CPU和显卡怎么看参数(购机分辨参数)2014.2.17

CPU和显卡怎么看参数(购机分辨参数)2014.2.17
CPU和显卡怎么看参数(购机分辨参数)2014.2.17

目录

1.显卡是AMD Radeon HD 7370(1GB) 怎么看参数 (2)

2.显卡中的GDDR5是什么意思 (2)

3. 2013年什么显卡好 (2)

4.显卡天梯图2013.8 (3)

5.CPU天梯图2013.6 (3)

6.AMD CPU 简单识别 (3)

7.INTEL CPU 简单识别 (4)

8.CPU、主板、显卡搭配 (4)

9.CPU 主流处理器 (4)

10.CPU 高端处理器 (6)

制作时间2014年2月17日

1.显卡是AMD Radeon HD 7370(1GB) 怎么看参数

性能还不如英特尔i系列二代处理器集成的核芯显卡。如果说价钱可能也就二百块钱,AMD的显卡性能主要看第二位数字,如果第二位相同看第三位,数

字越大,显卡越好。第一位一般表示显卡系列,如果后面数字相同,第一位数字大的更新些,局部地方改进了一点,相对好一点,但差别不是很多。第四位一般都是0,不用管它。

比如HD 6770>>HD6670,HD6750>>HD6670,HD6670>HD6650,

HD7670>HD6670。前两组的性能差很大,而后两组的性能只差一点点。

从价格上更直观的体现出来:

同是微星:HD6970 ¥3700,HD6870 ¥2000,HD6770 ¥900,HD6670 ¥700,HD6570 ¥550,HD6450 ¥400。

2.显卡中的GDDR5是什么意思

GDDR5(Graphics Double Data Rate, version 5)SDRAM为一种高性能显

卡用内存,专为高带宽需求电脑应用所设计。是现在的主流。GDDR5需搭配PCI-E 以上规格的显卡才有支援,GDDR5显存使用了DQ并行双总线,相当于提供了在GDDR3基础上多加了一条通道,而GDDR3显存却只有一条通道所以GDDR5的理论速度可达GDDR3的4倍以上,5000MHz以上的高频变成可能,透过高频率有可能使一款128bit的显卡性能超过DDR3的256bit显卡。

相比GDDR3或GDDR4显存而言工作电压从1.8V降为电压仅有1.5V,还具有新电源管理技术,功耗更低。且GDDR3使用的为80nm制程,而GDDR5为55nm,制程的提高使芯片的体积缩小,发热量也可以低许多。

3. 2013年什么显卡好

14年目前还没有新出的显卡,去年底的出了gtx700系列gtx760,gtx770 gtx780 gtx780ti 以及r9 270x r9 280x r9 290x

基本都是过千元的,,比较好的高端产品动辄就要四五千。

4.显卡天梯图2013.8

显卡天梯图.png

GT开头是NVIDIA的显卡,HD开头基本是AMD的显卡

5.CPU天梯图2013.6

CPU天梯图2013年8

月1日.png

6.AMD CPU 简单识别

AMD Duron 既是毒龙是AMD早期的系列现在市面上是见不到的了。只有一些人拿来珍藏着。

AMD Sempron 既是闪龙,低端台式处理器

AMD Athlon 既是速龙系列是现在AMD的低端系列。

Turion 炫龙既是笔记本电脑处理器系列。

Opteron 既是皓龙服务器处理器

Phenom 既是羿龙系列新推出的玩家级别的处理器。性能比前面那些强很多。然后系列后面跟着的那些数字就是型号了。比如AMD Athlon620 就是AMD速龙的一款型号为620的四核处理器。AMD Phenom 965 就是现在AMD的旗舰级羿龙处理器。

7.INTEL CPU 简单识别

你只要认准 I3 I5 I7 以及后面有没有加U就行了当然I7-2XXX代表第二代

I7-3XXX代表第三代 I7+4XXX代表第四代也就是最新的这一代

i7 i5不用说吧

第一位数字表示该系列第几代产品,3就三代,4就四代。

后三位数字表示性能档次,实际上排除前面i3 i5 i7直接比较后三位数字也就反映出性能的高低,当然,跨代不能直接这么比较。

后面的字母,M表示笔记本用,U表示笔记本用低功耗版,Q表示四核,H表示haswell架构下的一种封装规格(保证性能,降低功耗发热,但是不可拆卸),Y表示超低功耗版。

8.CPU、主板、显卡搭配

1)AMD的CPU,AMD的主板,ATI的显卡。这样搭配兼容性好,稳定,性能发挥较好(对于此种配置,AMD官方称为蜘蛛平台,即3A平台。)

2)intel的CPU,intel的主板,NVIDIA的显卡。这样搭配兼容性也比较好,稳定,性能发挥较好。

3)intel的CPU,intel的主板,ATI的显卡现也兼容,使用无问题。上面两个兼容比这条好一点。

9.CPU 主流处理器

主流、性能级别

Intel Core i3 3220

核心数/线程数:2/4

主频:3.3GHZ

架构:Ivy Bridge

性能:100

能耗比:优

点评:这款CPU是Intel的主流级别CPU,在各大电脑城、网购网站上几乎都是CPU销量第一,是目前相当热门的CPU,同时也是争议最大的CPU。它拥有两个原生核心,3.3G主频,相比赛扬和奔腾多出了超线程技术和优化浮点密集型运算的AVX指令集,综合性能不错,功耗较低。当然,双核心四线程的性能与i5的原生四核相比差距还是很大的。最大的缺点在于几乎不能超频。

