真值表化简法

真值表化简法
真值表化简法

在设计逻辑电路图时,由真值表直接得到的函数往往比较复杂。代数法和卡诺图法等方法对于变量数目较多的逻辑函数则效果不佳,本文介绍一种可以化简复杂逻辑函数的方法──表格法,该方法可以对变量数目较多的逻辑函数也可以进行化简。

2、原理

在介绍化减法之前,先说明三个概念:

蕴涵项──在函数的任何积之和式中,每个乘积项称为该函数的蕴涵项。对应于卡诺图中的任一标1单元(最小项)以及2m个相邻单元所形成的圈都是函数的蕴涵项。

素项──若函数的一个蕴涵项不是该函数中其它蕴涵项的一个子集,则此蕴涵项称为素蕴涵项,简称素项。

实质素项──若函数的一个素项所包含的某一最小项,不包括在该函数的其它任何素项中则此素项称为实质素蕴涵项,简称实质素项。

列表化简法的基本原理是利用逻辑函数的最小项,通过对相邻最小项的合并,消去多余变量因子,获得逻辑函数的最简式的。列表化简法的思路是先找出给定函数F的全部素项,然后找出其中的实质素项;若实质素项不能覆盖F的所有最小项,则进一步找出所需素项,以构成F的最简素项集。

下面用列表化简法将下列函数化简为最简与或表达式。

F(A,B,C,D)=Σ(0,3,4,5,6,7,8,10,11)

3、建立素项表

首先,找出给定函数的全部素项。

(1)先将每个最小项所对应的二进制数按其“1”的个数分组得表1;

表1 最小项

(2)将表1中的相邻两个组之间二进制数进行比较、合并得到一次化简结果,称为一次乘积项,其项号记为i(j-i),其中i为最小项中的小项号,j为最小项中的大项号,得表2;

表2 一次乘积项

(3)再将表2中的相邻两组内的二进制数进行比较、合并、便得到第二次化简结果,称为二次乘积项,其项号记为i(n,m),其中i为两个一次乘积项中的小项号,n为原最小项的项号差,m为一次乘积项的项号差,得表3;

表3 二次乘积项

不能与其它一次乘积项合并的一次乘积项是素项,分别以a,b,c,d,e,f记之,不能合并的二次乘积项也是素项,以g记之。

逻辑函数的卡诺图化简法

b 第十章 数字逻辑基础 补充:逻辑函数的卡诺图化简法 1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。卡诺图是按一定规则画出来的方框图。 优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。 缺点:当变量超过六个以上,就没有什么实用价值了。公式化简法优点:变量个数不受限制 缺点:结果是否最简有时不易判断。2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的 形式出现一次。 注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。如:Y=F (A ,B ) (2个变量共有4个最小项 ) B A B A B A AB Y=F (A ,B ,C ) (3个变量共有8个最小项 C B A C B A C B A BC A ) C B A C B A C AB ABC 结论:n 变量共有2n 个最小项。三变量最小项真值表 (2)最小项的性质 ①任一最小项,只有一组对应变量取值使其值为1:②任意两个最小项的乘种为零;③全体最小项之和为1。 (3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的

h i n g s n 十进制数,就是该最小项的编号,用m i 表示。 3.最小项表达式——标准与或式 任何逻辑函数都可以表示为最小项之和的形式——标准与或式。而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。 例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(+C)+BC(+A)+CA(+B) C A B =ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3 567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()( C B D A B A Y +++=( ) )((C B D B A ++= D C B C A B A B A +++= D C B A D C B A C B A C B A BC A ++++= D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =) 8,7,6,5,4,1,0(m ∑列真值表写最小项表达式。

卡诺图化简法

卡诺图化简 一卡诺图的构成 卡诺图是一种平面方格图,每个小方格代表一个最小项,故又称为最小项方格图。 1.结构特点 卡诺图中最小项的排列方案不是唯一的,图2.5(a)、(b)、(c)、(d)分别为2变量、3变量、4变量、5变量卡诺图的一种排列方案。图中,变量的坐标值0表示相应变量的反变量,1表示相应变量的原变量。各小方格依变量顺序取坐标值,所得二进制数对应的十进制数即相应最小项的下标i。 在五变量卡诺图中,为了方便省略了符号“m”,直接标出m的下标i 。 图2. 5 2~5变量卡诺图 从图2.5所示的各卡诺图可以看出,卡诺图上变量的排列规律使最小项的相邻关系能在图

