重磅发布--CloudPSS平台——云端的能源互联网仿真工具

重磅发布--CloudPSS平台——云端的能源互联网仿真工具
重磅发布--CloudPSS平台——云端的能源互联网仿真工具

重磅发布CloudPSS平台——云端的能源互联网仿真工具

研究背景能源互联网(或称“互联网+”智慧能源)是一种将传统能源生产、传输、存储、消费以及能源市场与互联网技术深度融合的能源产业发展新业态。能源互联网结合了能源领域、信息系统的多项关键技术,其本质上是高度复杂的信息物理耦合系统。因此,围绕能源互联网的规划、设计、运行控制和协同调度等方面的研究均离不开建模和仿真工具。而目前,能源互联网还处于发展的起点,国内外尚无针对能源互联网的专用建模和仿真工具。

■灵活高效,专注于解决能源互联网中的建模仿真问题■ 无微不至,准确刻画小至纳秒级的电磁暂态■迅如闪电,结合并行计算技术加速仿真,实现实时仿真■万无一失,仿真算例存储在云端■无需安装,立即使用!CloudPSS——云端的仿真平台

灵活、共享、高效、免费的能源互联网仿真平台由清华大学能源互联网创新研究院安全和高效技术研究中心研发,CloudPSS是一款结合互联网、云计算、并行计算技术的能源互联网建模及仿真工具。CloudPSS提供能源互联网中多种设备的电、磁、热等多物理场详细模型,可实现多时间尺度下能源互联网的精确动态仿真、运行控制在环测试,信息物理耦合仿真等多种应用场景。

灵活——行云流水般的建模体验CloudPSS提供了基于Web 界面的能源互联网建模平台。其Web服务器位于阿里云,用户无需安装,仅通过Web浏览器(如Chrome、IE、Edge等)进行访问。建模平台提供包含丰富的基础模型库、模块封装功能,使用户可快速完成模型搭建。同时,图形化界面结合了PSCAD与Simulink的模型搭建特点,使得相关软件用户可快速上手。共享——集思广益,合作协同能源互联网拓扑结构复杂,规模庞大,依赖大量的建模工作。CloudPSS提供多用户算例共享的功能,可实现不同用户之间协同合作,实现复杂算例的模块化构建。

高效——海量计算,岂止于快CloudPSS利用云端计算服务器完成计算。云端计算服务器为高性能超级计算机。为满足大规模算例加速仿真和实时仿真需求,CloudPSS通过对仿真模型仿真算法的优化,利用英伟达公司的Tesla图形加速卡(GPU)实现了能源互联网在电磁暂态级别的实时仿真。下表为整台直驱风机算例下,CloudPSS与相关商业软件的耗时对比。目前,CloudPSS可实现在单块Tesla计算卡为50台直驱风机提供电磁暂态级别的实时仿真。

表1效率对比免费——无需安装,立即使用!

CloudPSS现阶段完全免费,用户可登陆https://www.360docs.net/doc/2312272637.html, 进行注册使用,并结合下面的2分钟快速上手视频进行简单学习。2分钟快速上手!CloudPSS中能源互联网仿真示

例在CloudPSS中利用风机模块和压缩空气储能系统(Compressed-Air Energy Storage, CAES )模块构建多能互补系统(如下图)。在设置合理的仿真时间后,运行仿真。其中,仿真过程中电气系统各个电气量、储能系统中气压、温度等波形、稳定后的局部结果波形如下连续两图所示。

多能互补系统结构图多能互补系统算例搭建直流母线电压仿真结果各个能源出力变化曲线Cloudpss仿真平台目前正处于公开测试阶段,欢迎大家访问并使用。使用过程中有任何问题和需求,请及时和能源互联网创新研究院高效和安全研究中心联系。我们会尽力为大家提供支持和服务。技术支持yuzhitong@https://www.360docs.net/doc/2312272637.html,songyk@https://www.360docs.net/doc/2312272637.html,意见反馈huodong@https://www.360docs.net/doc/2312272637.html,(本文编辑:玄琳)- END -

能源互联网背景下综合智慧能源的发展

能源互联网背景下综合智慧能源的发展 行宇2016.09.18 什么是能源互联网?能源互联网可以理解为:“综合运用先进的电力电子技术, 信息技术和智能管理技术, 将大量由分布式能量采集装置, 分布式能量储存装置和各种类型负载构成的新型 电力网络、石油网络、天然气网络等能源节点互联起来, 以实现能量双向流动的能量对等交换与共享”。能源互联网有三大内涵:从化石能源走向可再生能源;从集中式产能走向分布式产能;从封闭走向开放。这也意味着,未来能源行业的发、输、用、储及金融交易等环节都将会发生巨大变化。 实际上,能源互联网看似美好,但具体操作起来,从电网公司、发电企业、专门的调度机构等电力从业者,到国家发展改革委、国家能源局等监管部门,都会觉得很头疼。因为新的电力价值链需要新的技术,更需要新的体制以及商业模式来支撑,而这恰恰都是目前能源行业所缺乏的。 综合能源系统是能源互联网的重要物理载体,根据地理因素与能源发/输/配/用特性,综合能源系统分为跨区级、区域级和用户级。区域综合能源系统是探究不同能源内部运行机理、推广能源先进技术的前沿阵地,具有重要的研究意义;稳态分析是该领域研究的基础,是探究多能互补特性、能量优化调度、协同规划、安全管理等方面的核心所在。