总评:i3 3220有较强的综合应用性能和能耗比,搭配B75主板性价比不错。

AMD Phenom II X4 955

核心数:4

主频:3.2GHZ

架构:K10

性能:100

能耗比:一般

点评:这是一款老型号的CPU,同样很受欢迎。上市之初是属于中高端的CPU,与i5 750相似定位(综合性能略弱些),现在它放低身段,在中低端市场仍然拥有一定的市场。原生四核心设计,在多线程方面较i3有一定优势,而且目前价格便宜,性价比不错。同样是一款争议很大的CPU,各大贴吧论坛i3和955的支持者经常开战。缺点是功耗较大。

总评:一款比较老但是经得起考验的处理器,现在依然神器。当然预算足够的话我建议选择新款的CPU。

AMD Athlon II X4 740

核心数:4

主频:3.2-3.7GHZ

架构/核心:Trinity APU

性能:80

能耗比:良

点评:不客气的说这款CPU是今年最令人瞎眼的的一款,虽然拥有模块化设计的四核心,最高主频可达3.7GHZ,但由于新架构相对高频低能,因此性能并不令人满意,不仅远远不如老款的955,而且还不如同样四核心、主频仅有2.6GHZ 的x4 631。也就是说,这款CPU比起前辈来说性能是倒退的。不过这款CPU功耗控制确实有所改善,比起以前的AMD四核CPU来说功耗降低了不少,价格逐渐下降中。

总评:主流四核处理器中性能最差的一款,虽然价格不高,不过这个价位选择余地较大,依旧不太推荐。

Intel Core i5 3450

核心数/线程数:4/4

主频:3.1-3.5GHZ

架构:Ivy Bridge

性能:150

能耗比:优

点评:i5 3450是Intel定位性能级别的一款CPU,拥有原生四核心设计,基础频率3.1GHZ,比起SNB的i5来说频率有一定提升。这款处理器性价比非常高,无论是办公和视频处理性能还是游戏性能都非常强劲。这款CPU可以搭配Z77

主板进行小幅度超频,但是非常有限。

总评:千元级处理器性价比之王,搭配B75主板性价比很高。

AMD FX6300

核心数:6

主频:3.5GHZ

架构:Piledriver

性能:130

能耗比:良

点评:起初这款模块化设计的CPU并不被看好,并被带上“多核高频低能”的帽子。不过打桩机架构的效能相对推土机有所进步,而且六核心在很多对多线程优化的应用中还是有所优势的,当然它在很多方面还是不如老款的X6 1100T。上市之后经历一段时间的降价,目前性价比不错。

总评:虽然有争议,但是多线程性能和性价比都不错。

Intel Core i5 3570K

核心数/线程数:4/4

主频:3.4-3.8GHZ

架构:Ivy Bridge

性能:160

能耗比:优

点评:这是三代i5中性能最强的一款,拥有高达3.4GHZ的基础频率,并且不锁倍频,有不小的超频潜力。虽然上市之初价格偏高,但是现在的价格随着Haswe ll的铺货开始降低。大幅度超频温度较SNB难以控制,但超到4.5GHZ并不难。总评:很不错的一个不锁倍频的中高端CPU。

AMD FX8350

核心数:8

主频:4GHZ

架构:Piledriver

性能:170

能耗比:一般

点评:这一款CPU是目前AMD大规模铺货的最高端CPU,采用八核心设计,默认4GHZ高主频。多核心高主频最大的优势还是在专业应用方面,游戏性能并不突出,除了孤岛危机3这种对多核优化极好的游戏之外,大部分游戏的表现平平。此外高规格的代价是较高的功耗。

总评:比较适合工作室多开网游,单纯玩游戏还是推荐i5.

10.CPU 高端处理器

Intel Xeon E3 1230V2

核心数/线程数:4/8

主频:3.3-3.7GHZ

架构:Ivy Bridge

性能:200

能耗比:优

点评:说到1200-1400价位高性价比的CPU,那就不能不提E3 1230V2。严格的说这是一款入门级的服务器CPU,并不是民用级CPU。不知道什么原因它的散片在天朝火了起来。事实上,这款CPU的盒装产品并没有太高的性价比,但是散装产品性价比却非常高。它的性能非常接近i7 3770,但去除了中高端玩家基本上用不到的核芯显卡。无论是玩游戏还是专业应用,这款CPU都能以相对低廉的价格提供强劲的性能。有些人说E3V2是服务器CPU所以