形上清晰地反映出来。具体地说,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。以四变量卡诺图为例,图中每个最小项应有4个相邻最小项,如m5的4个相邻最小项分别是m1,m4,m7,m13,这4个最小项对应的小方格与m5对应的小方格分别相连,也就是说在几何位置上是相邻的,这种相邻称为几何相邻。而m2则不完全相同,它的4个相邻最小项除了与之几何相邻的m3和m6之外,另外两个是处在“相对”位置的m0(同一列的两端)和m10(同一行的两端)。这种相邻似乎不太直观,但只要把这个图的上、下边缘连接,卷成圆筒状,便可看出m0和m2在几何位置上是相邻的。同样,把图的左、右边缘连接,便可使m2和m10相邻。通常把这种相邻称为相对相邻。除此之外,还有“相重”位置的最小项相邻,如五变量卡诺图中的m3,除了几何相邻的m1,m2,m 7和相对相邻的m11外,还与m19相邻。对于这种情形,可以把卡诺图左边的矩形重叠到右边矩形之上来看,凡上下重叠的最小项相邻,这种相邻称为重叠相邻。 归纳起来,卡诺图在构造上具有以下两个特点: ☆n个变量的卡诺图由2n个小方格组成,每个小方格代表一个最小项; ☆卡诺图上处在相邻、相对、相重位置的小方格所代表的最小项为相邻最小项。 二卡诺图的性质 卡诺图的构造特点使卡诺图具有一个重要性质:可以从图形上直观地找出相邻最小项合并。合并的理论依据是并项定理AB+AB=A。例如, 根据定理AB+AB=A和相邻最小项的定义,两个相邻最小项可以合并为一个与项并消去一个变量。例如,4变量最小项ABCD和ABCD相邻,可以合并为ABD;ABCD和ABCD 相邻,可以合并为ABD;而与项ABD和ABD又为相邻与项,故按同样道理可进一步将两个相邻与项合并为BD。 用卡诺图化简逻辑函数的基本原理就是把上述逻辑依据和图形特征结合起来,通过把卡

化简求值专项练习20题带答案

化简求值专项练习题 1.先化简,再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3. 2.先化简,再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2. 4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1. 5.先化简,再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2. 6.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.

7.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8. 8.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2. 9.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1. 10.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值. 11.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.12.先化简,再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.

13.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值. 14.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.15.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,16.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.17.先化简,再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8. 18.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.

逻辑函数真值表生成程序

逻辑函数真值表生成程序 (一)实验任务: 设计一个能生成具有13个输入逻辑变量的逻辑函数真值表生成程序。 功能要求: 规定函数文本的书写方式,将逻辑函数写入文本文件中(如 logic_funs.txt); 2,程序从包含有逻辑函数表达式的文本文件(如logic_funs.txt)中读入变量个数和函数 3,函数运算优先顺序的识别与函数运算转换 4,得到函数输出结果 5,将真值表存入文本文件(如truth_table.txt)中。 6,逻辑函数表达式的文本文件及真值表文本文件的文件名应能独立输入。 扩展设计: 将原要求实现的过程扩展为具有8个函数处理能力的程序。 (二)实验方法:

(三)功能实现: 1. 函数文本的书写方式:函数值+函数体,注意函数以分号结束,如: F=(A+B'+C*D*E*(F*G+H+I))*X+Y*W*Z*(A+B+C*H*F); 2.采用文件流形式从文本文件读入函数表达式,并将真值表写入文本文 件中,文件地址既可采用当前目录的默认地址,也可采用自定义的路 径。 3. 函数运算优先顺序的识别与函数运算转换通过两个顺序栈(sk1存储 运算符,sk2存储操作数)来实现。 算法描述: 从左到右扫表达式,如读入的是操作数,则压入操作数栈sk2;入读入的是操作符,则需按一下规则进一步判断: 1) 若读入的是左括号“(”,或读入的运算符优先级大于栈顶运算符优先 级,则将读出的符号进运算符栈,然后依次读下一个符号,注意括号并 未参与运算符优先级比较,故需特别判断; 2) 若读出的符号为表达式结束符“;”,且运算符栈顶也是表达式结束符 “;”,则表达式处理结束; 3) 非运算符“‘”直接对操作数栈顶元素运算,运算结果进操作数栈,非 运算符不进栈; 4) 若读出的符号为右括号“)”,且运算符栈顶是左括号“)”,则表示 括号内的表达式处理结束,将左括号“)出栈,然后依次读入下一个符 号; 5) 如读入的运算符优先级不大于栈顶运算符优先级,则从操作数栈依次推 出两个操作数,从运算符栈退出一个运算符,将这两个操作数按这种运 算符做相应运算,并将运算结果压入操作数栈。注意在这种情况下,当 前读出的操作符下次将重新考虑,即(不再读下一个符号); 例如:对函数表达式F=(X+Y+Z)*X'*Y; a.初始状态 b.读出(、X、+、Y topp-> OPS topv-> OVS OPS OPS

20道化简求值的题

1. -9(x-2)-y(x-5) 当x=5,y=12时,求式子的值。2. 5(9+a)×b-5(5+b)×a 当a=5/7时,求式子的值。 3. 62g+62(g+b)-b 当g=5/7,b=16时,求式子的值。4. 3(x+y)-5(4+x)+2y 当x=9,y=2时,求式子的值。 5. (x+y)(x-y) 当x=0.45,y=0.65时,求式子的值。 6. 2ab+a×a-b 当a=8.2,b=0.2时,求式子的值。 7. 5.6x+4(x+y)-y 当x=0.25.y=8时,求式子的值。

8. 6.4(x+2.9)-y+2(x-y) 当x=12,y=0.2时,求式子的值。 9. (2.5+x)(5.2+y) 当x=2.3,y=5.1时,求式子的值。 10. (2x-3xy+4y)+(x+2xy-3y) 当x=2.y=3.5时,求式子的值。11. 2a-(3a-2b+2)+(3a-4b-1) 当a=12.5,b=5.3时,求式子的值。 12. -6x2-7x2+15x2-2x2 当x=-0.2时,求式子的值。 13. 2x-(x+3y)-(-x-y)-(x-y) 当x=6.1.y=-2时,求式子的值。

14. 2x+2y-[3x-2(x-y)] 当x=9.1.y=-0.1时,求式子的值。 15. 5-(1-x)-1-(x-1) 当x=2.15时,求式子的值。 16. 已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B。 17. 已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B。18.-5an-an+1-(-7an+1)+(-3an) 当a=2,n=-0.5时,求式子的值。 19.3a-(2a-4b-6c)+3(-2c+2b) 当a=8.2,b=3.8,c=-0.6时,求式子的值。 20.9a+[7a-2a-(-a+3a)] 当a=-0.16时,求式子的值。

二次根式混合化简计算题

二次根式混合化简计算题 1. 2484554+-+ 2. 233232 6-- 3. 21 4 181 22 -+- 4. 3)154276485(÷+- 5.已知: 的值。求代数式22,211881-+- +++-+-=x y y x x y y x x x y 6 )(102 1 32531 -??; 7 z y x 10010101??-. 8. 521312321?÷; 9. )(b a b b a 1223÷?. (() 2 771+--

16. 已知:24 20-=x ,求221x x +的值. 17. ()1 ()2 ()(() 30,0a b -≥≥ ())40,0a b ()5()6?÷ ? 18. 化简: ())10,0a b ≥≥ ()2 ()3a 19.. 把根号外的因式移到根号内: ()1.-()(2.1x -

20. ( 231 ?++ ? 22. (() 2 771+-- 23. ((((2 2 2 2 1111- 24. 22 - 26. (选做

28. 已知:x y ==3243223 2x xy x y x y x y -++的值。 29. 已知:11a a +=221 a a +的值。 30. 已知:,x y 为实数,且13y x -+ ,化简:3y - 31. 已知()1 -1 -039 32 2y x x x y x ,求 =+-+-的值。 32(1)-645×(-448); (2)(-64)×(-81); (3)1452 -242 ; (4)3c 2ab 5c 2÷325b 2a