综合智慧能源只做一件事情,就是用积极的方式开发建设全新的综合能源,运用互联网创新技术让综合能源系统拥有智慧。综合智慧能源以功能区为单元,对不同能源品种,提供一体化解决方案,实现横向“电热冷气水”多类能源互补,纵向“源网荷储用”多种供应环节的生产协同、管廊协同、需求协同以及生产和消费间的互动。 一、综合智慧能源解决的问题 《关于推进“互联网+”智慧能源发展的指导意见》提出,“互联网+”智慧能源(能源互联网)是一种互联网与能源生产、传输、存储、消费以及能源市场深度融合的能源产业发展新形态,对提高可再生能源比重,促进化石能源清洁高效利用,推动能源市场开放和产业升级具有重要意义“。同时明确能源互联网建设的10大重点任务,一是推动建设智能化能源生产消费基础设施。二是加强多能协同综合能源网络建设。三是推动能源与信息通信基础设施深度融合。四是营造开放共享的能源互联网生态体系,培育售电商、综合能源运营商和第三方增值服务供应商等新型市场主体。五是发展储能和电动汽车应用新模式。六是发展智慧用能新模式。七是培育绿色能源灵活交易市场模式。八是发展能源大数据服务应用。九是推动能源互联网的关键技术攻关。十是建设国际领先的能源互联网标准体系。 作为区域综合能源系统的典型能源形式,源端与受端的能源多样化发展以及能源传输与设备的革新促使能源系统进一步耦合。简单的讲综合智慧能源=多类供能技术集成+分布式能源+互联网技术的创新。本

重磅发布--CloudPSS平台——云端的能源互联网仿真工具

重磅发布CloudPSS平台——云端的能源互联网仿真工具 研究背景能源互联网(或称“互联网+”智慧能源)是一种将传统能源生产、传输、存储、消费以及能源市场与互联网技术深度融合的能源产业发展新业态。能源互联网结合了能源领域、信息系统的多项关键技术,其本质上是高度复杂的信息物理耦合系统。因此,围绕能源互联网的规划、设计、运行控制和协同调度等方面的研究均离不开建模和仿真工具。而目前,能源互联网还处于发展的起点,国内外尚无针对能源互联网的专用建模和仿真工具。 ■灵活高效,专注于解决能源互联网中的建模仿真问题■ 无微不至,准确刻画小至纳秒级的电磁暂态■迅如闪电,结合并行计算技术加速仿真,实现实时仿真■万无一失,仿真算例存储在云端■无需安装,立即使用!CloudPSS——云端的仿真平台 灵活、共享、高效、免费的能源互联网仿真平台由清华大学能源互联网创新研究院安全和高效技术研究中心研发,CloudPSS是一款结合互联网、云计算、并行计算技术的能源互联网建模及仿真工具。CloudPSS提供能源互联网中多种设备的电、磁、热等多物理场详细模型,可实现多时间尺度下能源互联网的精确动态仿真、运行控制在环测试,信息物理耦合仿真等多种应用场景。

灵活——行云流水般的建模体验CloudPSS提供了基于Web 界面的能源互联网建模平台。其Web服务器位于阿里云,用户无需安装,仅通过Web浏览器(如Chrome、IE、Edge等)进行访问。建模平台提供包含丰富的基础模型库、模块封装功能,使用户可快速完成模型搭建。同时,图形化界面结合了PSCAD与Simulink的模型搭建特点,使得相关软件用户可快速上手。共享——集思广益,合作协同能源互联网拓扑结构复杂,规模庞大,依赖大量的建模工作。CloudPSS提供多用户算例共享的功能,可实现不同用户之间协同合作,实现复杂算例的模块化构建。 高效——海量计算,岂止于快CloudPSS利用云端计算服务器完成计算。云端计算服务器为高性能超级计算机。为满足大规模算例加速仿真和实时仿真需求,CloudPSS通过对仿真模型仿真算法的优化,利用英伟达公司的Tesla图形加速卡(GPU)实现了能源互联网在电磁暂态级别的实时仿真。下表为整台直驱风机算例下,CloudPSS与相关商业软件的耗时对比。目前,CloudPSS可实现在单块Tesla计算卡为50台直驱风机提供电磁暂态级别的实时仿真。 表1效率对比免费——无需安装,立即使用! CloudPSS现阶段完全免费,用户可登陆https://www.360docs.net/doc/2312272637.html, 进行注册使用,并结合下面的2分钟快速上手视频进行简单学习。2分钟快速上手!CloudPSS中能源互联网仿真示

能源互联网发展趋势及展望

能源互联网发展趋势及展望 一、导论 能源互联网是互联网技术、能源技术与现代电力系统的结合,是信息技术与能源电力技术融合发展的必然趋势。因此如果以开放、互联、对等、分享的原则对电力系统网络进行重构,可以提高电网安全性和电力生产的效率,使得能源互联网内可以跟互联网一样信息分享无比便捷。在能源互联网提出来前,智能电网概念已经得到业内认可,智能电网的理论都已经非常成熟,从手段、理念到目标都非常清晰。正因如此,去年国家发改委和能源局出台了智能电网的有关指导性文件。 在智能电网的基础上,让互联网和智能电网深度融合,才会走向能源互联网。能源互联网不能简单认为是能源修饰互联网。如果简单从字面理解,能源互联网更多指向二次能源甚至新能源的互联网,这不全面。能源互联网应该是让包括新能源、非化石能源在内的更多的创新性能源技术,在互联网背景下的信息时代,整合得更坚实有力。能源互联网是互联网理念在能源领域的应用,但其并非能源与互联网的简单相加,而是一种新型的信息与能源深度融合的“广域网”,它以现有的大电网作为“主干网”,并以微网和分布式能源等能量自治单元为“局域网”,构建开放、互联、对等和分享的信息与能源一体化架构,以真正实现能量的按需分配与动态平衡使用,最大限度地灵活接入分布式可再生能源。通过信息化和智能化,智能电网力图在一定程度上解决电力系统自身的问题,提高设备的利用率、安全可靠性、电能质量等等,而能源互联网的基本出发点则是要解决未来大规模分布式能源和可再生能源与用户之间的开放互联问题,互联式的电网是最可行的方式。因此,能源互联网的核心在于能量的交换,信息通信控制是为了更好地支撑,信息物理融合在能源互联网中也非常重要。 形象地说,其实未来能源互联网的场景也很容易理解,就是源的极端动态(如间歇性的可再生能源达到50%以上)、负载动态加上个性化需求(如电能质量等),那么应如何构建能源互联网?能源互联网在一定程度上可以借鉴互联网的理念和技术,实现能量的交换。事实上,互联网从一开始面对的就是这样的需求——信息随时要求开放的接入(“源”是动态且开放的)、用户要求随时随地获取信息(“用”是动态且内容不断变化的),而且互联网需求的增长也非常迅速,应该说互联网架构演进到今天,虽然还存在很多问题,但基本上满足了这样的需求。 二、用户端 能源互联网,首先用户端就要联上网。“智能电表”的概念应运而生。智能电表是什么?智能电表是智能电网的智能终端和数据入口,为了适应智能电网,智能电表具有双向多种费率计量、用户端实时控制、多种数据传输模式、智能交互等多种应用功能。智能电表在智能电网数据资源整合中扮演着重要角色。在国家的“十二五”规划明确提出,物联网将会在智能电网、智能交通、智能物流等十大领域重点部署,其中智能电网总投资预计达2万亿元,位居首位。2015年8月,发改委7个物联网立项中首个验收工程“国家智能电网管理物联网应用示范工程”验收成功。之后国家能源局印发的《配电网建设改造行动计划(2015—2020年)》提出“推进用电信息采集全覆盖”、“2020年,智能电表覆盖率达到90%”以及“以智能电表为载体,建设智能

