表 JIS牌号ISO牌号Cu Si Mg Zn Fe Mn Ni Sn Pb Ti Al ADC1 1.0以下11.0-13.0 0.3以下0.5以下 1.3以下0.3以下0.5以下0.1以下余量ADC1C A1-Sil2CuFe 1.2以下11.0-13.5 0.3以下0.5以下 1.3以下0.5以下0.30以下0.1以下0.20以下0.2以下余量ADC2 A1-Si12Fe 0.10以下11.0-13.5 0.10以下0.1以下 1.3以下0.5以下0.1以下0.05以下0.1以下0.2以下余量ADC3 0.6以下9.0-10.0 0.4-0.6 0.5以下 1.3以下0.3以下0.5以下0.1以下余量ADC5 0.2以下0.3以下 4.0-8.5 0.1以下 1.8以下0.3以下0.1以下0.1以下余量ADC6 0.1以下 1.0以下 2.5-4.0 0.4以下0.8以下0.4-0.6 0.1以下0.1以下余量ADC7 A1-Si5Fe 0.10以下 4.5-6.0 0.1以下0.1以下 1.3以下0.5以下0.1以下0.1以下0.1以下0.20以下余量ADC8 A1-Si6Cu4Fe 3.0-5.0 5.0-7.0 0.3以下 2.0以下 1.3以下0.2-0.6 0.3以下0.1以下0.2以下0.2以下余量ADC10 2.0-4.0 7.5-9.5 0.3以下 1.0以下 1.3以下0.5以下0.5以下0.2以下余量ADC10Z 2.0-4.0 7.5-9.5 0.3以下 3.0以下 1.3以下0.5以下0.5以下0.2以下余量ADC11 A1-Si8Cu3Fe 2.5-4.0 7.5-9.5 0.3以下 1.2以下 1.3以下0.6以下0.5以下0.2以下0.3以下0.2以下余量ADC12 1.5-3.5 9.6-12.0 0.3以下 1.0以下 1.3以下0.5以下0.5以下0.2以下余量ADC12Z 1.5-3.5 9.6-12.0 0.3以下 3.0以下 1.3以下0.5以下0.5以下0.2以下余量 牌号 抗拉试验硬度试验 抗拉强度MPa 耐力MPa 延伸率% HB HRB

铝合金铸造常见缺陷与对策

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。 (3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。 形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。 (2)顶出装置发生偏斜,受力不匀。

(3)模温过低或过高,严重拉伤而开裂。 (4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。 (2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。 (3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法: (1)适当提高铝液温度和模具温度,检查调整合金成份。(2)使充填充分,合理布置溢流槽。 (3)提高浇铸速度,改善排气。 (4)增大充型压力。