不适合民用,这个基本上是瞎掰,因为它的架构和民用级完全一样,只是系列属于服务器而已。

总评:散片非常有性价比,可视为去核显的i7。

Intel Core i7 4770K

核心数/线程数:4/8

主频:3.5-3.9GHZ

架构:Haswell

性能:230

能耗比:优

点评:这款CPU采用Haswell的新架构,规格和上代i7 3770K相比基本上没有变化。尽管Haswell架构CPU部分相比上代性能提升相当有限,但不得不说它的性能已经相当强了。此外,这款CPU的待机功耗比起i7 3770K有非常明显的降低。Haswell的K系列处理器支持RCR 分频,可以倍频和外频同时调节(外频调节不是连续的),但是电压超过1.25V的时候发热量不易控制。

总评:Haswell的高端产品。高性能、高价格。

Intel Core i7 3930K

核心数/线程数:6/12

主频:3.2-3.8GHZ

架构:Sandy Bridge-E

能耗比:良

点评:这款CPU虽然发布已经有较长时间,但仍然是性能非常强的CPU。得益于六核心十二线程加上SNB-E架构,3930K无论是游戏性能还是专业应用性能都极高。而且它的价格相比3970X这些旗舰处理器,还算是比较平民化的。当然,一般的玩家已经没必要上这种高端的CPU了。

总评:各种应用性能都极高,性价比相对来说不错。

Intel Core i7 3970X

核心数/线程数:6/12

主频:3.5-4.0GHZ

架构:Sandy Bridge-E

能耗比:良

点评:i7 3970X是目前民用级性能最强的CPU,也是当之无愧的U皇。当然,想追求极致性能也要付出代价,这款CPU盒装版售价达到7000RMB,相当于一般玩家一台非常不错的整机了。

总评:民用级CPU的巅峰,当然也包括价格。

CPU的主要性能参数

CPU的主要性能参数 主频 通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。主频也叫时钟频率,单位是GHZ,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。 有人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。当然,主频和实际的运算速度是有关的,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 外频 外频是CPU与主板上其它设备进行数据传输的物理工作频率,也就是系统总线的工作频率。它代表着CPU与主板和内存等配件之间的数据传输速度。单位也是MHz。CPU标准外频主要有66MHz、100MHz、133MHz、166MHz、200MHz几种。 外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。 倍频 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应——CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 理论上倍频是从1.5一直到无限的,但需要注意的是,倍频是以以0.5为一个间隔单位。 倍频一般是不能改的,现在的CPU基本都对倍频进行了锁定。 CPU的其它参数

英特尔i3_i5_i7处理器型号及参数总览表+CPU型号大全

英特尔i3/i5/i7处理器型号及参数总览表 请仔细看完本文,看完后你将会对笔记本芯片有一定了解,买笔记本才不会被JS坑骗。 ~~Kiong 前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、 奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 名词解释 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Fr Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升10%~20% 以保证程运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU 有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。 制程:制程越小越好。越来越高的工艺制程可以提高芯片的集成度,增加晶体管的数量,扩展新的功能。同时随着晶体管尺寸的缩小,每颗的单位成本也有所降低。此外,更高的工艺制程可以帮助降低CPU的功耗,另外,降低CPU的成本以前扩大CPU产能也是新工艺制的积极影响。 TDP:TDP的英文全称是“Thermal Design Power”,中文直译是“散热设计功耗”。主要是提供给计算机系统厂商,散热片/风扇厂商,以及商等等进行系统设计时使用的。一般TDP主要应用于CPU,CPU TDP值对应系列CPU 的最终版本在满负荷(CPU 利用率为100%的理能会达到的最高散热热量,散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。 注意:由于CPU的核心电压与核心电流时刻都处于变化之中,这样CPU的实际功耗(其值:功率P=电流A×电压V)也会不断变化TDP值并不等同于CPU的实际功耗,更没有算术关系。

原子吸收参数对照表

原子吸收参数对照表

WFX-200原子吸收分光光度计 ■性能指标 *波长范围:190~900nm *波长准确度:优于±0.25nm *分辨率:光谱带宽0.2nm时分开双锰线(279.5nm和 279.8nm)且谷峰能量比<30﹪ *基线稳定性:≦0.004A/30min *双背景校正系统:氘灯背景校正1A时≧30倍 *自吸效应背景校正:1.8A时≧30倍 *光栅刻线:1800条/mm (可出具质检部门证明文件) *灯安装数: 6灯座自动转换(其中两只可直接用高性能空心阴极灯), 配六灯源,可同时预热六支元素灯,自动对光、自动精调、 全自动扫描及寻峰 *灯电流调节:微机自动调节并显示,宽脉冲0~25mA,窄脉冲0~10mA *单色仪: Czerny-Turner型光栅单色仪 *光谱带宽: 0.1、0.2、0.4、1.2nm自动切换 *样品盘容量:55个样品杯,5个试剂杯可用于基体改进剂 *样品杯材质:聚丙烯 *标准杯容积:3ml样品,20ml试剂 *进样系统:原装进口精确计量双泵系统(100μl及5ml泵),具有大 流量清洗进样针功能 *智能切换:火焰与石墨炉切换,无需拆卸自动进样器,方便日常分析。*重复进样次数:高达99次 *进样精度及重复性:最小进样体积:1ul;精度:1﹪;重复性:0.3﹪自 动配置标准工作曲线 *自动校正功能:自动校正进样探针,自动跟踪及校正样品杯高度 *监测器:高灵敏度、宽光谱范围光电倍增管 *重复测试: 1~99次重复测量,自动计算平均值、标准偏差、相对标 准偏差 *燃烧器: 10cm单缝全钛燃烧器 *雾化器:耐腐蚀全塑雾化器 *喷雾器:金属套高效玻璃喷雾器 *空气-乙炔:特征浓度Cu≤0.025mg/L,检出限≤0.006mg/L *石墨炉控温范围:室温~3000℃,设有温度自校正功能 *控温精度:≤1﹪