校级综合智慧能源实验平台技术需求

校级综合智慧能源实验平台技术需求 1、平台定位与目标 本平台目标是一个建设成一个跨学科、高水平的实验研发平台。 (1)跨学科:该平台能够涵盖我校电气、能源动力、自动化、计算机、经管等主干学科方向; (2)先进性:聚焦当前国内外能源互联网、综合能源系统领域的关键方向的前沿技术,打造涵盖诸多先进技术并将我校重点研发技术与成果充分融合的综合智慧能源实验研发平台。 (3)应用性:以当前在能源互联网领域开展应用或者具有应用潜力的技术为导向。 (4)人才培养:为我校与行业培养研究型、工程型的复合人才。 2、平台的基本形式 平台以物理仿真为主(动模实验平台),可以与软件仿真平台相结合,构成数字物理仿真平台,但二者之间必须紧密结合。 3、平台的主要特色 3.1模块化设计与灵活组合 实现电、冷热、气各部分可以相互独立运行但又彼此联系,整个实验平台构成不同功能模块,模块之间灵活组合,形成不同复杂程度的实验系统。另一方面,通过固定与灵活接线配合,模拟不同运行场景。 3.2平台的高水平与可扩展性 平台应尽可能考虑多种能源电力前沿技术的实验、研究与开发;关键技术与设备尽可能做到成熟产品与开源设备组合接入;配置一定端口,方便中试模块与后期研究设备接入。 4、平台的主要技术特征 (1)多种能源形式互补 平台需要考虑冷、热、电、气以及其他能源形式的协调控制与调度。考虑到

当前能源互联网与综合能源系统中电能是主要能源形式,围绕该领域的前沿技术交叉科研方向最多、技术发展最快,因此,平台的能源形式以电能为主,其他多种能源形式互补协同。 结合我校已有并准备应用于本平台的实验设备,并在此基础上提出目前行业广泛使用或者具有重要科研意义的能源形式。 (2)源网荷储协调 平台要考虑异质能量流在源网荷储整个环节的控制、优化与各种高级应用功能的实现。考虑到现实中源、网、储、荷四个主要环节中主要是通过电能形式进行能量的生产、传输、储存、使用。因此这种协调大多数情况下主要是以电能流为主、其他能流为辅的协调。 (3)新技术新设备应用 本项目希望尽可能将前沿的技术、理念应用到本平台,以确保平台的跨学科与高水平特色。 考虑将综合能源、能源互联网领域的前沿技术如5G通信、PMU、虚拟同步机等技术应用到本实验平台,并设计相应的实验场景与内容。其他相关的前沿技术如有可能也可以论证应用到本平台的可能性并进行应用。 5、平台的各层级特点与要求 本次方案设计按照能源层、信息层与高级应用层予以设计,其中能源层集成了包含冷热电气等不同类型的源网荷储设备,是整个平台的基础;信息层则涵盖整个平台的信息感知、量测、控制等环节,实现整个平台的稳定运行,是整个实验研发平台的中枢;高级应用层则实现整个实验研发平台的优化、实验与高级应用模块,是整个平台的大脑。 5.1能源层 5.1.1源侧 源侧需要结合我校已有并准备应用于本平台的实验设备,并在此基础上提出目前行业广泛使用或者具有重要科研意义的源侧模拟装置,并进行设计。 5.1.2网侧 主要是围绕区域(园区)级能源互联网或综合能源系统的特点,开展电网、冷/热网、气网的规划设计。

互联网+电子政务大数据云平台建设方案

互联网+电子政务云平台 建 设 方 案

目录 1前言 (4) 2项目概述 (4) 2.1建设背景 (4) 2.2建设意义 (5) 2.3建设原则 (11) 2.3.1实用性 (11) 2.3.2开放性与标准化 (12) 2.3.3先进性、成熟性和可扩充性 (12) 2.3.4系统可靠性和安全性 (13) 2.3.5可管理性和可维护性 (14) 2.3.6业务多样性 (14) 2.3.7最佳性价比 (14) 2.4建设目标 (15) 2.5编写依据 (16) 3需求分析 (17) 4互联网+电子政务建设内容 (24) 4.1城市基础数据库 (24) 4.1.1系统概述 (25) 4.1.2需求分析 (25) 4.1.3系统功能 (25) 4.2政务信息资源交换平台 (26) 4.2.1移动电子政务平台 (27) 4.3政务协同办公 (28) 4.3.1远程医疗系统 (29) 4.3.2区域卫生系统 (30)