铝合金轮毂铸造裂纹缺陷及预防

铝合金轮毂铸造裂纹缺陷及预防 裂纹,铝合金轮毂铸造常见缺陷之一;它是产品失效的直接原因。现场对裂纹的认知缺少,难以采取有效解决办法,本文主要介绍毛坯中主要裂纹缺陷。 低压铸造铝合金轮毂常见裂纹缺陷,按缺陷位置分可分为:内轮缘裂纹、外轮缘裂纹、冒口裂纹、胎圈座裂纹、轮辐夹角裂纹、螺栓孔裂纹等。按裂纹冷热性质分可分为:热裂纹、冷裂纹,其中内外轮缘裂纹一般属于冷裂纹,它主要出现在成品车轮,由疲劳源产生裂纹。以下将按照部位一一解释、 在解释毛坯裂纹之前,需先解释热裂与冷裂的定义及区别。 热裂的形成温度是在合金形成金属骨架,线收缩开始温度到固相线温度区内,这一温度区间称为“有效结晶温度区间”。目前,关于热裂的形成机理主要有两种解释:强度理论和液膜理论。强度理论认为:合金存在热脆区以及热脆区内合金的断裂应变低是产生热裂的重要原因,铸件内变形集中是热裂形成的必要条件;因此,合金凝固过程中,收缩受到外界阻碍时,如果产生的外应力超过合金的强度,则会有裂纹产生。液膜理论认为:热裂的形成是由于铸件在凝固末期晶间存在液膜和铸件在凝固过程中受到拉应力共同作用的结果;如果铸件收缩受到阻碍,拉应力和变形主要集中在液膜上,使液膜被拉长,当应力足够大时,液膜开裂形成晶间裂纹。目前比较主流的原因是:液膜的存在是形成热裂的主要原因,铸件收缩受阻是形成热裂的必要条件;主要集中作用于晶间液膜上,使液膜开裂。 冷裂是由于模具温度低,外表面将凝固成一个薄的固态壳层。内部未凝固的金属液受压力直接作用于刚凝固的外表壳层上,使其受拉应力,而这个外表固态壳层是凝固时间不长、内部又受到高温液体加热的高温层,其边缘温度处在液固两相的临界温度上,根据液膜理论,从而使其形成裂纹源,在冷却过程中,受拉应力作用,不断生长,最终将成为裂纹 内外轮缘裂纹,严格来讲不属于铸造裂纹范畴;在铸造过程中内外轮缘作为产品延伸率最佳区域,极少出现铸造裂纹。经常出现在汽车行驶几万公里后,主要成形原因为疲劳或外力作用开裂。 冒口裂纹,典型的热裂;一般由于冒口凝固不足,强度较低或冒口造型不佳造成起拔模力大产生拉裂。典型状况为冒口内裂、冒口表层横向开裂、冒口内纵

铝合金轮毂基础知识

铝合金轮毂基础知识 一、轮毂的概念及工作状况 ●轮毂的概念: 轮毂又叫轮圈,在行业外也有一些不同的叫法:车轮、轮辋等。它作为整车行驶部分的主要承载件,是左右整车性能最重要的安全部件,在OE主机厂被定为A级安全件。 ●轮毂的受力状况: 轮毂通常会受到两个力的作用:一是要承受静态时车辆本身垂直方向的自重载荷;二是要经受车辆行驶中来自各个方向因起动、制动、转弯、石块冲击、路面凹凸不平等各种动态载荷所产生的不规则应力。 轮毂的静态应力分布 轮毂被安装到车上后,车轮便承受着整车垂直方向的自重力。其中轮辋部分是通过轮胎的充气压力传递而来的,轮辐部分的力是通过轮辋传递来的车辆自重力,这些力都属于静态应力。 二、轮毂的工艺介绍及材质优缺点 ●轮毂的材质分类及应用车型: 轮毂通常使用的材料有钢材和铝合金材料两大类,即钢圈和铝轮。钢圈多应用于卡车、货车和大客车等;铝轮已普通应用于轿车、SUV/MPV等(不过有的汽车厂为降低成本给轿车配的备胎还有使用钢圈)。 ●“钢圈”的工艺介绍及材质优缺点: 生产工艺:是用合金钢板材通过轧辊和冲压制成轮辋、轮辐(或钢丝)的坯料,再经铆接、点焊、二氧化碳电弧焊、挤压等工序装配组合而成。 材质优缺点: 优点:制造工艺简单,生产成本低、价格便宜,抗金属疲劳能力强不易变形等。 缺点:外形不美观造型单一,重量大耗油,惯性阻力大,散热性较差,易生锈等。 ●“铝轮”的工艺介绍及材质优缺点: 生产工艺:是将铝合金锭熔化成铝液后进行精炼变质、除气扒渣处理形成较纯净的铝液,铝液再进行铸造浇铸(重力或低压)成白毛坯之后去除浇口、帽口再进行热处理(固熔→淬火→时效),再通过数控车床和加工中心做机械加工形成半成品,再进行粗打磨、前处理清洗、吹水烘干、喷粉+烘烤固化形成粉坯,再进行精打磨、喷色漆、喷透明漆(或透明粉)+烘烤固化后形成最终成品。 ●“铝轮”的工艺介绍及材质优缺点: 材质优缺点: 优点:外观美观造型丰富,重量轻省油,惯性阻力小增加改动机寿命,散热性较好提高轮胎寿命,制造精度高平衡性佳/舒适度好等,漆层附着不易生锈。 缺点:制造工艺复杂,生产成本高,价格较贵,材质较脆抗金属疲劳能力一般容易变形开裂(受严重撞击时易断裂)等。 三、铝合金轮毂的材料介绍 ●铝合金轮毂所应用的材料型号: 轮毂在铸造铝合金方面,目前行业里广泛使用的材料是A356.2铝合金(是属于美国ASTM标准里的

