继电保护设计

继电保护设计
继电保护设计

银川能源学院

课程设计

课程名称:电力系统继电保护原理

设计题目:110kv变电站变压器保护设计

院(部):电力学院

专业: _电气工程及其自动化_________ 班级:____1203班_________________ 姓名:_____罗昊___________________ 学号:____1210240094______________ 成绩:____________________________ 指导教师:李莉李静

日期:2015年6月8日—— 6月21日

前言

变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,影响整个电力系统的安全与运行。所以变压器是变

电所的核心设备,变压器是变压所继电保护设计的重要环节。当电力系统发生

故障时或有异常状况,继电保护可以在最短时间和最小区域内自动将故障设备

从系统中切除,或者给值班人员发出信号,减轻避免设备损坏。从而实现对电

力系统的故障保护、故障切除、故障报警,为电力系统的安全运行提供保障。

电力系统会发生各种故障和不正常运行状态。如:过负荷,过电压,频率降低, 系统振荡等。故障主要包括各种类型的短路和断线,如:三相短路,两相短路,两

相接地短路,单相接地短路,单相断线和两相断线等。

电力系统中除了输电线路,还有大量的电力主设备,如发电厂内的发电机、升压变、母线,变电所内的降压变、母线等。这些设备发生故障或异常运行情

况时,同样也需要继电保护装置正确动作,切除故障、发出信号。配置在变压器、发电机、母线上的继电保护装置分别成为变压器保护、发电机保护、母线

保护,统称为元件保护或电力主设备保护。

本次设计为110kV变电所变压器的继电保护的初步设计,对变压器的容量选择,继电保护,计算,等方面进行设计

目录

1.1变压器的故障分析与保护设置错误!未定义书签。

1.1.1 变压器的故障分析 (4)

1.1.2 变压器的保护设置 (4)

1.1.3 电力变压器应装设的保护装置 (5)

1.1.4 对变压器保护装置的要求 (5)

1.1.5保护装置选择(见表1-1) (5)

2.1电力变压器的主保护 (6)

3.1电力变压器的后备保护 (7)

4.1 继电保护的原理性介绍 (8)

5.1变压器整定计算 (10)

5.1 .1纵差保护的整定计算 (12)

心得体会 (14)

参考文献 (15)

1.1变压器的故障分析与保护设置

1.1.1 变压器的故障分析

电力变压器是电力系统中十分重要的供电元件,为了供电的可靠性和系统正常运行,就必须视其容量的大小、电压的高低和重要程度,设置相应的继电保护

装置。

变压器的内部故障可以分油箱内部和油箱外部故障两种。油箱内部的故障

包括绕组的相间短路、接地短路、匝间短路以及铁芯的绕损等,对变压器来

讲,这些故障都是十分危险的,因为油箱内故障时产生的电弧,将引起绝缘物质的剧烈气化,从而可能引起爆炸,因此,这些故障应该尽快加以切除。油箱外的故障, 主要是绝缘套管和引出线上发生相间短路和接地短路。

变压器的不正常运行状态主要有:由于变压器外部相间短路引起的过电流和外部接地短路引起的过电流和中性点过电压;由于负荷超过额定容量引起的过负荷以及由于漏油等原因引起的油面降低。

1.1.2 变压器的保护设置

此外,对大容量变压器,由于其额定工作时的磁通密度接近于铁芯的饱和磁

通密度,因此,在过电压或低频率等异常运行方式下,还会发生变压器的过励磁故障。针对电力变压器的上述故障类型及不正常运行状态,应对变压器装设相应的继电保护装置。

(1)组的相间短路和中性点直接接地侧的单相短路;

(2)绕组的匝间短路;

(3)外部相间短路引起的过电流;

(4)中性点直接接地电网中,外部接地短路引起的过电流及中性点过电压;

(5)过负荷;

(6)过励磁;

(7)油面下降;

(8)变压器温度及油箱压力升高和冷却系统故障。

1.1.3 电力变压器应装设的保护装置

(1)线圈及其引出线的相间短路、中性点直接接地侧的接地短路、绕组的匝间短路,应装设瞬时动作作于跳闸的保护装置。

(2)外部相间短路引起的过电流,直接接地电力网外部接地短路引起的过电流,中性点过电压,应装设带时限动作于跳闸的保护装置。

(3)变压器过负荷、油面降低、变压器温度升高和冷却系统故障时,应装设信号装置

1.1.4 对变压器保护装置的要求

(1)对变压器内部故障和油面降低采用瓦斯保护,油面降低和轻瓦斯时,应动作与信号;重瓦斯则动作与跳闸,断开变压器各测的断路器。

(2)对变压器引出线、套管及内部故障,采用纵联差动保护或电流速段保护。故障时,断开变压器各侧的断路器。

(3)对变压器外部的相间短路,一般采用过电流保护,如过电流保护灵敏度不满足要求时,可装设复合电压或低电压启动的过电流保护,过电流保护均装设在主电源侧。

根据实际情况本设计对变压器采用纵联差动保护、过负荷保护和瓦斯保护三种保护形式。

1.1.5保护装置选择(见表1-1)

变压器保护装置选择

2.1电力变压器的主保护

(1) 0.8M VA及以上的油浸式变压器和0.4M VA及以上的车间内油浸式变压器,均应装设瓦斯保护。当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当

产生大量瓦斯时,应动作于断开变压器各侧断路器。带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。

(2) 6.3M VA以下厂用工作变压器和并列运行的变压器,以及10M VA以下厂用

备用变压器和单独运行的变压器,当后备保护时限大于0.5s时,应装设电流速断保护。

(3) 对6.3M VA及以上的厂用工作变压器和并列运行的变压器,10M VA及以上

厂用备用变压器和单独运行的变压器,应装设纵联差动保护(以下简称纵差保护)。

(4) 对高压侧电压为330kV及以上的变压器,可装设双重纵差保护。

(5) 纵差保护应能躲过励磁涌流和外部短路产生的不平衡电流,应在变压器过励磁时不误动。差动保护的范围应包括变压器绕组、套管及其引出线。

(6) 对ll0kV及以上中性点直接接地电网中的变压器,应在变压器中性点接地线上装设反应接地故障的零序电流保护。对于只有部分变压器中性点接地运行的变电所,当变压器为分级绝缘时,零序保护动作时应首先切除中性点不接地运行的变压器,如果故障未消失再切除中性点接地的变压器,以防止中性点不接地运行变压器出现危害的过电压。