4.3.4医讯通平台 (33) 4.4政务公共服务平台 (33) 4.5无线政务平台 (36) 4.6统一身份认证 (39) 4.7电子证照 (39) 5云计算中心总体设计 (39) 5.1云计算中心设计原则与规范 (39) 5.2云计算中心设计目标 (43) 5.3云计算中心方案设计 (44) 5.3.1云计算中心资源池设计 (47) 5.3.2云计算中心云管理平台设计 (60) 5.3.3云计算中心网络系统设计 (83) 5.3.4云计算中心安全系统设计 (102) 5.3.5云计算中心备份容灾设计 (205) 6建设范围 (211) 7运维服务质量体系 (212) 7.1运维服务体系建设说明 (212) 7.1.1运维服务体系建设需求 (212) 7.1.2运维服务体系建设目标 (214) 7.1.3运维服务体系建设意义 (214) 7.2运维服务体系架构 (215) 7.2.1服务宗旨 (215) 7.2.2体系建设内容 (216) 7.2.3运维服务体系架构 (219) 7.2.4运维组织机构和人员设置 (221) 7.2.5运维制度建设 (224)

能源互联网的关键技术有哪些

能源互联网的关键技术有哪些? 2015-11-05 能源互联网关键技术是包括新能源发电技术、大容量远距离输电技术、先进电力电子技术、先进储能技术、先进信息技术、需求响应技术、微能源网技术,也包括关键装备技术和标准化技术。其中先进电力电子技术、先进信息技术是关键技术中的共性技术。 新能源发电技术 能源互联网关键技术是指可再生能源的生产、转换、输送、利用、服务环节中的核心技术,包括新能源发电技术、大容量远距离输电技术、先进电力电子技术、先进储能技术、先进信息技术、需求响应技术、微能源网技术,也包括关键装备技术和标准化技术。其中先进电力电子技术、先进信息技术是关键技术中的共性技术。 新能源不仅包括风能、太阳能和生物质能等传统可再生能源,还包括页岩气和小堆核电等新型能源或资源。新能源发电技术包括各种高效发电技术、运行控制技术、能量转换技术等。 在新能源发电技术方面,研究规模光伏发电技术和太阳能集热发电技术、变速恒频风力发电系统的商业化开发,微型燃气轮机分布式电源技术,以及燃料电池功率调节技术、谐波抑制技术、高精度新能源发电预测技术、新能源电力系统保护技术;研究动力与能源转换设备、资源深度利用技术、智能控制与群控优化技术和综合优化技术。 大容量远距离输电技术 大容量远距离输电是我国及世界能源革命的基础技术,是解决大型能源基地可再生能源发电外送的支撑手段。我国可以发展建设以特高压骨干网为基础,利用高压直流互联可再生能源基地,实现覆盖全国范围的交直流混合超级电网,提高我国供电的灵活性、互补性、安全性与可靠性。大容量远距离输电技术包括:灵活可控的多端直流输电技术、柔性直流输电技术、直流电网技术、海底电缆技术、运行控制技术等。直流电网技术是解决我国能源资源分布不均带来的电能大容量远距离传输问题、大规模陆上及海上新能源消纳及广域并网问题、以及区域交流电网互联带来的安全稳定运行问题有效的技术手段之一。 先进电力电子技术 先进电力电子技术包括高电压、大容量或小容量、低损耗电力电子器件技术、控制技术及新型装备技术。以SiC、GaN为代表的宽禁带半导体材料的发

云平台建设思路精编版

云平台 建设原则 1、标准化 当前云服务在整个信息产业中还不够成熟,相关的标准还没有完善。为保障方案的前瞻性,在设备选型上力求充分考虑对云服务相关标准的扩展支持能力,保证良好的先进性,以适应未来的信息产业化发展。 2、高可用 为保证数据业务网的核心业务的不中断运行,在网络整体设计和设备配置上都是按照双备份要求设计的。在网络连接上消除单点故障,提供关键设备的故障切换。关键设备之间的物理链路采用双路冗余连接,按照负载均衡方式或active-active方式工作。关键主机可采用双路网卡来增加可靠性。全冗余的方式使系统达到电信级可靠性。要求网络具有设备/链中故障毫秒的保护倒换能力。 具有良好扩展性,网络建设完毕并网后应可以进行大规模改造、服务器集群、软件功能模块应可以不断扩展。 良好的易用性。简化系统结构,降低维护量。对突发数据的吸附,缓解端口拥塞压力,能保证业务的流畅性等。 3、增强二级网络 云平台下,虚拟机迁移与集群式两种典型的应用模型,这两种模型均需要二层网络支持。随着云计算资源池的不断扩大,二层网络的范围正在逐步扩大,甚至扩展到多个数据中心内,大规模部署二层网络则带来一个必然的问题就是二层环路问题。采用传统的STP+VRRP技术部署二层网络时会带来部署复杂、链路利用率低、网络收敛时间慢等诸多问题,因此网络方案的设计需要重点考虑增强二级网络技术(如IRF/VSS、TRILL等)的应用,以解决传统技术带来的问题。 4、虚拟化 虚拟资源池化是网络发展的重要趋势,将可以大大提高资源利用率,降低运营成本。 应有效开展服务器、存储的虚拟资源池技术建设,网络设备的虚拟化也应进行设计实现。 服务器、存储器、网络及安全设备应具备虚拟化功能。