游戏性能指标说明教学文案

DrawCall的理解 drawcall是CPU对底层图形绘制接口的调用命令GPU执行渲染操作,渲染流程采用流水线实现,CPU和GPU并行工作,它们之间通过命令缓冲区连接,CPU向其中发送渲染命令,GPU接收并执行对应的渲染命令。 这里drawcall影响绘制的原因主要是因为每次绘制时,CPU都需要调用drawcall而每个drawcall都需要很多准备工作,检测渲染状态、提交渲染数据、提交渲染状态。而GPU本身具有很强大的计算能力,可以很快就处理完渲染任务。 当DrawCall过多,CPU就会很多额外开销用于准备工作,CPU本身负载,而这时GPU可能闲置了。 解决DrawCall:过多的DrawCall会造成CPU的性能瓶颈:大量时间消耗在DrawCall准备工作上。很显然的一个优化方向就是:尽量把小的DrawCall合并到一个大的DrawCall中,这就是批处理的思想。下面是一些具体实施方案: 1. 2. 合并的网格会在一次渲染任务中进行绘制,他们的渲染数据,渲染状态和shader 都是一样的,因此合并的条件至少是:同材质、同贴图、同shader。最好网格顶点格式也一致。 3.

4. 尽量避免使用大量小的网格,当确实需要时,进行合并。 5. 6. 避免使用过多的材质,尽量共享材质。 7. 8. 9. 合并本身有消耗,因此尽量在编辑器下进行合并确实需要在运行时合并的,将静态 的物体和动态的物体分开合并:静态的合并一次就可以,动态的只要有物体发生变换就要重新合并。 FPS(每秒传输帧数(Frames Per Second)) 例如:75Hz的刷新率刷也就是指屏幕一秒内只扫描75次,即75帧/秒。而当刷新率太低时我们肉眼都能感觉到屏幕的闪烁,不连贯,对图像显示效果和视觉感观产生不好的影响。在FPS游戏例如CS中也是一样的,游戏里的每一帧就是一幅静止画面,而“FPS”值越高也就是“刷新率”越高,每秒填充的帧数就越多,那么画面就越流畅。当显卡能提供的“FPS”值不足以满足游戏的“FPS”时玩家就会感觉丢帧,也就是画面不连贯,以至影响游戏操作结果。 主频 主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。通常,主频越高,CPU处理数据的速度就越快。CPU的主频=外频×倍频系数。主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。所以,CPU的主频与CPU实际的运算能力是没有直

cpu的简介及主要性能指标

CPU的簡介及主要性能指標 什麽是CPU? CPU是英語※Central Processing Unit/中央處理器§的縮寫, CPU一般由邏輯運算單元、控制單元和存儲單元組成。在邏輯運算和控制單元中包括一些寄存器,這些寄存器用於CPU在處理資料過程中資料的暫時保存。 CPU主要的性能指標有: 主頻即CPU的時鐘頻率(CPU Clock Speed)。 這是我們最關心的,我們所說的233、300等就是指它,一般說來,< 主頻越高,CPU的速度就越快,整機的就越高。 時鐘頻率: CPU的外部時鐘頻率,由電腦主板提供,以前一般是66MHz,也有主板支援75各83MHz,目前Intel公司最新的晶片組BX以使用100 MHz的時鐘頻率。另外VIA 公司的MVP3、MVP4等一些非Intel的晶片組也開始支援100MHz的外頻。精英公司的BX主板甚至可以支援133 MHz的外頻。 內部緩存(L1 Cache): 封閉在CPU晶片內部的快取記憶體,用於暫時存儲CPU運算時的部分指令和資料,存取速度與CPU主頻一致,L1緩存的容量單位一般爲KB。L1緩存越大,CPU 工作時與存取速度較慢的L2緩存和記憶體間交換資料的次數越少,相對電腦的運算速度可以提高。 外部緩存(L2 Cache): CPU外部的快取記憶體,PentiumPro處理器的L2和CPU運行在相同頻率下的,但成本昂貴,所以 PentiumII運行在相當於CPU頻率一半下的,容量爲512K。爲降低成本Inter公司生産了一種不帶L2的CPU命爲賽揚,性能也不錯。 MMX技術是※多媒體擴展指令集§的縮寫。 MMX是Intel公司在1996年爲增強Pentium CPU在音像、圖形和通信應用方面而採取的新技術。爲CPU增加57條MMX指令,除了指令集中增加MMX指令外,還將CPU晶片內的L1緩存由原來的 16KB增加到32KB(16K指命+16K資料),因此MMX CPU 比普通 CPU在運行含有MMX指令的程式時,處理多媒體的能力上提高了 60%左右。