(7) 对高压侧电压为500kV或容量在240M VA及以上的变压器,当频率降低和电压升高引起的变压器工作磁密过高,应装设过励磁保护。保护由两段组成,低定值段

动作于信号,高定值段动作于跳闸。

(8) 对变压器温度及油箱内压力升高和冷却系统故障,应按电力变压器标准要求,装设作用于信号或动作于跳闸的装置。

3.1电力变压器的后备保护

为防止外部相间短路引起的变压器过电流及作为变压器主保护的后备保护,变

压器配置相间短路的后备保护。保护动作后,应带时限动作于跳闸。规程规定:

(1)过电流保护宜用于降压变压器;

(2)当过电流保护的灵敏度不够时,可采用低电压起动的过电流保护,主要用于升压变压器或容量较大的降压变压器;

(3)复合电压(包括负序电压及线电压)起动的过电流保护,宜用于升压变压器、系统联络变压器和过电流保护不符合灵敏度要求的降压变压器;

(4)负序电流和单项式低电压起动的过电流保护,可用于63MVA及以上升压变压器;

(5)按以上两条装设保护不能满足灵敏性要求和选择性要求时,可采用阻抗保护。即变压器的相间短路后备保护首先考虑采用过电流保护,当过电流保护满足不了灵

敏度要求时,可选用复合电压起动的过电流保护,若仍满足不了灵敏度的要求。则可

选择阻抗保护。

外部相间短路保护应装于变压器下列各侧,各项保护的接线,宜考虑能反映电

流互感器与断路器之间的故障:

(1) 双绕组变压器,后备保护应装在主电源侧,根据主接线情况,保护可带一段或两段时限,以较短的时限缩小故障影响范围,跳母联或分段断路器;较长的时限断开变压器各侧的断路器。

(2) 三绕组变压器和自耦变压器,后备保护要分别装在主电源侧和主负荷侧。主电源侧的保护带两段时限,以较短的时限断开未装保护侧的断路器,主负荷

侧的保护动作于本侧断路器。当上述方式不符合灵敏性要求时,可在各侧装设后备保护。各侧保护应根据选择性的要求考虑加装方向元件。

(3) 0.4M VA及以上的变压器应设置过负荷保护,其动作时间应大于电动机的自

启动时间,-般动作于信号。

(4)对低压侧有分支,并接至分开运行母线段的降压变压器,除在电源侧装设保护处,还应在每个支路装设保护。

(5)对发电机变压器组,在变压器低压侧,不应另设保护,而利用发电机反应外部短路的后备保护。在厂用分支线上,应装设单独的保护,并使发电机的后备保护

带两段时限,以便在外部短路时,仍能保证厂用负荷的供电。

(6)500kv系统联络变压器高、中压侧均应装设阻抗保护。保护可带两段时限,以较短的时限用于缩小故障影响范围;较长的时限用于断开变压器各侧断路器。

多绕组变压器的外部相间短路保护,根据其型式及接线的不同,可按下述原则进行简化:

(1)220kv及以下三相多绕组变压器,除主电源侧外,其他各侧保护可仅作本侧相邻电力设备和线路的后备保护。

(2)保护对母线的各类故障应符合灵敏性要求。保护作为相邻线路的远后备时,可适当降低对保护灵敏系数分得要求。

4.1 继电保护的原理性介绍

(1) 变压器的纵联差动保护及其原理。

所谓变压器的纵联差动保护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的保护。纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。对于变压器线圈的匝间短路等内部故障,通常只作后备保护。纵联差动保护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。因此,流经继电器的电流等于两侧电流互感器二次侧电流之差。在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到保护作用。变压器纵差保护是按照循环电流原理构成的变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差保护不动作。但由于变压器高压侧