综合能源互联网云平台的开发与应用 张瑞

综合能源互联网云平台的开发与应用张瑞 发表时间:2019-10-23T10:18:10.663Z 来源:《电力设备》2019年第10期作者:张瑞席阳解瑶[导读] 摘要:在能源互联网时代,新能源企业进行商业模式创新对其发展至关重要。 (国网运城市开发区供电公司山西省 044000) 摘要:在能源互联网时代,新能源企业进行商业模式创新对其发展至关重要。能源市场化推进:借助大众创业万众创新的时代号召,能源互联网为能源市场化变革提供了多种可能性。互联网作为新时代的工具,能够更多地激发市场活力,实现能源产业各个参与方的开放合作和互利共臝。能源互联网的云计算平台应该是混合云的体系结构,认为能源互联网信息的特征决定了云平台是实现信息有效控制、保 证能量有序流动的最佳途径。 关键词:综合能源;能源互联网;云平台 1引言 随着化石能源供应日趋紧张和全球气候问题愈发严重,发展低碳经济、开发利用新能源已经成为世界各国的共识。制定合理的发展战略,是开发利用新能源的先行性工作,具有重要意义。分析了国家政策对新能源发展的支持和导向,阐述了风能、太阳能、生物质能和核能的资源条件及开发利用现状,并对我国新能源发电的发展方向及前景进行了展望。当前,能源互联网将互联网技术和思维引入能源行业,能够辅以实现新能源的高效开发利用,我国已经出台了诸多政策鼓励新能源和能源互联网的发展,新能源产业面临着传统模式向信息化的转型。 2能源互联网的发展目标能源互联网的发展目标主要包括四个方面,详情如下:能源市场化推进:借助大众创业万众创新的时代号召,能源互联网为能源市场化变革提供了多种可能性。互联网作为新时代的工具,能够更多地激发市场活力,实现能源产业各个参与方的开放合作和互利共臝。通过能源互联网的构建,能源提供者和使用者能够无障碍进行商业合作和资源共享,为能源市场化带来无限的可能。能源高效率利用:能源互联网通过将多个类型的能源进行互通、共享,极大程度上开发了能源使用的自主配置和高效替换,拓宽了能源的使用广度和开发深度,因此,比之于传统的能源产业,能源互联网极大程度上提升了能源的使用效率。能源绿色化供应:能源互联网的引入,能够有效撮合各个类型能源之间的互惠和共享,通过有效的配置,提升了能源使用方面的互补能力,从而更好地实现能源供需平衡,避免了能源供大于求、供不应求、供非所求等问题造成的供应浪费,从而实现能源绿色化。能源互联网平台的成功运行:构建能源互联网云平台,有利于各类战略资源的预测、监控、调控和调度,实现能源的供应与需求的精准对接,使得能源按照市场规律进行运营,避免投入过度及供非所求等情况出现,从而推动战略能源的全局调控和动态平衡。 3能源互联网云平台的规划设计 3.1云计算平台云计算 分为私有云(Private Cloud)、公有云(Public Cloud)和混合云(Hybrid cloud)。私有云是为一个组织单独使用而构建的,部署在组织内部的基础设施上,对数据、安全性和服务质量有效控制;公有云部署在第三方供应商的基础设施上,通过网络对公众开放使用,负责托管客户的数据和程序以及安全性保护;混合云是公有云和私有云的结合,由于安全和控制原因,并非所有的组织信息都适合放在公有云上,但构建私有云成本较高,使用混合云模式是个不错的选择。云计算核心服务通常可以分为3个子层:基础设施即服务层(Infrastructureasa Service,IaaS)、平台即服务层(Platformasa Service,PaaS)、软件即服务层(SoftwareasaService,SaaS),统称XaaS。 3.2能源互联网信息系统分析与设计 基于云计算平台的能源互联网信息系统旨在借助云计算的高并发性、高可靠性、高扩展性、低成本等特点构建一个便捷、高效的信息收集、处理、分析和展示平台。传统的电力数据中心平台服务于现有的、覆盖输配电网络的电力信息系统,并占有重要位置,且已经形成了初具规模的计算资源集群。因此,无论从经济角度,还是从技术实现角度,充分利用现有的基础计算资源是必须考虑的因素。鉴于此,提出构建以数据中心为云计算资源的管理和调度中心,以能源路由器为链接,以各微网为节点,采用递增的方式构建云服务信息平台的解决方案。采用云计算技术对现有的电力数据中心进行改造,建立面向能源互联网的新一代电力数据中心。大电网和微网各自构成私有云平台。IaaS层采用虚拟化平台对服务器、存储设备与网络设备等硬件资源进行虚拟化,屏蔽掉各个节点千差万别的硬件资源,以虚拟机为单位进行统一的自动化管理;PaaS层,以虚拟机为单位构建服务器集群,采用云计算的分布式存储、计算和调度系统实现海量数据的大规模存储。能源互联网通过能源路由器和网络将大电网和微网链接起来,构成统一混合云平台。IaaS层采用虚拟化平台对网络、能源路由器、大电网云IaaS和微网云等资源虚拟化;PaaS采用云计算的分布式文件系统、分布式数据库管理系统、分布式数据处理系统、数据仓库与数据分析工具实现海量数据的大规模存储,为数据挖掘与辅助决策等高级应用提供高性能的分布式计算环境;SaaS层为企业应用部署平台,集成了状态监测、主动需求响应、汽车充电管理和营销管理等企业应用。利用调度总线,实现资源的分配、调度和管理工作。各云平台既可以作为IaaS提供硬件资源,也可以作为PaaS提供计算和存储资源,按流量收费。在能源互联网云平台中,各微网数据存储策略为“就近存储,异地备份”,就近存储将数据存储距数据源最近的节点上,方便存取,也可节省网络带宽;异地备份,数据的副本存储在其他节点或其他微网中的数据中心,方便数据的灾难恢复。 3.3能源互联网云平台应用 能源互联侧重分布式能源和可再生能源的接入和互联,云平台技术在能源互联网中的应用主要有负荷预测、电能质量检测与控制和需求侧管理与响应等。(1)负荷预测负荷预测是能源互联网的正常运行和调度的基础。云平台通过存储海量的历史数据、采集实时数据和高性能计算,使负荷预测更加精确。未来的负荷预测将适应各种事件维度和空间的复杂度,预测结果将更及时、更精确。(2)电能质量检测与控制电能质量包括电网的各种电气特征,是电网性能和用户用电体验的保障。随着分布式电源接入电网,采集点的数量和采集数据的频率也逐步提高,其规模将形成大数据。其中对于电压暂降等暂态问题的分析,需要借助云平台实现。(3)需求侧管理与响应能源互联网中用户既是消费者,又是生产者,供需关系更加复杂,需求侧管理的作用更加突出。借助云平台使负荷预测更加准确,供需平衡动态调整更迅速。 4结束语

能源互联网整体解决方案

2 0^2 0 能源互联网整体解决方案

Contents 目录 能源互联网整体解决方案 .... ■ ? ?■????? 3. 大数据在能源互联网中应用 1. 2. 能源互联网的内涵与定位

能源互联网的内涵与定位:

1.能源互联网的基本特征 ?实现能源资源的开发利用和资源运输网络、能量传输网络之间的相互协 调; ?实现电力霁求侧管理进一步扩大化成为全能源领域的"综合用能管理〃 糊见劇 宏观特征 能里 交易 横向多源互补 互补化 自由化 ?横向多源互补"指电力系统、煤炭.石油萦统、供热系统、天然气供应 系统等多种能源资源系统之间的互补协调,突出强调各类能源之间的 〃可替代性/互补性〃 扁平化 支撑 纵向源■网?荷?储协调 透明化

2能源互联网的层次划分 /能源互联网利用ICT 技术实现各类能量单元的 协调运行 /未来能源互联网的建设应该是以电力系统为核 心的 型能源的综合优化。以智能电网为主要技术支 撑的电力互联网将会成为能源互联网的资源配 置中心和枢纽 /能源互联网的发展趋势一定是在当前智能电网 或者电力互联网的基础上,向综合能源系统以 及综合能源交易的方向发展,实现各类型能源 网络的互联互通和资源的整体优化配置 发展层次 发展趋势 /能源互联网绝不是单纯的电力互联网,应该是 多类型能源网络的高度耦合,能够实现不同类 能源互联 智慧城市 网智 多能源耦合的区 域能源互联网

2能源互联网的层次划分 物理以及信息网络支撑看分散化的能源交易,信 息流和能量流影响能源互联网中能量价值。商业 模 式的创新,赋予能源互联网在市场层面开放兼 容的体系 架构,使得能源互联网在物理层面所具 有的开放兼容的 特性能够在价值层面有所反映 能够充分反映能源网络运行的物理和信息过程, 体现两者融合机理和相互作用机制。CPS 系统 构建能够使信息流逐步引导控制能量流,利用 能源大数据,更好地发挥能源互联网中的系统 信息价值 对区域内不同规模的电力、燃料以及供热系统等能 源网络从规划和运行两个层面进行优化。形成一个 洲际的多能源互联系统,为终端用户提供不同类型 的能源服务”推动能源系统与经济社会中其他系统 的整合 信息物理系统(CPS W 运营机制与商业模式 综合能源系统 能源互联网基本架构 价值流

智慧能源系统发展历程及未来前景介绍

智慧能源系统发展历程及未来前景介绍智慧能源系统发展历程及未来前景介绍近年来,我国电力消耗 持续增长,工业用电和商业用电都在丌断增加,这也直接提高了生产和生活成本,同时在电力使用中也存在着丌必要癿浪费现象。 针对以上问题我国逐渐兴起了智慧能源解决方案,智慧能源一般借劣能源互联网,将电、水、气等能源数据化,利用 IPv6、大数据、云计算等互联网技术,将能源产业互联网化,劢态管理能源生产、传输和消费,达到提高效率、节能减排等作用。 而智慧能源系统在电力节能上尤为突出,近几年已经得到广泛癿应用。 我国用电量持续增长限电和节能成为首要问题随着我国经济癿快速增长,国民用电需求也持续走高,2019 年,全社会用电量首次突破 6 万亿千瓦时大关,达到 6.3077 万亿千瓦时,同比增长6.6%,电力消费达到 3 万亿以上,这也创造了新高。 表 1 2010-2019 年全国用电量及增速(单位亿瓦时/%)(资料来源: 中国电力年度发展报告)然而在电力大规模应用之后也相应癿面临着一些问题。 目前我国电力消耗还是以第二产业为主,我国工业生产中癿耗电占到了相当大癿一部分。 在用电高峰电力短缺癿环境下,对高耗能产业癿影响整体上是负 面癿,而且部分缺电严重癿省市高耗电企业可能面临拉闸限电癿风.

险。 根据国家能源局对投入产出癿多个行业电力消耗情冴迚行测算,结果显示除电力行业自身外,钢铁、建材、有色、化工和石化等亓大行业是中国耗电最高癿亓个行业,这些行业面对电荒将首当其冲,成为拉闸限电癿重点对象,一旦对企业限电,将会极大地打乱企业癿生产规划,企业将会受到一定癿经济损失。 此外,在工业生产中癿用电成本也给企业造成了一定癿负担,而电力成本丌仅表现为直接消耗癿影响,而且还可以通过产业链癿价格传导对行业成本产生影响。 如化工行业对电力癿完全消耗,丌仅包括生产过程中直接消耗癿电力,还涉及到产业链上游电力消耗包括: 基础化学、石油、燃料、电力、采矿业,这些电力成本都会间接承压到生产企业。 长此以来,解决电力限制,降低用电成本也成为企业必须解决癿难题。 除了工业用电外商用和民用电力也面临着一些困扰,目前一些园区、校园、医院、机场、居民住宅区等大型公共区域也急需解决电力消耗过大、用电成本较高癿难题。 目前我国电力实行峰谷分时电价,峰时和谷时价格相差较大,以江苏省为例,峰时电价 1.0697 元/度,平价 0.6418元/度,谷时电价 0.3139 元/度,峰谷电价相差 3 倍多,而这些大型公共区域用电高峰也主要集中在峰时,这也带来一笔额外癿开支。

未来5年中国能源互联网平台建设进程分析

未来5年中国能源互联网平台建设进程分析 一、能源互联网气势正雄 互联网技术正在颠覆人类的生产生活方式,其融入能源产业使能源信息数据化成为趋势,将能量能源的生产、存储、使用等众多节点联结起来,实现信息、能量、能源三者之间双向流动,达到信息网、能量网、能源网的“三网合一”,激发出能源产业更巨大的创新力和生产力。“互联网+”为能源革命提供了机遇,2017年国家能源局公布了首批56个“互联网+”智慧能源示范项目,标志着我国能源互联网进入“实操”阶段,顺应转向智慧社会的要求,实现能源生活从“智能”到“智慧”的飞跃。 图表2017能源互联网智慧平台排行榜 资料来源:2017《互联网周刊》&eNet研究院选择排行 能源相关企业秉承互联网思维,纷纷推出企业自身擅长领域的智慧能源解决方案,打造智慧平台。能源互联网智慧平台建设的根本在于解决目前企业面临的能量转换、能源储存、新能源应用等实际难题,而攻坚也将是个长期的工程。特变电工专注于光伏、风电、电力电子、能源互联网等领域,凭借多年的光伏电站建设及运维经验,推出特变电工智慧eCloud平台,为水面光伏电站提供全方位的智能化运维,实现水面光伏电站集团化、全生态链和全生命周期的运维管理。 能源互联网以现有电网为基础,利用新型清洁能源、互联网技术等,通过能源调节系统,将多种资源优势互补;结合微网技术,实现储能与多级分布式开放系统;基于云计算、物联网、空间监测等技术,分析整合城市内能源关键信息,对能源需求做到智能回应,促进价值共享,突破行业发展瓶颈,提高能源利用率,实现真正的能源资源共享,这也是能源互联网智慧平台所要努力的目标。国家电网开创国内首个大 中投顾问·让投资更安全经营更稳健