计算机性能指标

计算机性能指标 (1)运算速度。运算速度是衡量计算机性能的一项重要指标。通常所说的计算机运算速度(平均运算速度),是指每秒钟所能执行的指令条数,一般用“百万条指令/秒”(mips,Million Instruction Per Second)来描述。同一台计算机,执行不同的运算所需时间可能不同,因而对运算速度的描述常采用不同的方法。常用的有CPU时钟频率(主频)、每秒平均执行指令数(ips)等。微型计算机一般采用主频来描述运算速度,例如,Pentium/133的主频为133 MHz,Pentium Ⅲ/800的主频为800 MHz,Pentium 4 1.5G的主频为1.5 GHz。一般说来,主频越高,运算速度就越快。 (2)字长。计算机在同一时间内处理的一组二进制数称为一个计算机的“字”,而这组二进制数的位数就是“字长”。在其他指标相同时,字长越大计算机处理数据的速度就越快。早期的微型计算机的字长一般是8位和16位。目前586(Pentium, Pentium Pro, PentiumⅡ,PentiumⅢ,Pentium 4)大多是32位,现在的大多数人都装64位的了。 (3)内存储器的容量。内存储器,也简称主存,是CPU可以直接访问的存储器,需要执行的程序与需要处理的数据就是存放在主存中的。内存储器容量的大小反映了计算机即时存储信息的能力。随着操作系统的升级,应用软件的不断丰富及其功能的不断扩展,人们对计算机内存容量的需求也不断提高。目前,运行Windows 95或Windows 98操作系统至少需要 16 M的内存容量,Windows XP则需要128 M以上的内存容量。内存容量越大,系统功能就越强大,能处理的数据量就越庞大。 (4)外存储器的容量。外存储器容量通常是指硬盘容量(包括内置硬盘和移动硬盘)。外存储器容量越大,可存储的信息就越多,可安装的应用软件就越丰富。目前,硬盘容量一般为10 G至60 G,有的甚至已达到120 G。 (5)I/O的速度 主机I/O的速度,取决于I/O总线的设计。这对于慢速设备(例如键盘、打印机)关系不大,但对于高速设备则效果十分明显。例如对于当前的硬盘,它的外部传输率已可达20MB/S、4OMB/S以上。 (6)显存

电脑cpu的性能指标基础知识介绍

电脑cpu的性能指标基础知识介绍 2010年02月20日 17时20分26秒组装电脑配置网 CPU主要的性能指标有以下几点: (1)主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率。 一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU 外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 (2)内存总线速度或者叫系统总路线速度,一般等同于CPU的外频。 内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 (3)工作电压。工作电压指的也就是CPU正常工作所需的电压。 早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU的制造工艺与主频的提高,CPU 的工作电压有逐步下降的趋势,Intel最新出品的Coppermine已经采用1.6V的工作电压了。低电压能解决耗电过大和发热过高的问题,这对于笔记本电脑尤其重要。 (4)协处理器或者叫数学协处理器。在486以前的CPU里面,是没有内置协处理器的。 由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 (5)流水线技术、超标量。流水线(pipeline)是 Intel首次在486芯片中开始使用的。 流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此

最新CPU型号大全

CPU型号大全 收录内容 ※Intel桌面:赛扬、奔腾、酷睿2 、酷睿i3、酷睿i5、酷睿i7 ※Intel移动:凌动、赛扬、奔腾、酷睿2、酷睿i3、酷睿i5、酷睿i7 ※AMD桌面:闪龙、速龙、羿龙、速龙II、羿龙II ※AMD移动:锐龙、闪龙、速龙、速龙II、羿龙II 补充说明 ※带☆的为不锁倍频版本 ※EE(Extreme Edition)为Intel至尊版、BE(Black Edition)为AMD黑盒版 ※红色为停产产品 ※不包括90nm及以前的产品 ※总线频率为等效频率 ※列表数据均来自官方网站 Intel桌面系列 赛扬系列

型号核心架构核心代号制造工艺核心/线程主频 频率 二级缓存虚拟化TDP Celeron D 347 Netburst Cedar Mill 65nm 1C/1T 3.06GHz FSB 533MHz 512KB 不支持86W Celeron D 352 Netburst Cedar Mill 65nm 1C/1T 3.2GHz FSB 533MHz 512KB 不支持86W Celeron D 356 Netburst Cedar Mill 65nm 1C/1T 3.33GHz FSB 533MHz 512KB 不支持86W Celeron D 360 Netburst Cedar Mill 65nm 1C/1T 3.46GHz FSB 533MHz 512KB 不支持65W Celeron D 365 Netburst Cedar Mill 65nm 1C/1T 3.6GHz FSB 533MHz 512KB 不支持65W Celeron 420 Core Conroe-L 65nm 1C/1T 1.6GHz FSB 800MHz 512KB 不支持35W Celeron 430 Core Conroe-L 65nm 1C/1T 1.8GHz FSB 800MHz 512KB 不支持35W Celeron 440 Core Conroe-L 65nm 1C/1T 2GHz FSB 800MHz 512KB 不支持35W Celeron 450 Core Conroe-L 65nm 1C/1T 2.2GHz FSB 800MHz 512KB 不支持35W Celeron E1200 Netburst Allendale 65nm 2C/2T 1.6GHz FSB 800MHz 512KB 不支持65W Celeron E1400 Netburst Allendale 65nm 2C/2T 2GHz FSB 800MHz 512KB 不支持65W Celeron E1500 Netburst Allendale 65nm 2C/2T 2.2GHz FSB 800MHz 512KB 不支持65W Celeron E1600 Netburst Allendale 65nm 2C/2T 2.4GHz FSB 800MHz 512KB 不支持65W Celeron E3200 Core Wolfdale 45nm 2C/2T 2.4GHz FSB 800MHz 1MB 不支持65W Celeron E3300 Core Wolfdale 45nm 2C/2T 2.5GHz FSB 800MHz 1MB 不支持65W Celeron E3400 Core Wolfdale 45nm 2C/2T 2.6GHz FSB 800MHz 1MB 不支持65W ?Celeron G1101 Westmere Clarkdale 32nm 2C/2T 2.26GHz DMI 2500MHz 2MB VT-X 73W ?集成GPU频率533MHz 内存支持DDR3-1066 奔腾系列