铝合金挤压型材几种常见缺陷解析

挤压铝型材表面颗粒状毛刺的形成原因与对策 在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。 一、颗粒吸附成因分析 1、挤压型材表面出现的颗粒状毛刺分为四种: 1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。 2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。 3)时效炉内的灰尘附着。 4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。 “吸附颗粒”的形成 2、原因 1)铝棒质量的影响 由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。 铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。 棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状毛刺。 2)模具的影响 在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了"吸附颗粒"。随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。模具的粘铝现象见图1。我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。 有的被型材拉脱,形成了颗粒状毛刺。因此,模具是造成颗粒状毛刺的关键因素。

铝合金的熔炼规范

铝合金的熔炼规范 适用于重力铸造和压铸用铝硅合金(包括Al-Si-Mg、Al-Si-Cu等)指导性文件:《铝合金的熔炼规范》。 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T9438-1999《铝合金铸件》、JISH5202-1999《铝合金铸件》、ASTMB108-03a《铝合金金属型铸件》、GB/T15115-1994《压铸铝合金》、JISH5302-2006《铝合金压铸件》、ASTMB85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T1196-2002《重熔用铝锭》 铝硅合金锭:GB/T8734-2000《铸造铝硅合金锭》 镁锭:GB3499-1983《镁锭》 铝铜中间合金:YS/T282-2000《铝中间合金锭》 铝锰中间合金:YS/T282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T8733-2000《铸造铝合金锭》、JISH2117-1984《铸件用再生铝合金锭》、ASTMB197-03《铸造铝合金锭》、JISH2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50%。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。

铝合金压铸件主要缺陷特征(内容清晰)

铝合金压铸件主要缺陷特征、形成原因及防止、补救方法 缺陷名称缺陷特 征及发 现方法 形成原因防止办法及补救措施 1、化学成份不合格主要合 金元素 或杂质 含量与 技术要 求不符, 在对试 样作化 学分析 或光谱 分析时 发现。 1、配料计算不正确,元素烧损量考虑太少, 配料计算有误等;2、原材料、回炉料的成 分不准确或未作分析就投入使用; 3、配料时称量不准; 4、加料中出现问题,少加或多加及遗漏料 等; 5、材料保管混乱,产生混料; 6、熔炼操作未按工艺操作,温度过高或熔 炼时间过长,幸免于难烧损严重; 7、化学分析不准 确。 1、对氧化烧损严重的金 属,在配料中应按技术标 准的上限或经验烧损值上 限配料计算;配料后并经 过较核; 2、检查称重和化学分析、 光谱分析是否正确; 3、定期校准衡器,不准确 的禁用; 4、配料所需原料分开标注 存放,按顺序排列使用; 5、加强原材料保管,标识 清晰,存放有序; 6、合金液禁止过热或熔炼 时间过长; 7、使用前经炉前分析,分 析不合格应立即调整成 分,补加炉料或冲淡; 8、熔炼沉渣及二级以上废 料经重新精炼后掺加使 用,比例不宜过高; 9、注意废料或使用过程 中,有砂粒、石灰、油漆 混入。 2、气孔铸件表 面或内 部出现 的大或 小的孔1、炉料带水气,使熔炉内水蒸气浓度增加; 2、熔炉大、中修后未烘干或烘干不透; 3、合金液过热,氧化吸气严重; 4、熔炉、浇包工具氧等未烘干; 5、脱模剂中喷涂过重或含发气量大; 1、严禁把带有水气的炉料 装入炉中,装炉前要在炉 边烘干; 2、炉子、坩埚及工具未烘 干禁止使用;