互联网+智慧能源项目可行性研究报告

互联网+智慧能源项目可行性研究报告

目录 一.项目概述 1.1项目概况 1.2投资方简况 1.3设计方简况 二.光伏产业现状 2.1国际现状 2.2国内现状 三.项目选址 3.1光伏发电选址概况 3.2选址太阳能资源情况 3.3发电量预测 四.建设规模和总体方案 五.环境保护、劳动安全与工业卫生 5.1环境保护 5.2劳动安全与工业卫生 5.3 结论 六.工程进度计划与安排 6.1进度安排原则 6.2项目实施进度 七.投资估算和经济分析

7.1投资估算 7.2经济评价 八.社会和环境效益评价 8.1社会及经济效益 8.2环境效益

一、项目概述: 1.1项目概况 ** 160万m2世界级·全生态城市中心,扼守深圳北站商务区、华为科技新城与福田CBD黄金三角核心区位,囊括了联盟商务区、都心豪宅区、旗舰商业区、酒店公寓区、生态休闲区,涵盖了写字楼、住宅、商业、酒店公寓、文体、学校等,突破传统产业园区单一开发模式,形成全方位、多业态、可持续发展的全生态城市中心,全面满足企业发展需求已达到全面发展。 互联网+智慧能源项目拟建设100kWp光伏配套350kWh储能及供储一体化能源调配系统,形成光伏储能局部微电网,供应日常商业物业电力。 1.2投资与运营方 **集团成立于1989年,总部位于深圳,历经二十余载发展,**集团已形成了“房地产综合开发,商业地产运营和金融投资”并驾齐驱的三元驱动模式。**2005年开始涉足商业地产领域,是国内较早进入商业地产领域的开发商之一,目前商业运营规模超100万平方米。从首创国内情景式休闲购物中心**Park,形成包括Park、City、GO、Street在内的“系”产品线,拥有全球140多个家居品牌的国际高端家居购物中心“**第三空间”,吸引了平安集团总部入驻的5A级写字楼“**发展中心”,在深圳福田打造“**丽思卡尔顿酒店”,**建立了良性循环的商业生态圈,并与万豪、山姆、麦德龙、世邦魏理仕等百余世界知名品牌成为长期友好的合作伙伴。

能源互联网建设的八大重点任务

能源互联网建设的八大重点任务 能源互联网是推动能源生产和消费模式变革的重要手段。能源互联网建设将以需求导向、创新驱动、开放协作、因地制宜、试点先行为原则,以发展可再生能源、分布式能源、微网、需求侧管理与需求响应,提高能效、节能减排为切入点,推动先进信息通信技术与能源基础设施深度融合。 推进能源信息交互和服务平台建设,逐步实现能量、信息和金融等资源深度融合。重点抓好能源互联网产业体系,标准体系构建和关键技术研究。从能源的角度,逐步实现清洁能源就地收集,就地存储,就地使用;从信息的角度,逐步实现能源信息就地采集,就地分析处理,就地平衡。 能源互联网建设的重点任务有八项: 加快能源互联网体系架构及关键技术研究 构建完善的能源互联网系统总体架构、能源体系架构、IT体系架构、安全体系、运维体系以及标准体系等能源互联网框架体系,奠定能源互联网系统研究的基础。 大力推进新能源及可再生能源生产设施、储能设施、并网设施及能源网络关键技术研究,促进新能源的广泛应用。逐步建成适应中国国情的安全、可靠、高效、可控的新型能源网络架构。突破过电压、大功率、高可靠、智能化的电力电子器件。 重点研究已有信息资源的集成和整合,加强能源数据治理,提高数据质量,构建支撑能源互联网安全、稳定、可靠运行的大数据分析与云计算系统。利用大数据分析用户对能源价格、服务质量的反应,设计针对性的能源交易价格及能源激励机制。 重视技术标准的协调性 梳理能源领域与信息领域的相关标准,并针对两者的融合研制共性关键技术标准,与国际、国内智能电网标准协调,逐步建成开放、互操作的标准体系,尤其要重视技术标准的协调性。 加强园区及新能源城市能源基础设施建设 适应不同区域和应用需求,开展基于太阳能、风能等分布式可再生能源的能源互联网试点,开展基于太阳能、风能等分布式可再生能源的能源互联网多种形式的试点应用。 融合多种技术构建由移动通信网络、光纤固定接入网络、电力线通信等各项能源设施的基础接入网络,由大容量光纤网络构成的信息汇集和传输网络,由大容量高速路由器构成的核心信息交换网络。 提高能源生产的智能化与能源消费的精益化水平 鼓励能源生产企业建设智能工厂,采集工厂的运行过程数据、设备状态特征、能源运输存储等信息。鼓励能源企业通过大数据技术对设备状态、电能负载等数据进行分析挖掘与预测,开展精准调度、设备状态评估、故障判断和预测性维护,提高能源利用效率和安全稳定运行水平。 建立基于互联网的能源生产调度信息公共平台,促进电厂之间、电厂与电网信息对接,支撑电厂生产和电网规划决策,助力实现全国范围内非化石能源与化石能源协同发电,切实解决弃风、弃水、弃光问题。 有序开放能源交易 推进电力价格体系逐步完善,逐步放开公益性和调节性以外发电计划,逐步放开输配环节以外的竞争性环节电价,开展能源价格市场化区域试点,建立基于能源互联网的供需信息实时交互机制,推广实时电价。 通过需求侧管理与需求响应实现智慧用能 构建不同市场主体共同参与,以各类能源存储设施(蓄冷、蓄热、蓄电等)为中心的能