和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

(2) 瓦斯保护。

瓦斯保护是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁

芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量

的气体,其强烈程度随故障的严重程度不同而不同。瓦斯保护就是利用反应气体

状态的瓦斯继电器(又称气体继电器)来保护变压器内部故障的。

在瓦斯保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者

都装有密封的水银接点。浮筒和档板可以围绕各自的轴旋转。在正常运行时,继

电器内充满油,浮筒浸在油内,处于上浮位置,水银接点断开;档板则由于本身

重量而下垂,其水银接点也是断开的。当变压器内部发生轻微故障时,气体产生

的速度较缓慢,气体上升至储油柜途中首先积存于瓦斯继电器的上部空间,使油

面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时

突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方

向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起

到保护变压器的作用。

瓦斯继电器有浮筒式、档板式、开口杯式等不同型号。目前大多采用QJ-80

型继电器,其信号回路接上开口杯,跳闸回路接下档板。所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。

(3) 零序过电流保护。

当变电所有多台变压器并列运行时,只允许一部分变压器中性点接地。中性

点接地的变压器可装设零序电流保护,而不接地运行的变压器不能投入零序电流

保护。当发生接地故障时,变压器接地保护不能辨认接地故障发生在哪一台变压器。若接地故障发生在不接地的变压器,接地保护动作,切除接地的变压器后,

接地故障并未消除,且变成中性点不接地系统在接地点会产生较大的电弧电流,

使系统过电压。

同时系统零序电压加大,不接地的变压器中性点电压升高,其零序过电压可

能使变压器中性点绝缘损坏。为此,变压器的零序保护动作时,首先应切除非接

地的变压器。若故障依然存在,经一个时限阶段Δt后,再切除接地变压器,每

台变压器都装有同样的零序电流保护,它是由电流元件和电压元件两部分组成。

正常时零序电流及零序电压很小,零序电流继电器及零序电压继电器皆不动作,

不会发出跳闸脉冲。发生接地故障时,出现零序电流及零序电压,当它们大于起

动值后,零序电流继电器及零序电压继电器皆动作。电流继电器起动后,常开触

点闭合,起动时间继电器KT1。时间继电器的瞬动触点闭合,给小母线A接通正

电源,将正电源送至中性点不接地变压器的零序电流保护。不接地的变压器零序

电流保护的零序电流继电器不会动作,常闭触点闭合。小母线A的正电源经零序

电压继电器的常开触点、零序电流继电器的常闭触点起动有较短延时的时间继电器KT

2

经较短时限首先切除中性点不接地的变压器。若接地故障消失,零序电流消失,

则接地变压器的零序电流保护的零序电流继电器返回,保护复归。。若接地故障没

有消失,接地点在接地变压器处,零序电流继电器不返回,时间继电器KT

1

一直在

起动状态,经过较长的延时KT1跳开中性点接地的变压器。

(4)复合电压起动的过电流保护。

复合电压闭锁,即由接于相间电压上的低电压继电器(只接一相)和接于负序

电压上的负序电压继电器组成的电压闭锁元件。负序电压元件反应不对称短路,灵

敏度不受变压器接线方式的影响,低电压继电器则主要反应三相短路时的母线残压。因此,复合电压闭锁元件只需装设于变压器一侧,接线较低电压起动的过电流保护

简单。

5.1变压器整定计算

变压器的主保护为:一台变压器单运行为保护的计算方式;变压器后背保护作

线路的远后备时,要检验d

3和d

4

两点的灵敏度。因此,需要计算出d

3

和d

4

两点的最

小短路电流。计算如下: 取基准电压为U j =115KV

则:基准电流为I j =S d /3U d

基准电抗X d =U d /3I d =U d 2/S d

(1)电力变压器的电抗标幺值X T *=X T /X d =U k %×S d /100×S N 则

()75.106175.1021001=-+=

k U ,()25.06175.1021002-=+-=k U ()25.66175.1021003=++-=k U ,3413.05

.3110010075.10100001.=?==TN d k H T S S U X 007937.05.3110010025.0100002.-=?-==TN d k M

T S S U X 1984.05

.3110010025.6100003.=?==TN d k L T S S U X ①高压与中压绕组间短路电压:

U g-z =U g-z %×S d /100×S N

②高压与低压绕组间的短路电压:

U g-d =U g-d %×S d//100×S N

③中压与低压绕组间的短路电压:

U z-d =U z-d %×S d /100×S N

高压绕组电抗

X B1.g =X B2.g =X g =(U g-z +U g-d -U z-d )/2

中压绕组电抗X B1.z =X B2.z =X z =(U g-z + U z-d -U g-d )/2

低压绕组电抗X B1.d =X B2.d =X d =(U g-d + U z-d -U g-z )/2

(5)d 3的短路电流

d 3点短路电抗标幺值X ∑(d3)*=X xt.max +X B1.g + X B1.z +X L3

I d3.min (2)=(I d ×0.866)/= X ∑(d3)*

(6)d 4的短路电流

d 4点短路电抗标幺值X ∑(d4)*=X x t. max + X B1.g +X B1.d +X L1

I d4.min (2)=(I d ×0.866)/= X ∑(d4)*

5.1 .1纵差保护的整定计算

(1)额定参数的计算(见表4-1)。由以上计算结果可知,110KV 侧差动臂中的电流为最大,故选110KV 侧为计算的基本侧。

表4-1 变压器各侧一、二次电流

由主接线图可知,该变电所为终端变电所,接地保护不需要与下级配合,故零序过电流保护的动作值按躲开最大不平衡电流,即

()A K I K K K I H TA k err st rel r op 5.4498.460

359975.06035991.05.05.1.3max .2.≈=?=???== 电压元件的动作电压为

()

V K U U TV ON r op 20301.005.0.=-= ()2708.145397.05318.023105.38360

5.42330

1min .?+???=?+=Z Z E K ph s 5.14.10270280027073

.231068.663

>==?= 22

38.514.82100

d d d U X S ===Ω 动作时限整定:①以s 5.0跳中性点不接地运行的变压器;②以s 1跳中性点接地运行的变压器。

5.1.3 变压器气体保护整定

采用QJ —80型开口杯挡板式气体继电器,轻瓦斯按气体容量整定

3250cm V set =

重瓦斯按汽油流的流速整定: s m V set 1.1=(对导油管直径mm 80=φ)

心得体会

这次课程设计让我感受最深,在老师的帮助下顺利完成了,通过这次课程设计,让我学会了好几种软件,通过对画图的掌握,和公式编辑器的使用,以及对word

软件的掌握,感谢我的老师,

课程设计是我们专业课程知识综合应用的实践训练,这是我们迈向社会,从事职业工作前一个必不可少的过程.”千里之行,始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.此次课程设计能顺利的完成与同学和老师的帮助是分不开的,在对某些知识模棱两可的情况下,多亏有同学的热心帮助才可以度过难关;更与老师的悉心教导分不开,在有解不开的难题时,多亏老师们的耐心指导才使设计能顺利进行。