比较规则;有分散的和比较集中的两类;在对铸件作X 光透视或机械加工后可发现。7、煤、煤气及油中的含水量超标。机时间要把炉调至保温状 态; 4、精炼剂、除渣剂等未烘 干禁止使用,使用时禁止 对合金液激烈搅拌; 5、严格控制钙的含量; 6、选用挥发性气体量小的 脱模剂,并注意配比和喷 涂量要低; 7、未经干燥的氯气等气体 和未经烘干的氯盐等固体 不得使用。 3、涡流孔铸件内 部的细 小孔洞 或合金 液流汇 处的大 孔洞。在 机械加 工或X光 透视时 可现。 1、合金液导入型腔的方向不正确,冲刷型 腔壁或型芯,产生涡流,包住了空气; 2、压射速度太快,由浇料口卷入了气体; 3、内浇口过薄,合金液运动速度太大,产 生喷射、飞溅现象,过早的堵住了排气槽; 4、模具的排气槽位置不对,或出口截面太 小,使模具的排气能力差,型腔的气垫反 压大; 5、模具内型腔位置太深,而排气槽位置不 当或太少; 6、冲头与压室间的间隙太小,冲头返回太 快时形成真空,回抽尚未冷凝的合金液形 成气孔;或冲头返回太快; 7、压室容量大而浇注的合金液量太少。 1、改变合金液注入型腔的 方向或位置,使合金液先 进入型腔的深高部位或底 层宽大部位,将其部位的 型腔空气压入排气槽中, 在合金液充满型腔之前, 不能堵住排气槽; 2、调试压射速度和快压位 置,在能充实的前提下, 尽可能缩短二速距离; 3、在保证不产生飞溅、喷 射并能充满型腔的情况 下,加大内浇口的进口厚 度; 4、加强型腔的排气能力: (1)安放排气槽的位置应 考虑不会被先进入的合金 液所堵死;(2)增设溢流 槽,注意溢流槽与工件件 衔接处不宜过厚,否则过 早堵住而周边产生气孔; (3)采用镶拼块结构,把

铸造铝合金缺陷及分析

铸造铝合金缺陷及分析 一氧化夹渣 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现 产生原因: 1.炉料不清洁,回炉料使用量过多 2.浇注系统设计不良 3.合金液中的熔渣未清除干净 4.浇注操作不当,带入夹渣 5.精炼变质处理后静置时间不够 防止方法: 1.炉料应经过吹砂,回炉料的使用量适当降低 2.改进浇注系统设计,提高其挡渣能力 3.采用适当的熔剂去渣 4.浇注时应当平稳并应注意挡渣 5.精炼后浇注前合金液应静置一定时间 二气孔气泡 缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色 产生原因: 1.浇注合金不平稳,卷入气体 2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等) 3.铸型和砂芯通气不良 4.冷铁表面有缩孔 5.浇注系统设计不良 防止方法: 1.正确掌握浇注速度,避免卷入气体。 2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量 3.改善(芯)砂的排气能力 4.正确选用及处理冷铁 5.改进浇注系统设计 三缩松 缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现
产生原因: 1.冒口补缩作用差 2.炉料含气量太多 3.内浇道附近过热 4.砂型水分过多,砂芯未烘干 5.合金晶粒粗大