电力系统仿真软件介绍

电力系统仿真软件的分类较为复杂,按照不同标准可分为:实时与非实时,短时与长时间等不同种类,而各个仿真软件在功能上都具有综合性,只是侧重点有所不同,在报告的最后有各类仿真软件功能的比较,以下为较著名的仿真软件的介绍。 1 EMTDC/PSCAD EMTDC是一种世界各国广泛使用的电力系统仿真软件,PSCAD是其用户界面,一般直接将其称为PSCAD。使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能。 PSCAD/EMTDC基于dommel电磁暂态计算理论,适用于电力系统电磁暂态仿真。EMTDC(Electro Magnetic Transient in DC System)即可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。 PSCAD由Manitoba HVDC research center开发。 2 PSAPAC PSAPAC由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。其包含多个模块,其中部分模块可以单独使用。 模块和功能如下: DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient Midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 3 PSASP

什么是“能源互联网”

【行业知识】什么是“能源互联网”? 能源互联网可理解是综合运用先进的电力电子技术, 信息技术和智能管理技术, 将大量由分布式能量采集装置, 分布式能量储存装置和各种类型负载构成的新型电力网络节点互联起来, 以实现能量双向流动的能量对等交换与共享网络。 从政府管理者视角来看,能源互联网是兼容传统电网的,可以充分、广泛和有效地利用分布式可再生能源的、满足用户多样化电力需求的一种新型能源体系结构;从运营者视角来看,能源互联网是能够与消费者互动的、存在竞争的一个能源消费市场,只有提高能源服务质量,才能赢得市场竞争;从消费者视角来看,能源互联网不仅具备传统电网所具备的供电功能,还为各类消费者提供了一个公共的能源交换与共享平台。 能源企业普遍认为,能源的市场化、民主化、去中心化、智能化、物联化等趋势将注定要颠覆现有的能源行业。新的能源体系特征需要“能源互联网”,同时“能源互联网”将具备“智慧、能自学习、能进化”的生命体特征。 物联是基础 “能源互联网”用先进的传感器、控制和软件应用程序,将能源生产端、能源传输端、能源消费端的数以亿计的设备、机器、系统连接起来,形成了能源互联网的“物联基础”。大数据分析、机器学习和预测是能源互联网实现生命体特征的重要技术支撑:能源互联网通过整合运行数据、天气数据、气象数据、电网数据、电力市场数据等,进行大数据分析、负荷预测、发电预测、机器学习,打通并优化能源生产和能源消费端的运作效率,需求和供应将可以进行随时的动态调整。 “能源互联网”将有助于形成一个巨大的“能源资产市场” (Market place),实现能源资产的全生命周期管理,通过这个“市场”可有效整合产业链上下游各方,形成供需互动和交易,也可以让更多的低风险资本进入能源投资开发领域,并有效控制新能源投资的风险。 “能源互联网”还将实时匹配供需信息,整合分散需求,形成能源交易和需求响应。当每一个家庭都变成能源的消费者和供应者的时候,无时无刻不在交易电力,比如屋顶分布式光伏电站发电、当为电动汽车充放电的时候。 能源互联网的特征 能源互联网具备如下五大特征 可再生:可再生能源是能源互联网的主要能量供应来源。可再生能源发电具有间歇性、波动性,其大规模接入对电网的稳定性产生冲击,从而促使传统的能源网络转型为能源互联网。 分布式:由于可再生能源的分散特性,为了最大效率的收集和使用可再生能源,需要建立就地收集、存储和使用能源的网络,这些能源网络单个规模小,分布范围广,每个微型能源网络构成能源互联网的一个节点。 互联性:大范围分布式的微型能源网络并不能全部保证自给自足,需要联起来进行能量交换才能平衡能量的供给与需求。能源互联网关注将分布式发电装置、储能装置和负载组成的微型能源网络互联起来,而传统电网更关注如何将这些要素“接进来”。 开放性:能源互联网应该是一个对等、扁平和能量双向流动的能源共享网络,发电装置、储能装置和负载能够“即插即用”,只要符合互操作标准,这种接入是自主的,从能量交换的角度看没有一个网络节点比其它节点更重要。 智能化:能源互联网中能源的产生、传输、转换和使用都应该具备一定的智能。 能源互联网与传统电力系统的对比 能源互联网与其他形式的电力系统相比, 具有以下4 个关键技术特征: 1可再生能源高渗透率 能源互联网中将接入大量各类分布式可再生能源发电系统, 在可再生能源高渗透率的环境下, 能源互联网的控制管理与传统电网之间存在很大不同, 需要研究由此带来的一系列新的科学与技术问题。 2非线性随机特性 分布式可再生能源是未来能源互联网的主体, 但可再生能源具有很大的不确定性和不可控性, 同时考虑实时电价, 运行模式变化, 用户侧响应, 负载变化等因素的随机特性, 能源互联网将呈现复杂的随机特性, 其控制, 优化和调度将面临更大挑战。 3多源大数据特性 能源互联网工作在高度信息化的环境中, 随着分布式电源并网, 储能及需求侧响应的实施, 包括气象信息, 用户用电特征, 储能状态等多种来源的海量信息。而且, 随着高级量测技术的普及和应用, 能源互联网中具有量测功能的智能终端的数量将会大大增加, 所产生的数据量也将急剧增大。 4多尺度动态特性 能源互联网是一个物质, 能量与信息深度耦合的系统, 是物理空间、能量空间、信息空间乃至社会空间耦合的多域, 多层次关联, 包含连续动态行为、离散动态行为和混沌有意识行为的复杂系统。作为社会/信息/物理相互依存的超大规模复合网络, 与传统电网相比,具有更广阔的开放性和更大的系统复杂性, 呈现出复杂的, 不同尺度的动态特性。

相关文档
最新文档