参考文献

[1] 张宝会,尹项根.电力系统继电保护.北京.中国电力出版社.2009:166~192

[2] 陈珩.电力系统稳态分析.北京:中国电力出版社

[3] 刘介才. 工厂供电设计指导.北京.机械工业出版社.2008:93~110

[4] 李光琦.电力系统暂态分析.北京:中国电力出版社

[5] 孙丽华. 电力工程基础.北京.机械工业出版社.2010:204~218

[6] 贺家李,宋从矩.电力系统继电保护原理.第三版北京:中国电力出版社

电力装置的继电保护和自动装置设计规范GB 50062-92

电力装置的继电保护和自动装置设计规范 中华人民共和国国家标准 GB 50062-92 条文说明 前言 根据国家计委计综[1986] 2630号文的要求,由能源部东北电力设计院对《工业与民用电力装置的继电保护和自动装置设计规范》GBJ62-83进行了修订,经建设部建标[1992] 425号文批准发布。名称改为《电力装置的继电保护和自动装置设计规范》GB 500062-92。 为便于广大设计、施工、科研、学校等有关人员在使用本规范时能正确理解和执行条文规定,规范编订组根据国家计委关于编制规范条文说明的统一要求,按规范的章、节、条顺序编制了条文说明,供有关人员参考。在使用中如遇有问题,请将意见和有关材料寄交能源部电力规划设计总院和东北电力设计院《电力装置的继电保护和自动装置设计规范》修订组。 本条文说明仅供国内有关部门和单位执行本规范时使用,不得翻印。 1992年7月

目录 第一章总则 第二章一般规定 第三章发电机的保护 第四章电力变压器的保护 第五章 3~63KV中性点非直接接地电力网中线路的保护 第六章 110kV中性点直接接地电力网中线路的保护 第七章母线的保护 第八章电力电容器的保护 第九章 3KV及以上电动机的保护 第十章自动重合闸 第十一章备用电源和备用设备的自动投入装置 第十二章自动低频减载装置 第十三章同步并列及解列 第十四章二次回路 第一章总则 第1.0.1条说明制定本规范的目的。本规范作为国家标准,是全国各地区、各部门共同遵守的准则和依据。制定本规范的目的在于贯彻执行国家的技术经济政策,使继电保护和自动装置的设计,做到安全可靠、技术先进和经济合理。

继电保护课程设计(完整版)

继电保护原理课程设计报告评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I m ax C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = G1 G3 98 4 51 2 3 A B C D E L1L3 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置

继电保护设计

摘要 电力变压器是电力系统中十分重要的供电元件,为了供电的可靠性和系统正常运行,就必须视其容量的大小、电压的高低和重要程度,设置相应的继电保护装置。本设计结合电力变压器运行中的故障,分析了电力变压器纵联差动保护、瓦斯保护及过电流保护等继电保护装置配置原则和设计方案。 关键词:电力变压器继电保护装置保护配置

Abstract Power transformer is very important in power system,power components in order to power supply reliability and system normal operation,you must see the size of its capacity,voltage and important degree of on any account,set up corresponding relay protection device.This paper according to the operation of power transformer fault and analyzed the power transformer longitudinal differential peotection,gas protection and over-current protection rely protection device configuration principle and design scheme. Keywords: Power transformer Relay protection device Protection configuration

继电保护课程设计

目录 电力系统继电保护课程设计任务书 (1) 一、设计目的 (1) 二、课题选择 (1) 三、设计任务 (1) 四、整定计算 (1) 五、参考文献 (2) 输电线路三段式电流保护设计 (3) 一、摘要 (3) 二、继电保护基本任务 (3) 三、继电保护装置构成 (4) 四、继电保护装置的基本要求 (4) 五、三段式电流保护原理及接线图 (6) 六、继电保护设计 (7) 1.确定保护3在最大、最小运行方式下的等值电抗 (7) 2.相间短路的最大、最小短路电流的计算 (8) 3.整定保护1、2、3的最小保护范围计算 (8) 4.整定保护2、3的限时电流速断保护定值,并校验灵敏度 (9) 5.保护1、2、3的动作时限计算 (11) 参考文献: (12)

电力系统继电保护课程设计任务书 一、设计目的 1、巩固和加深对电力系统继电保护课程基础理论的理解。 2、对课程中某些章节的内容进行深入研究。 3、学习工程设计的基本方法。 4、学习设计型论文的写作方法。 二、课题选择 输电线路三段式电流保护设计 三、设计任务 1、设计要求 熟悉电力系统继电保护、电力系统分析等相关课程知识。 2、原理接线图 四、整定计算 ,20,3/1151Ω==G X kV E φ

,10,1032Ω=Ω=G G X X L1=L2=60km ,L3=40km, LB-C=30km,LC-D=30km, LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=300A, IC-D.Lmax=200A, ID-E.Lmax=150A, 电动机自启动系数Kss=1.5,电流继电器返回系数Kre=0.85。 最大运行方式:三台发电机及线路L1、L2、L3同时投入运行;最小运行方式:G2、L2退出运行。 五、参考文献 [1] 谷水清.电力系统继电保护(第二版)[M].北京:中国电力出版社,2013 [2] 贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3] 能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4] 方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5] 崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6] 卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7] 陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

继电保护及课程设计_第二次作业

继电保护及课程设计_第二次作业 36. 电力系统发生故障时,继电保护装置应将故障部分切除 ,电力系统出现不正常工作时,继电保护装置一般应发出信号。 37. 继电保护的可靠性是指保护在应动作时不拒动 ,不应动作时不误动。 38. 本线路限时电流速断保护的保护范围一般不超出相邻下一线路电流速 断保护的保护范围,故只需带0.5s 延时即可保证选择性。 39. 检验电流保护灵敏系数时,最小短路电流I d.min是指在被保护范围末端,在最小运行方式下的两相短路电流。40. 为保证选择性,过电流保护的动作时限应按阶梯原则整定,越靠近电源处的保护,时限越长。 41. 电流继电器的返回系数过低,将使过电流保护的动作电流增 大,保护的灵敏系数降低。 42. 电流保护的接线系数定义为流过继电器的电流与电流互感器二次电 流之比,故两相不完全星形接线的接线系数 为 1 。 43. 中性点不接地电网发生单相接地后,将出现零序电压U0,其值为故障前相电压 值,且电网各处零序电压相等。44. 绝缘监视装置给出信号后,用依次断开线路方法查找故障线路,因此该装置适用于出线较少的情况。 45. 阻抗继电器根据比较原理的不同分为幅值比较式和相位比较式两类。 46. 当保护范围不变时,分支系数越大(小),使保护范围越小(大),导致灵敏性越低(高)。 47. 阻抗继电器的执行元件越灵敏,其精确工作电流越小。 48. 三种圆特性的阻抗继电器中,方向阻抗继电器受过渡电阻的影响最大,全阻抗继电器受过