铝铸件常见缺陷及分析

. 铝铸件常见缺陷及分析 -------------------------------------------------------------------------------- 氧化夹渣一 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色 光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现或黄色,经x 产生原因:.炉料不清洁,回炉料使用量过多1 浇注系统设计不良2. 3.合金液中的熔渣未清除干净4.浇注操作不当,带入夹渣5.精炼变质处理后静置时间不够防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低2.改进浇注系统设计,提高其挡渣能力3.采用适当的熔剂去渣4.浇注时应当平稳并应注意挡渣.精炼后浇注前合金液应静置一定时间5 气泡二气孔一般是发亮的氧化皮,具有光滑的表面,缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,光透视或机械加X有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过光底片上呈黑色气泡在X工发现气孔产生原因:.浇注合金不平稳,卷入气体1) 马粪等如煤屑、草根芯)砂中混入有机杂质(.型2( 3.铸型和砂芯通气不良4.冷铁表面有缩孔5.浇注系统设计不良:防止方法1.正确掌握浇注速度,避免卷入气体。砂中不得混入有机杂质以减少造型材料的发气量(芯)2.型砂的排气能力芯)3.改善( 4.正确选用及处理冷铁5.改进浇注系统设计缩松三缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具 光底x在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在有大平面的薄壁处。断口等检查方法发现片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍产生原因:1.冒口补缩作用差2.炉料含气量太多. . .内浇道附近过热3 .砂型水分过多,砂芯未烘干4 5.合金晶粒粗大6.铸件在铸型中的位置不当7.浇注温度过高,浇注速度太快 防止方法: 1.从冒口补浇金属液,改进冒口设计 2.炉料应清洁无腐蚀 3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用 4.控制型砂水分,和砂芯干燥 5.采取细化品粒的措施 6.改进铸件在铸型中的位置降低浇注温度和浇注速度 四裂纹 缺陷特征: 1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现 2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生 产生原因:1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊 2.砂型(芯)退让性不良 3.铸型局部过热

铸造铝硅合金特性和分类

2.3.1 铸造铝合金的一般特性 为了获得各种形状与规格的优质精密铸件.用于铸造的铝合金必须具备以下特性,其中最为关键的是流动性和可填充性。 (1) 有填充狭槽窄缝部分的良好流动性; (2) 有适应其他许多金属所要求的低熔点: (3)导热性能好,熔融铝的热量能快速向铸模传递,铸造周期较短; (4) 熔体中的氢气和其他有害气体可通过处理得到有效的控制; (5)铝合金铸造时,没有热脆开裂和撕裂的倾向: (6)化学稳定性好,有高的抗蚀性能; (7)不易产生表面缺陷,铸件表面有良好的光泽和低的表面粗糙度,而且易于进行表面处理; (8)铸造铝合金的加工性能好,可用压模、硬(永久)模、生砂和干砂模、熔模、石膏型祷造模进行铸造生产,也可用真空铸造、 低压和高压铸造、挤压铸造、半固态铸造、离心铸造等方法成形,生产不同用途、不同品种规格、不同性能的各种铸件。 2.3.2铸造铝合金的牌号与状态表示方法 铸造铝合金可分为热处理强化型和非热处理强化型两大类。目前,世界各国已开发出了大量洪铸造的铝合金,但目前基本的合金只有 以下6类: (1)A1-Cu铸造铝合金; (2)Al-Cu-Si铸造铝合金; (3)Al-Si铸造铝合金; (4)Al-Mg铸造铝合金; (5)A1-zn-Mg铸造铝合金; (6)Al-Sn铸造铝合金: 铸造铝合金系目前国际上无统一标准,各国(公司)都有自己的合金命名及术语,下面分别简述如下。 2.3.2.1 中国铸造铝合金的牌号与状态表示方法 (1)按GB8063规定,铸造铝合金牌号用化学元素及数字表示,数字表示该元素的平均含量。在牌号的最前面用“z”表示铸造,例 如ZAISi7Mg,表示铸造铝合金,平均含硅量为7%,平均含镁量小于1%。另外还有用合金代号表示法,合金代号由字母“z”、“L”(分别是“铸”、“铝”的汉语拼音第一个字母)及其后的三位数字组成。zL后面第一个数字表示台金系列.其中1、2、3、4分别表示铝硅、铝铜,铝镁.铝锌系列合金,ZL舌面第二位、第三位两个数字表示顺字号。优质合金的数字后面附加字母“A”: (2)合金铸造方法和变质处理代号。 S——砂型铸造; J——金属型铸造; R——熔模铸造; K——壳型铸造; B——变质处理。 (3)合金状态代号。 F——铸态; T1——人工时效;