用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数 本次重点内容 1、卡诺图的画法与性质 2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图 逻辑函数可以用卡诺图表示。所谓卡诺图,就是逻辑函数的一种图形表示。对n 个变量的卡诺图来说,有2n个小方格组成,每一小方格代表一个最小项。在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。 二、最小项的定义及基本性质: 1、最小项的定义 在n个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。通常用m表示最小项,其下标为最小项的编号。编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。如最小项C B A对应的变量取值为000,它对应十进制数为0。因此,最小项C B A的编 号为m 0,如最小项C B A的编号为m 4 ,其余最小项的编号以此类推。 2、最小项的基本性质: (1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。 (2)不同的最小项,使它的值为1的那组变量取值也不同。 (3)对于变量的任一组取值,全体最小项的和为1。 图1.4.1分别为二变量、三变量和四变量卡诺图。在卡诺图的行和列分别标出变量及其状态。变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最

二次根式混合化简计算题

二次根式混合化简计算题 1. 2484554+-+ 2. 2332326-- 3. 21418122 -+- 4. 3)154276485(÷+- 5.已知: 的值。求代数式22,211881-+-+++-+-=x y y x x y y x x x y 6 )(102132531-??; 7 z y x 10010101??-. 8. 521312321?÷; 9. )(b a b b a 1223÷?. (()2 771+--

16. 已知:2420-= x ,求221x x +的值. 17. ()1()2 ()(() 30,0a b -≥≥ ())40,0a b ()5()6?÷ ? 18. 化简: ())10,0a b ≥≥ ()2 ()3a 19.. 把根号外的因式移到根号内: ()1.-()(2.1x - 20.

(231 ?++ ? 22. (()2771+-- 23. ((((2222 1111- 24. 22 - 26. (选做 28. 已知:x y ==32432232x xy x y x y x y -++的值。

29. 已知:11a a + =221a a +的值。 30. 已知:,x y 为实数,且13y x -+ ,化简:3y - 31. 已知()1 -1-039322y x x x y x ,求=+-+-的值。 32(1)-645×(-448); (2)(-64)×(-81); (3)1452-242; (4)3c 2ab 5c 2÷325b 2a 33. 化简: (1)2700; (2)202-162; (3) 1681; (4)8a 2b c 2 .

真值表化简法

在设计逻辑电路图时,由真值表直接得到的函数往往比较复杂。代数法和卡诺图法等方法对于变量数目较多的逻辑函数则效果不佳,本文介绍一种可以化简复杂逻辑函数的方法──表格法,该方法可以对变量数目较多的逻辑函数也可以进行化简。 2、原理 在介绍化减法之前,先说明三个概念: 蕴涵项──在函数的任何积之和式中,每个乘积项称为该函数的蕴涵项。对应于卡诺图中的任一标1单元(最小项)以及2m个相邻单元所形成的圈都是函数的蕴涵项。 素项──若函数的一个蕴涵项不是该函数中其它蕴涵项的一个子集,则此蕴涵项称为素蕴涵项,简称素项。 实质素项──若函数的一个素项所包含的某一最小项,不包括在该函数的其它任何素项中则此素项称为实质素蕴涵项,简称实质素项。 列表化简法的基本原理是利用逻辑函数的最小项,通过对相邻最小项的合并,消去多余变量因子,获得逻辑函数的最简式的。列表化简法的思路是先找出给定函数F的全部素项,然后找出其中的实质素项;若实质素项不能覆盖F的所有最小项,则进一步找出所需素项,以构成F的最简素项集。 下面用列表化简法将下列函数化简为最简与或表达式。 F(A,B,C,D)=Σ(0,3,4,5,6,7,8,10,11) 3、建立素项表 首先,找出给定函数的全部素项。 (1)先将每个最小项所对应的二进制数按其“1”的个数分组得表1; 表1 最小项

(2)将表1中的相邻两个组之间二进制数进行比较、合并得到一次化简结果,称为一次乘积项,其项号记为i(j-i),其中i为最小项中的小项号,j为最小项中的大项号,得表2; 表2 一次乘积项