渡电阻的影响最小。 49. 阻抗继电器受系统振荡影响的程度取决于两个因素,即保护的安装地点和阻抗继电器的特性。 50. 闭锁式高频方向保护在故障时启动发信,而正向元件动 作时停止发信,其动作跳闸的基本条件是正向元件动作且收不到闭锁信号。 51. 方向高频保护是比较线路两侧端功率方向,当满足功率方向同时指向线路条件时,方向高频保护动作。 52. 线路纵联保护载波通道的构成部件包括输电线 路、高频阻波器、耦合电容器、结合滤波器、高频电缆、保护间隙、接地刀闸和收发信机。 53. 相差高频保护是比较线路两端电流的相位,当满足电流相位同相条件时,相差高频保护动作。54. 高频保护启动发信方式有保护启 动、远方启动和手动启动。 55. 具有同步检定和无电压检定的重合闸,在线路一侧,当线路无电压时,允许该端线路的重合闸重合;而在另一侧,需检测母线电压和线路电压满足同期 条件时允许重合闸重合。 56. 在变压器的励磁涌流中,除有大量的直流分量外,还有大量的高次谐波分量,其中以二次谐波为主。 57. 对于变压器纵差动保护,在正常运行和外部故障时,流入差动继电器的电流为零(理论值)。 58.名词解释:选择性 答:选择性——是指首先由故障设备的保护切除故障,系统中非故障部分仍继续运行,以尽量缩小停电范围。当保护或断路器拒动时,才由相邻设备的保护或断路器失灵保护切除故障。 59.名词解释:速动性 答:速动性——是指保护装置应尽可能快的切除短路故障。 60.名词解释:灵敏性 答:灵敏性——是指在设备的被保护范围内发生金属性短路时,保护装置应具有的反应能力。 61.名词解释:系统最大(小)运行方式

10kV变电所继电保护设计和分析报告

继电保护毕业设计 课题:110kV变电所继电保护设计及分析导师: 姓名: 班级: 日期:2011年3月10日

前言 电力生产过程有别于其他工业生产过程的一个重要特点,就是它的生产、输送、变换、分配、消费的几个环节是在同一个时间内同步瞬间完成。电力生产过程要求供需严格动态平衡,一旦失去平衡生产过程就要受到破坏,甚至造成系统瓦解,无法维持正常生产。随着经济的快速发展,负荷大幅度增加,使得电网规模不断扩大,高电压、大机组、长距离输电、电网互联的趋势,使电网结构越来越复杂,加强电力资源的优化配置,最大限度满足电力需求,保证电网的安全稳定成为人们探讨的问题之一。虽然系统中有可能遭受短路电流破坏的一次设备都进行了短路动、热稳定度的校验,但这只能保证它们在短时间内能承受住短路电流的破坏。时间一长,就会无一例外地遭受破坏。而在供电系统中,要想完全杜绝电路事故是不可能的。继电保护是一种电力系统的反事故自动装置,它能在系统发生故障或不正常运行时,迅速,准确地切除故障元件或发出信号以便及时处理。可见继电保护是任何电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。因此设置一定数量的保护装置是完全必要的,以便在短路事故发生后一次设备尚未破坏的数秒内,切除短路电流,使故障点脱离电源,从而保护短路回路内的一次设备,同时迅速恢复系统其他正常部分的工作。随着变电站继

电保护技术进一步优化,大大提高了整个电网运行的安全性和稳定性,大大降低运行检修人员的劳动强度,继电保护技术将引起电力行业有关部门的重视,成为变电站设计核心技术之一。

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

继电保护课程设计

1. 前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次110kv电网继电保护设计的任务主要包括了五大部分,运行方式的分析,电路保护的配置和整定,零序电流保护的配置和整定,距离保护的配置和整定,原理接线图及展开图。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

2. 运行方式分析 电力系统运行方式的变化,直接影响保护的性能,因此,在对继电保护进行整定计算之前,首先应该分析运行方式。需要着重说明的是,继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指网在某种连接情况下通过保护的电流值最小。 图1 110kV电网系统接线图 系统接线图如图1所示,发电机以发电机—变压器组方式接入系统,最大开机方 式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台 也可能1台运行。参数如下: 电动势:E = 115/3kv; 发电机:= = = = 5 + (15 5)/14=, = = = = 8 + (9 8)/14=; 变压器:~ = 5 + (10 5)/14=, ~ = 15 + (30 15)/14=., = = 15 + (20 15)/14=, = = 20 + (40 20)/14=; 线路:L A-B = 60km,L B-C = 40km,线路阻抗z1 = z2 = /km,z0 = /km, =60km× /km=24,=40km×/km=16; =60km×/km=72,=40km×/km=48; = = 300A; K ss = ,K re = ; 电流保护:K I rel = ,K II rel = , 距离保护:K I rel = ,K II rel = 负荷功率因数角为30,线路阻抗角均为75,变压器均装有快速差动保护。

继电保护课程设计

继电保护课程设计

————————————————————————————————作者:————————————————————————————————日期:

电力系统继电保护原理 课程设计 班级:2008级生信1班 学号:20085097 姓名:曹学博 专业:电气工程及其自动化 指导老师:王牣 评分:A(优),B(良),C(中),D(合格),E(不合格) 项目学生自评指导老师评定 设计内容完整性 计算公式准确性 计算数据正确性 绘图质量 文档规范性 综合评定 教师签名(盖章): 日期:年月日