A356铸造铝合金生产工艺流程

A356铸造铝合金生产工艺流程 目录 第一章概述 第一节铝合金的定义、性质和用途 第二节铝合金的分类及表示方法 第三节 A356合金的成分、组织和性能 第四节 A356合金的生产设备 第二章 A356合金的生产工艺 第一节 A356合金的生产工艺流程第二节熔炼 (1)铝熔体的特点 (2)铝熔体的精炼与净化 (3)熔炼工艺参数对铸锭质量的影响 第三节铸造 (1)铸造方法的分类 (2)铸造原理 (3)铸造工艺参数对铸锭质量的影响 第四节熔铸工艺 (1)配料工艺 (2)熔炼工艺 (3)铸造工艺 (4)取样工艺

第三章 A356合金常见缺陷及预防措施 第一节化学成分 第二节外观质量 第三节低倍针孔度 (1)针孔的定义与分类 (2)针孔形成的原因 (3)形成气孔的H2来源 (4)预防针孔形成的工艺措施 第一章概述 第一节铝合金的定义、性质和用途 所谓铝合金就是在工业纯铝中加入适量的其他元素,使铝的本质得到该善,以满足工业上和人们生活中的各种需要。由于其比重小,比强度高,具有良好的综合性能,因此,被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器皿制造等方面。 第二节铝合金的分类及表示方法 铝合金可分为两大类:变形铝合金和铸造铝合金,变形铝合金要先铸成锭,用于压延或拉伸,如:管、棒和板等;铸造铝合金,用于铸造固定铸件,如:活塞、汽缸和支架等。 变形铝合金牌号的表示方法大致有两种: 1、国家标准

用第一个字母L表示工业纯铝或铝合金,(取铝的汉语拼音第一个字母)。 第二个字母表示铝合金类别,下面几个字母分别表示: G——工业高纯铝 F——防锈铝合金 Y——硬铝合金 C——超硬铝合金 D——锻造铝合金 T——特殊铝合金 字母后面的数字表示该类合金的序号。如LF3表示3号防锈铝合金;LD2表示2号锻造铝合金;LY12表示12号硬铝合金;LC4表示4号超硬铝合金;LT21表示21号特殊铝合金。 2、引用美国四位数铝合金牌号表示方法,作为国家标准第一位数字表示铝合金系列,如: 1XXX 表示纯铝 2XXX 表示AL-Cu系合金 3XXX 表示AL-Mn系合金 4XXX 表示AL-Si系合金 5XXX 表示AL-Mg系合金 6XXX 表示AL-Mg-Si系合金 7XXX 表示AL-Zn系合金 8XXX 表示AL和其它元素的合金 9XXX 表示尚未使用的系列 最后两位数字表示某种具体的铝合金或铝的纯度,第二位数字表示对原来的合金或杂质范围的修改。 铸造铝合金牌号的表示方法:

铸造铝合金缺陷及分析

铸造铝合金缺陷及分析 欧阳学文 一氧化夹渣 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现 产生原因: 1.炉料不清洁,回炉料使用量过多 2.浇注系统设计不良 3.合金液中的熔渣未清除干净 4.浇注操作不当,带入夹渣 5.精炼变质处理后静置时间不够 防止方法: 1.炉料应经过吹砂,回炉料的使用量适当降低 2.改进浇注系统设计,提高其挡渣能力 3.采用适当的熔剂去渣 4.浇注时应当平稳并应注意挡渣 5.精炼后浇注前合金液应静置一定时间