AMD台式AM2 940系列CPU系数对照表

AMD台式AM2 940系列CPU系数对照表 AMD AM2 CPU系数对照表 型号接口主频功耗二级缓存三级缓存制程前端总线备注 X4II-940 AM2 940 3.0 125W 2M 6M 45NM X4II-920 AM2 940 2.8 125W 2M 6M 45NM X4-9950 AM2 940 2.6 140W 2M 2M 65NM X4-9850 AM2 940 2.5 125W 2M 2M 65NM X4-9750 AM2 940 2.4 95W 2M 2M 65NM X4-9650 AM2 940 2.3 95W 2M 2M 65NM X4-9600 AM2 940 2.3 95W 2M 2M 65NM X4-9550 AM2 940 2.2 95W 2M 2M 65NM X4-9500 AM2 940 2.2 95W 2M 2M 65NM X4-9100E AM2 940 1.8 65W 2M 2M 65NM 停产 X3II-720 AM3 938 2.8 95W 1.5M 6M 45NM 1800MHZ X3II-710 AM3 938 2.6 95W 1.5M 6M 45NM 1800MHZ X3-8750 AM2 940 2.4 95W 1.5M 2M 65NM 3600MHZ X3-8650 AM2 940 2.3 95W 1.5M 2M 65NM 3600MHZ X3-8600 AM2 940 2.3 95W 1.5M 2M 65NM 3600MHZ X3-8450 AM2 940 2.1 95W 1.5M 2M 65NM 3600MHZ X3-8400 AM2 940 2.1 95W 1.5M 2M 65NM 3600MHZ 停产 LE-1660 AM2 940 2.8 45W 512KB * 65NM LE-1640 AM2 940 2.7 45W 512KB * 65NM LE-1620 AM2 940 2.4 45W 1M * 65NM LE-1600 AM2 940 45W 1M * 65NM LE-1300 AM2 940 2.3 45W 512KB * 65NM LE-1250 AM2 940 2.2 45W 512KB * 65NM LE-1200 AM2 940 2.1 45W 512KB * 65NM LE-1150 AM2 940 2.0 45W 256KB * 65NM X2-7750 AM2 940 2.7 95W 1M 2M 65NM 1800MHZ X2-6000 AM2 940 3.1 89W 1M * 65NM 1000MHZ X2-5800 AM2 940 3.0 89W 1M * 65NM 1000MHZ X2-5600 AM2 940 2.9 65W 1M * 65NM 1000MHZ X2-5400 AM2 940 2.8 65W 1M * 65NM 1000MHZ X2-5200 AM2 940 2.7 65W 1M * 65NM 1000MHZ X2-5000 AM2 940 2.6 65W 1M * 65NM 1000MHZ X2-4800 AM2 940 2.5 65W 1M * 65NM X2-4600 AM2 940 2.4 65W 1M * 65NM X2-4400 AM2 940 2.3 65W 1M * 65NM X2-4200 AM2 940 2.2 65W 1M * 65NM X2-5050e AM2 940 2.6 45W 1M * 65NM

cpu各参数的含义

cpu各参数的含义 2013-09-22 11:20处理器(Processor)框内的信息: 1、名称(Name):代表CPU的名字,比如E2140,Q6600之类。 2、代号(CodeName):代表CPU核心架构的代号,不同核心的cpu性能差距很大. 3、封装(Package):即用绝缘的材料将cpu内核和其他原件一块打包的技术。 4、工艺(Technology):工艺越高,CPU的功耗和发热量就越小,可超频性就越强。 5、核心电压(Core Voltage):核心电压是一个很重要的参数,尤其是对超频来说。一般的核心电压越低,越容易超频。因为核心电压低了,可提升的余地就大,功耗就低,发热量就小,有利于超频玩。所以高手选CPU的时候很注重修订(下面介绍),CPU不同的修订代表了不同的品质,一些就体现在核心电压这块,苛刻的玩家甚至只买生产日期是哪一年那一周的那一批次的产品。 6、规格(Specification):就是对CPU的描述,没啥意思。 7、系列(Family)、扩展系列(Ext.Family)、型号(Model)、扩展型号(Ext.Model):应该是CPU厂商对CPU的定义,该CPU属于那一系列哪一个型号。对一般人没用。 8、步进(Stepping)、修订(Reversion):代表了CPU厂商对该CPU的的改进信息,类似我们开发程序时候的版本号。一般较新的