目录 第一节设计任务书 (1) 1、继电保护课程设计的目的 (1) 2、原始数据 (2) 2.1 基础数据 (2) 2.2 系统接线图 (3) 3、课程设计要求 (4) 3.1 需要完成的设计内容 (4) 3.2 设计文件内容 (5) 第二节馈线保护配置与整定计算 (6) 1、馈线保护配置 (6) 2、馈线保护整定计算 (6) 2.1 电流速断定值计算 (6) 2.2 阻抗I段定值计算 (6) 2.3 阻抗II段定值计算 (7) 2.4 过电流定值计算 (7) 第三节变压器保护配置与整定计算 (8) 1、变压器保护配置 (8) 2、变压器电量保护整定计算 (8) 2.1 差动速断保护 (8) 2.2 二次谐波制动的比率差动保护 (8) 2.3 三相低电压过电流保护 (9) 2.4 单相低电压过电流保护 (9) 2.5 零序过电流保护 (10) 2.6 过负荷保护 (10) 3、变压器非电量计算 (10) 3.1 瓦斯保护整定计算 (10) 3.2 主变过热整定计算 (10) 第四节并联电容补偿装置配置与整定计算 (11) 1、并联补偿装置保护配置 (11) 2、并联补偿装置整定计算 (11) 2.1 电流速断保护 (11) 2.2 差流保护 (11) 2.3 过电流保护 (12) 2.4 高次谐波过流保护 (12) 2.5 差压保护 (13) 2.6 低电压保护 (14) 2.7 过电压保护 (14) 第五节 B相馈线保护原理接线图和展开图 (15) 1、电流保护 (15) 2、阻抗保护 (16)

继电保护的设计说明

1 绪论 如今,随着科学技术的飞速发展,继电保护器在35kV变电站中的应用也越来越广泛,他不仅保护着设备本身的安全,而且还保障了生产的正常进行,因此,做好继电保护的整定对于保障设备安全和生产的正常进行是十分重要的。继电保护装置广泛应用与电力系统,农网和小型发电系统,是电网及电气设备安全可靠运行的保证。加强继电保护管理,健全沟通桥梁,加强继电保护定值正定档案管理是提高继电保护定值整定的必要措施。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置,继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 继电保护发展现状,电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。

2 继电保护相关理论知识 2.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 2.2 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 2.3 继电保护基本原理 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“部故障”,以实现继电保护 的功能,因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护。 2.3.1 反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别,就可以构成各种不同原理的继电保护装置。 电力系统发生故障后,工频电气量变化的主要特征是: (1)电流增大:短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。 (2)电压降低:当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。 (3)电流与电压之间的相位角改变:正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°(-60°~-85°)。

继电保护及课程设计-第一次作业

继电保护及课程设计 四、主观题(共26道小题) 32.继电保护的选择性是指继电保护动作时,只能把故障元件从系统中切除无故障部分继续运行。 33.电力系统切除故障的时间包括时间和的时间。 参考答案:电力系统切除故障的时间包括继电保护动作时间和断路器跳闸的时间。 34.继电保护装置一般是由、和组成。 参考答案: 继电保护装置一般是由测量比较元件、逻辑判断元件和执行输出元件组成。 35. 电流速断保护的动作电流按大于本线路末端整定,其灵敏性通常 用表示。 参考答案: 电流速断保护的动作电流按大于本线路末端最大短路电流整定,其灵敏性通常用保护范围的大小表示。 36.中性点直接接地电网发生接地短路时,零序电流的大小和分布主要取决于变压器接地中性点 的和。 参考答案:中性点直接接地电网发生接地短路时,零序电流的大小和分布主要取决于变压器接地中性点 的数目和分布。 37.中性点不接地电网发生单相接地后,可继续运行,故保护一般作用 于。 参考答案:中性点不接地电网发生单相接地后,可继续运行一段时间,故保护一般作用于发信号。 38.距离保护是反应的距离,并根据距离的远近确定 的一种保护。 参考答案:距离保护是反应故障点到保护安装处的距离,并根据距离的远近确定动作时间的一种保护。 39. I、II、III段阻抗元件中,段元件可不考虑受振荡的影响,其原因 是。 参考答案:I、II、III段阻抗元件中, III 段元件可不考虑受振荡的影响,其原因是靠时间整定躲过振荡周期。 40.纵联保护的通道主要有以下几种类 型、、和。参考答案: 纵联保护的通道主要有以下几种类型电力线载波、微波、光纤和导引线。 41.高频保护通道传送的信号按其作用不同,可分为信号、信号、

电力系统继电保护原理课程设计

电力系统继电保护原理课程设计 姓名:邓义茂 班级:电气1班 学号: 201028009 2013年12月

《电力系统继电保护原理课程设计》 任务书 一、课程设计的目的 课程设计是本课程的重要实践环节,安排在理论教学结束后进行。搞好课程设计,对巩固所学知识,提高实际工作能力具有重要作用。经过设计、使学生掌握电力系统继电保护的方案设计、整定计算、设备选型、资料整理查询和电气绘图等使用方法,安排在理论教学结束后进行。搞好课程设计,对巩固所学知识,提高实际工作能力具有重要作用。通过本课程设计,使学生掌握新型继电保护设计的内容,步骤和方法,提高学生编写技术文件的技能,锻炼学生独立思考,运用所学知识分析和解决生产实际问题的能力。 二、原始资料 某企业供电系统如图所示: 图1.1 某企业供电系统图 三、设计要求 1)AB段设三段式保护(速断、限时速断、过流),BC段设两段式保护(速断、 过流),CD段设过流保护; 2)计算出各保护的整定值,校验其保护范围和灵敏度系数是否符合要求,并完 成主要电气设备的型号选择。 3)画出A段和B段的保护接线原理图和展开图。 四、原始参数 1)速断可靠系数取1.2 2)限时速断可靠系数取1.1 3)过流可靠系数取1.2 4)接线系数取1 5)返回系数取0.85 6)自起动系数取1