二气孔气泡 缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色 产生原因: 1.浇注合金不平稳,卷入气体 2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等) 3.铸型和砂芯通气不良 4.冷铁表面有缩孔 5.浇注系统设计不良 防止方法: 1.正确掌握浇注速度,避免卷入气体。 2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量3.改善(芯)砂的排气能力 4.正确选用及处理冷铁 5.改进浇注系统设计 三缩松

缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现
产生原因: 1.冒口补缩作用差 2.炉料含气量太多 3.内浇道附近过热 4.砂型水分过多,砂芯未烘干 5.合金晶粒粗大 6.铸件在铸型中的位置不当 7.浇注温度过高,浇注速度太快 防止方法: 1.从冒口补浇金属液,改进冒口设计 2.炉料应清洁无腐蚀 3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用4.控制型砂水分,和砂芯干燥

铝合金铸造常见缺陷

铝合金铸造常见缺陷

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。(3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。

形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。(2)顶出装置发生偏斜,受力不匀。 (3)模温过低或过高,严重拉伤而开裂。(4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。 (2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。(3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法: (1)适当提高铝液温度和模具温度,检查调整

铸造铝合金会产生哪些缺陷或质量问题

---- 铸造铝合金会产生哪些缺陷或质量问题? (https://www.360docs.net/doc/2311199599.html,/bbs/dispbbs.asp?boardid= 2&id=634) -- 作者:心随风去 -- 发布时间:2009-3-20 8:17:52 -- 铸造铝合金会产生哪些缺陷或质量问题? 铸造铝合金缺陷及分析 [size=3]一氧化夹渣 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色或黄色,经x 光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现 产生原因: 1.炉料不清洁,回炉料使用量过多 2.浇注系统设计不良 3.合金液中的熔渣未清除干净 4.浇注操作不当,带入夹渣 5.精炼变质处理后静置时间不够 防止方法: 1.炉料应经过吹砂,回炉料的使用量适当降低 2.改进浇注系统设计,提高其挡渣能力 3.采用适当的熔剂去渣 4.浇注时应当平稳并应注意挡渣 5.精炼后浇注前合金液应静置一定时间 二气孔气泡 缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色 产生原因: 1.浇注合金不平稳,卷入气体 2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等) 3.铸型和砂芯通气不良 4.冷铁表面有缩孔 5.浇注系统设计不良 防止方法: 1.正确掌握浇注速度,避免卷入气体。 2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量 3.改善(芯)砂的排气能力 4.正确选用及处理冷铁 5.改进浇注系统设计 三缩松 缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现

铝合金显微组织及断口分析论文

目录 1 绪论 (1) 1.1断口分析的意义 (1) 1.2 对显微组织及断口缺陷的理论分析 (1) 1.3研究方法和实验设计 (3) 1.4预期结果和意义 (3) 2 实验过程 (4) 2.1 生产工艺 (4) 2.1.1 加料 (4) 2.1.2 精炼 (4) 2.1.3 保温、扒渣和放料 (5) 2.1. 4 单线除气和单线过滤 (5) 2.1. 5连铸 (6) 2.2 实验过程 (6) 2.2. 1 试样的选取 (6) 2.2.2 金相试样的制取 (8) 2.2.3 用显微镜观察 (9) 2.3 观察方法 (10) 2.3.1显微组织的观察 (10) 2.3.2 对断口形貌的观察 (11) 3 实验结果及分析 (12) 3.1对所取K模试样的观察 (12) 3.2 金相试样的观察及分析 (13) 3.2.1 对显微组织的观察 (13) 3.2.2 断口缺陷 (16)

结论 (24) 致谢 (25) 参考文献 (26) 附录 (28)

1 绪论 1.1断口分析的意义 随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。 然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。 另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。 但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。 1.2 对显微组织及断口缺陷的理论分析 铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg Si,通过 2 热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共 2

相关文档
最新文档