步进的CPU都比老的好一些,但世事无绝对,可能之前步进的CPU超频性更好一些呢,这也说不准。尽量选择步进新的,毕竟CPU厂不会将它越改越烂。 以上就是处理器(Processor)框内的信息,买到一个CPU后,可对比这些信息,瞅瞅这个CPU是不是真滴,也可看看CPU是否自己中意的那个修订版的。 时钟(Clock)框内的信:(如果是多核心CPU,可在下面选核心,这里显示核心的时钟状态。) 1、核心速度(Core Speed):就是主频。越高越好,超频后也可在这里体现出来。计算方法是主频 = 外频 * 倍频。 2、倍频(Multiplier):就是主频与外频的比例。当一个CPU 主频相对较低,制作工艺较高,倍频也较高,这意味着这个CPU超频比较厉害,比如赛扬系列。大多数CPU的倍频是不允许修改的。但现在的AMD出了不少黑盒版CPU,黑盒版意味着CPU的倍频是可以修改的,这就更容易超频了。此外intel的高端至尊系列好像外频也是不锁的。 3、总线速度(Bus Speed):其实就是外频吧。同主频的情况下,外频越高(倍频不同)性能也就越高。 4、前端总线(FSB):前端总线就是连接CPU跟北桥芯片的总线,这个频率当然是越高越好,但前提是主板支持。对Intel的CPU来说,前端总线连接了CPU跟内存控制器(北桥内),CPU操作内存通过内

CPU主要性能指标

CPU的性能指标: 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。 当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频 外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。 4.倍频系数 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU 与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 5.缓存 缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。L1 Cache(一级缓存)是CPU第一层高速缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32—256KB. L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。 6.CPU扩展指令集 CPU扩展指令集指的是CPU增加的多媒体或者是3D处理指令,这些扩展指令可以提高CPU 处理多媒体和3D图形的能力。著名的有MMX(多媒体扩展指令)、SSE(因特网数据流单指令扩展)和3DNow!指令集。 7.CPU内核和I/O工作电压 从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~3V。

CPU型号大全总结CPU型号查询一览表

CPU型号大全总结CPU型号查询一览表 一、X86时代的CPUCPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM 以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL 便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。 4004处理器核心架构图1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。 1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。 Intel8086处理器1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。 Intel80286处理器1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB 内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX 的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位即寻址能力为16MB。1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于

CPU主要参数

CPU,全称“Central Processing Unit”,中文名为“中央处理器”,在大多数网友的印象中,CPU只是一个方形配件,正面是金属盖,背面是一些密密麻麻的针脚或触点,可以说毫无美感可言。但在这个小块头的东西上,却是汇聚了无数的人类智慧在里面,我们今天能上网、工作、玩游戏等全都离不开这个小小的东西,它可谓是小块头有大智慧。 作为普通用户、网友,我们并不需要解读CPU里的所有“大智慧”,但CPU既然是电脑中最重要的配件、并且直接决定电脑的性能,了解它里面的部分知识还是有必要的。下面笔者将给大家介绍CPU里最重要的基础知识,让大家对CPU有新的认识。 1、CPU的最重要基础:CPU架构 CPU架构: 采用Nehalem架构的Core i7/i5处理器 CPU架构,目前没有一个权威和准确的定义,简单来说就是CPU核心的设计方案。目前CPU大致可以分为X86、IA64、RISC等多种架构,而个人电脑上的CPU架构,其实都是基于X86架构设计的,称为X86下的微架构,常常被简称为CPU架构。 更新CPU架构能有效地提高CPU的执行效率,但也需要投入巨大的研发成本,因此CPU 厂商一般每2-3年才更新一次架构。近几年比较著名的X86微架构有Intel的Netburst (Pentium 4/Pentium D系列)、Core(Core 2系列)、Nehalem(Core i7/i5/i3系列),以及AMD的K8(Athlon 64系列)、K10(Phenom系列)、K10.5(Athlon II/Phenom II 系列)。

Intel以Tick-Tock钟摆模式更新CPU 自2006年发布Core 2系列后,Intel便以“Tick-Tock”钟摆模式更新CPU,简单来说就是第一年改进CPU工艺,第二年更新CPU微架构,这样交替进行。目前Intel正进行“Tick”阶段,即改进CPU的制造工艺,如最新的Westmere架构其实就是Nehalem架构的工艺改进版,下一代Sandy Bridge架构将是全新架构。AMD方面则没有一个固定的更新架构周期,从K7到K8再到K10,大概是3-4年更新一次。 制造工艺:

历代CPU最全明细参数表

历代CPU最全明细参数表 简介 曾几何时,我们判断计算机性能高低的标准只是处理器产品数字的大小以及外频的高低。数字大的表示电脑的运算速度越快。例如,80286要比8088和8086要快,但80386要比80286快,而80486则是最快的。但是时光荏苒,现在的计算机世界已经不同于十几年前了。那么今天就让我们来看看当前的处理器。 与以往单凭处理器产品数字和外频来判断处理器性能相比,如今判断的标准还加入了处理器产品名称,型号名称,核心名称以及架构。要想通过这些纷繁复杂的技术标准来判断处理器的性能的确不是一件简单的事情。当然,你可以通过一些媒体了解具体某款或者某几款处理器的性能,但是,这多少有些片面。今天我们要做的就是把过去7年内AMD和英特尔公司推出的处理器做一个详细列表,相信这样可以帮助你在更好的了解处理器的同时,也为自己在以后购买处理器时能够做到心中有数。 由于现在的处理器更新换代的速度极快,因此在这次的测评中,我们将英特尔Pentium II处理器,AMD Athlon处理器之前的产品都排除在外。这次测评中两家公司的处理器产品的性能测试都是在适合处理器本身的条件下进行的。 那么我们这次对比处理器的测评都将就那些细节进行评定呢?主频大小,总线频率,缓存大小,晶体管数量,处理器核心名以及其他一些细节都将在下面的测试中被逐项列出。由于处理器的型号是我们对于处理器的第一印象,因此这次的评定也将包括AMD Athlon XP以及后续处理器,英特尔Pentium 4以及后续处理器的型号。我们首先要对处理器的核心名以及架构进行列表。总体来说,它将更好的帮助我们去了解不同的x86处理器的性能究竟如何。 我们首先来看一下AMD处理器,也许有些英特尔的支持者会问为什么不先看英特尔处理器。但是凡事都有先后,A在字母表中排了I前,因此我们还是先来看一下AMD公司的产品 AMD处理器产品列表

AMD CPU型号大全1

AMD CPU型号大全(2009-09-29 09:16:15) 标签:it分类:电脑知识 AMD 闪龙3000+ AM2 1.60GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 256KB/-- 单核 1.40V AMD 闪龙3200+ AM2 1.80GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 128KB/-- 单核 AMD 闪龙3400+ AM2 1.80GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 256KB/-- 单核 1.40V AMD 闪龙 LE-1100 AM2 1.90GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 256KB/-- 单核 1.35V AMD 闪龙 LE-1150 AM2 2.00GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 256KB/-- 单核 1.20V AMD 闪龙 LE-1200 AM2 2.10GHz Socket AM2 Sparta 200MHz 0.065微米 512KB/-- 单核1.20V AMD 闪龙 LE-1250 AM2 2.20GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 512KB/-- 单核 1.40V AMD 闪龙 LE-1640 AM2 2.60GHz Socket AM2 Orleans 1000MHz 200MHz 0.065微米 1024KB/-- 单核 1.35V AMD 闪龙双核 2100+ AM2 1.8GHz Socket AM2 Brisbane 800MHz 200MHz 0.065微米 2x256KB/-- 双核 1.3V AMD 速龙双核 4850e 2.50GHz Socket AM2 Windsor 1000MHz 200MHz 0.065微米 1024KB/-- 双核 AMD 速龙 X2 BE-2300 1.90GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 1024KB/-- 双核 1.25V AMD 速龙64 X2 3600+ AM2 1.90GHz Socket AM2 Windsor 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 AMD 速龙64 X2 3800+ AM2 2.00GHz Socket AM2 Windsor 1000MHz 0.09微米 2x512KB/-- 双核 AMD 速龙64 X2 4000+ AM2 2.00GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 AMD 速龙64 X2 4200+ AM2 2.20GHz Socket AM2 Windsor 1000MHz 200MHz 0.09微米 2x512KB/-- 双核 AMD 速龙64 X2 4400+ AM2 2.30GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 1.30V AMD 速龙64 X2 4600+ AM2 2.40GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 1.30V AMD 速龙64 X2 4800+ AM2 2.50GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米

cpu性能指标

cpu性能指标 CPU的英文全称是Central Processing Unit,即中央处理器。CPU从雏形出现到发展壮大的今天,由于制造技术的越来越先进,其集成度越来越高,内部的晶体管数达到几百万个。虽然从最初的CPU发展到现在其晶体管数增加了几十倍,但是CPU的内部结构仍然可分为控制单元,逻辑单元和存储单元三大部分。CPU的性能大致上反映出了它所配置的那部微机的性能,因此CPU的性能指标十分重要。CPU性能主要取决于其主频和工作效率。 主频 也就是CPU的时钟频率,简单地说也就是CPU的工作频率。一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU 的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 内存总线速度或者叫系统总路线速度 一般等同于CPU的外频。内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 工作电压 工作电压指的也就是CPU正常工作所需的电压。早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU 的制造工艺与主频的提高,CPU的工作电压有逐步下降的趋势,Intel最新出品的Coppermine 已经采用1.6V的工作电压了。低电压能让可移动便携式笔记本,平板的电池续航时间提升,第二低电压能使CPU工作时的温度降低,温度低才能让CPU工作在一个非常稳定的状态,第三,低电压能使CPU在超频技术方面得到更大的发展。 协处理器或者叫数学协处理器 在486以前的CPU里面,是没有内置协处理器的。由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 流水线技术、超标量

相关文档
最新文档