7)线路均阻抗Km = z/ 4.0Ω 课程设计时间分为二周,合计共10个工作日,时间分配可参考如下; 参考文献: 〈1〉《电力系统继电保护和自动装置设计规范》GB50062—922; 〈2〉《电力工程设计手册》二册; 〈3〉《电力系统继电保护原理及新技术》第二版,李佑光主编,科学出版社; 〈4〉《电力系统分析》,于永源,杨绮雯,北京:中国电力出版社,2007 〈5〉《供变电工程》第二版,翁双安,北京:机械工业出版社,2012 五、设计效果评价与考核 设计成绩按学生在课程设计中的表现,对知识的掌握程度,分析问题和解决问题的能力及创新能力,完成任务的质量,课程设计成果及设计等综合评定,共分五级评定。设计成绩综合后按优秀(90- 100分),良好(80-90分),中等(70一79),及格(60~69分),不及格(60分以下)五级计分制评定。 六、备注 最终成绩按照平时表现和设计说明书为主要参考依据,最后总评以优、良、中、及格、不及格记。若发现有抄袭,取消参加考核的资格,成绩以零分记录。

继电保护设计

银川能源学院 课程设计 课程名称:电力系统继电保护原理 设计题目:110kv变电站变压器保护设计 院(部):电力学院 专业: _电气工程及其自动化_________ 班级:____1203班_________________ 姓名:_____罗昊___________________ 学号:____1210240094______________ 成绩:____________________________ 指导教师:李莉李静 日期:2015年6月8日—— 6月21日

前言 变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,影响整个电力系统的安全与运行。所以变压器是变 电所的核心设备,变压器是变压所继电保护设计的重要环节。当电力系统发生 故障时或有异常状况,继电保护可以在最短时间和最小区域内自动将故障设备 从系统中切除,或者给值班人员发出信号,减轻避免设备损坏。从而实现对电 力系统的故障保护、故障切除、故障报警,为电力系统的安全运行提供保障。 电力系统会发生各种故障和不正常运行状态。如:过负荷,过电压,频率降低, 系统振荡等。故障主要包括各种类型的短路和断线,如:三相短路,两相短路,两 相接地短路,单相接地短路,单相断线和两相断线等。 电力系统中除了输电线路,还有大量的电力主设备,如发电厂内的发电机、升压变、母线,变电所内的降压变、母线等。这些设备发生故障或异常运行情 况时,同样也需要继电保护装置正确动作,切除故障、发出信号。配置在变压器、发电机、母线上的继电保护装置分别成为变压器保护、发电机保护、母线 保护,统称为元件保护或电力主设备保护。 本次设计为110kV变电所变压器的继电保护的初步设计,对变压器的容量选择,继电保护,计算,等方面进行设计

继电保护及自动装置部分的设计设计

继电保护及自动装置部分的设计设计

前言 为了进一步提高工程建设集约化、精细化管理水平,根据《35-110KV 变电所设计规范》(GB50059-1992)、《江苏省35kV-220kV变电所设计技术导则(试行)》做好待设计变电所的设计工作。设计要求有利于运行维护和备品备件管理,有利于新技术推广应用,有利于提高工程建设集约化管理水平,能进一步提高供电可靠性。 设计原则:安全可靠、自主创新、技术先进、注重环保、节约资源、降低造价,努力做到统一性与可靠性、适应性、先进性、经济性和灵活性的协调统一。 一、对待设计变电所在电力系统中的地位、作用及电力用户的分析 待设计变电所在城市近郊,变电所110kV有2回线路分别与系统和发电厂相连;在低压侧10kV有10条线路向用户供电,该变电所的建成能保障该地区新增负荷的电力供应。另外变电所的所址范围内场地开阔,地势平坦,交通方便。 二、设计目的及主要任务 本次设计的主要目的是结合一实际变电所的一次参数作系统继电 保护 及自动装置部分的设计,主要任务有:1)主变台数、容量及型式的选择;2)电气主接线方案的确定;3)短路阻抗及短路电流的计算;4)选择系统保护用的电流、电压互感器型号;5)保护的配置及原理;6)保护的整定计算。 本次第一章主要介绍一次设备选型及短路电流及短路阻抗计算。第二、第三章中介绍了保护配置及整定计算。第四章介绍了变电站二次回路设计。

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制

输电线路的继电保护成设计

前言 继电保护技术的发展现状继电保护技术是随着电力系统的发展而发展的,它与电力系统对运行可靠性要求的不断提高密切相关。熔断器就是最初出现的简单过电流保护,时至今日仍广泛应用于低压线路和用电设备。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,发电厂、变电站和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能满足选择性和快速性的要求,于是出现了作用于专门的断流装置的过电流继电器。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这个时期可认为是继电保护技术发展的开端。 自本世纪初第一代机电型感应式过流继电器(1901年)在电力系统应用以来,继电保护已经经历了一个世纪的发展。在最初的二十多年里,各种新的继电保护原理相继出现,如差动保护(1908年)、电流方向保护(1910年)、距离保护(1923年)、高频保护(1927年),这些保护原理都是通过测量故障发生后的稳态工频量来检测故障的。尽管以后的研究工作不断发展和完善了电力系统的保护,但是这些保护的基本原理并没有变,至今仍然在电力系统继电保护领域中起主导作用。 继电保护装置是保证电力系统安全运行的重要设备。满足电力系统安全运行的要求是继电保护发展的基本动力。快速性、灵敏性、选择性和可靠性是对继电保护的四项基本要求。为达到这个目标,继电保护专业技术人员借助各种先进科学技术手段作出不懈的努力。经过近百年的发展,在继电保护原理完善的同时,构成继电保护装置的元件、材料等也发生了巨大的变革。继电保护装置经历了机电式、整流式、晶体管式、集成电路式、微处理机式等不同的发展阶段。 50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而60年代是我国机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。 自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年

继电保护课程设计完整版

课程设计任务书 110KV 单电源环形网络相间短路电流保护的设计 110KV 单电源环形网络接地短路电流保护的设计 一、已知条件 1.网络接线图 图1.1 b=20 c=30 d=40 e=40 2.网络中各线路均采用带方向或不带方向的电流电压保护,所有变压器均 采用纵差动作为主保护,变压器采用11/-?Y 接线。 3.发电厂最大发电容量为360MW ?,最小发电容量为260MW ?。 4.网络正常运行方式为发电厂容量最大且闭环运行。 360cos 0.850.129d MW x φ?=''= 26010.5% K MVA U ?= % 5.1060=K U MVA 231.510.5% K MVA U ?= 10.5% MVA = 31.510.5% K MVA U = 8DL 7DL 6DL 5DL A D B 1.5S 1.5S e KM d KM Pmax=20MV A Cos Φ=0.8 Pmax=30MV A Cos Φ=0.8 Pmax=28MV A Cos Φ=0.8

5.允许最大故障切除时间为0.9S . 6.110千伏断路器均采用1102-DW 型断路器,它的跳闸时间为0.05S ,Ⅱ 段保护动作时间0.4 S 。 7.线路AB 、BC 、AD 和CD 的最大负荷电流请自行计算,负荷自启动系数为 1.5。 8.各变电所引出线上后备保护的动作时间如图所示,S t 5.0=?。 9.线路的正序电抗均为KM /4.0Ω。 10. 主保护灵敏系数的规定:线路长度200公里以上不小于1.3,线路长 度50~200公里不小于1.4,50公里以下不小于1.5。 11. 后备保护灵敏系数的规定:近后备保护不小于1.3;远后备保护不小 于1.2。 二、设计任务 1.确定保护1、3、5、7的保护方式(三段式)、各段保护整定值及灵敏度。 2.绘制保护1的接线图(包括原理图和展开图)。 3.撰写说明书,包括短路计算过程(公式及计算举例)、结果和保护方式的 选择及整定计算结果(说明计算方法)。 三、设计要点 1.短路电流及残压计算,考虑以下几点 1.1 运行方式的考虑 1.2 最大负荷电流的计算 1.3 短路类型的考虑 1.4 曲线绘制 2.保护方式的选择和整定计算 1.1 保护的确定应从线路末端开始设计。 1.2 优先选择最简单的保护(三段式电流保护),以提高保护的可靠性。当 不能同时满足选择性、灵敏性和速动性时,可采用较为复杂的方式,比如采用电流电压连锁保护或方向保护等。 1.3 将最终整定结果和灵敏度校验结果列成表格。 四 说明:

继电保护课程设计(完整版).doc

继电保护原理课程设计报告 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I max C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。作为下级主保护

高压输电线路的继电保护设计浅谈

高压输电线路的继电保护设计浅谈 前言 随着电力系统迅速发展,我们不断对它提出新的要求,电力系统对继电保护的要求也不断提高。继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。 这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。

目录 第1章绪论 (1) 1.1 设计基础条件 (1) 1.2 设计内容 (1) 1.3 设计要求 (2) 第2章短路电流计算 (3) 2.1 短路电流计算原则 (3) 2.2 电力网络元件参数计算 (3) 2.3 最大运行方式 (4) 2.4 最小运行方式 (5) 第3章110kv高压输电线路继电保护整定计算 (7) 3.1 三段式方向性电流保护整定计算 (7) 3.11 QF6的三段式电流保护整定计算 (7) 3.12 QF4的三段式电流保护整定计算 (8) 3.13 QF2的三段式电流保护整定计算 (9) 3.2 三段式距离保护正定计算 (10) 3.21 QF6的距离保护 (10) 3.22 QF4的距离保护 (10) 3.23 QF2的距离保护 (11) 3.3 线路差动保护 (12) 3.31 A’C段线路差动保护 (12) 3.32 BC段线路纵差保护 (12) 3.33 AB段线路纵差保护 (12) 第4章自动重合闸装置 (13) 第5章电力系统各元件继电保护装置的选择 (14) 5.1 保护配置 (14) 5.2 各插件原理说明 (14)

继电保护毕业设计开题报告

110kV电网继电保护整定计算及仿真研究 一、选题背景与意义 目前,我国110kV输电网担负城市供电的艰巨任务,是我国输电网中的主干网。随着经济社会的高速发展和现代工业建设的迅速崛起,对其供电可靠性、经济性、灵活性和自动化水平的要求也在不断提高。但是,传统的110kV电网多为单侧电源网,其可靠性必然就要受到多方面的限制。随着电网建设与运维模式改革的不断推进与深化,近年来,小电源并网现象在各地市公司普遍存在,小水电、小热电、太阳能、秸秆电厂等具体形式不尽相同。由于110kV电网一般配置有距离与零序电流保护,分布电源的存在,以及实际生活中系统运行状态的不断变化,会导致保护范围变化甚至保护失效。这就给给保护整定带来很大难度。 针对110kV电网一般配置有距离与零序电流保护所存在的问题,本次设计通过对典型110kV配电网进行合理建模,研究系统中性点接地方式、系统最大最小运行状态以及分支系数对保护整定产生的影响,从而解决由系统变化导致的保护范围变化的问题。将对电网的安全稳定运行产生积极的意义。 二、课题关键问题及难点 本设计在分析继电保护原理的基础上,研究数字距离保护和零序电流保护,并针对线路实际运行时可能出现的各种故障,计算相应的监测量在故障时的参数,为保护方法提供相应的理论依据,提出合理的保护方案。 (1)等值阻抗计算与网络简化问题 合理的参数选择与网络化简,在保证精确性的前提下能大大减少整定计算中的工作量。(2)短路电流计算问题 针对典型故障点以及故障类型计算相应的故障电流,以此作为保护整定值的参考。(3)保护整定配合问题 相间短路故障不会产生零序电流,而单相接地故障在接地点有零序电流产生。零序电流保护灵敏 度较高,装置简单可靠,因此对于单相接地故障采用零序保护,相间短路故障采用距离保护。 (4)PSCAD仿真验证问题 模拟实际可能出现的各种故障,对保护进行校验,以此验证继电保护是否可靠,是否高效。

相关文档
最新文档