(3)再将表2中的相邻两组内的二进制数进行比较、合并、便得到第二次化简结果,称为二次乘积项,其项号记为i(n,m),其中i为两个一次乘积项中的小项号,n为原最小项的项号差,m为一次乘积项的项号差,得表3; 表3 二次乘积项 不能与其它一次乘积项合并的一次乘积项是素项,分别以a,b,c,d,e,f记之,不能合并的二次乘积项也是素项,以g记之。

化简练习题及答案

化简练习题及答案 班级:__ 姓名:___ 1.填空。 ⑴:3的前项扩大3倍,后项缩小3倍,比值变成。 12:1 ⑵ 15:9的前项减去10,要使比值不变,后项应该。 减去6 ⑶ 糖占糖水的/ ,糖与水的比是。 2:3 ⑷ 两个正方形的边长比是1:2,那么它们的周长比是,面积比是。 1:1:⑸3=÷=6:=:12 2.判一判。 ⑴ 化简比就是求比值。﹙﹚ × ⑵ 小明有作文本4本,比英语本少2本,作文本与英语本的比是2:3。﹙﹚ √ ⑶ 比化简后,比值将变小。﹙﹚

× ⑷ 甲数是乙数的4倍,甲数与乙数的比是4。﹙﹚ × 3.化简下面的比。 2:4:15:21:10 4.选择。 ⑴ 比的前项扩大到原来的2倍,后项不变,比值﹙﹚。 A.不变 B.扩大到原来的4倍 C.扩大到原来的2倍 C ⑵ 如果把3:7的前项加上9,要使它的比值不变,后项应﹙﹚。 A.加上B.加上21 C.减去9 B ⑶ 一个比的前项缩小到原来的 ﹙﹚。 A.112,后项缩小到原来的后比值是,这个比原来的比值是365211 B. C.105 C ⑷ 甲加工3个零件用40分钟,乙加工4个零件用30分钟,甲、乙工作效率的比是﹙﹚。 A.16:9B.1:C.1:5 A

5.红花配绿叶。﹙连一连﹚ 6.算一算。 两个圆的半径分别是12厘米和20厘米, a、小圆与大圆的直径比是,比值是。 b、小圆与大圆的周长比是,比值是。 c、小圆与大圆的面积比是,比值是。 a、3:3 b、3:5 c、9:25525 7.甲数是乙数的4,乙数是丙数的,求这三个数的连比。 109 方法一:甲数:乙数:丙数=34:1:=6:20:4109 方法二:甲数:乙数=3:10=6:20 乙数:丙数=4:9=20= 甲数:乙数:丙数=6:20:45 判断题: 2 1.ab=-2ab.………………… 2.-2的倒数是3+2.

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? ( 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 】 知识点睛中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±±=±= , 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 ) 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111 a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 222 1(1)()4111(1)a a a a a a a a a ---+÷ ?=-=--++- 【答案】4- 【例3】 ! 【例4】 先化简,再求值: 22144 (1)1a a a a a -+-÷ --,其中1a =- 【考点】分式的化简求值 例题精讲

离散数学真值表

逻辑异或: A ∧ B 描述如下: 什么是逻辑异或? 即两个数(例如a和b),相同(两者都为真或两者都为假)时,逻辑异或后即为假(通常用0表示),不同(一方为真,一方为假)时,逻辑异或后即为真( 通常用1表示) a b 逻辑异或 0 0 0 0 1 1 1 0 1 1 1 0

邏輯合取 例如,採用兩個命題變數,A和B和邏輯運算符 "AND" (∧), 表示合取 "A 與 B" 或A∧B。在普通英語中,如果 A 和 B 都是真的,那麼合取 "A∧B" 是真的;在所有的對A∧B的真值的可能指派,合取都是假的。這種聯繫定義如下:

[編輯]邏輯析取 OR (∨) 關係定義如下: [編輯]邏輯與非 可以構造複合的表達式,使用圓括號來指示優先順序。 合取的否定? (A∧B) ≡A∧B, 和否定的析取? A∨? B描述如下: A B A∧B A∧B?A?B?A∨?B F F F T T T T F T F T T F T T F F T F T T

[編輯]邏輯或非 真值表可以用來證明邏輯等價。 析取的否定? (A∨B) ≡A∨B,和否定的合取? A∧? B描述如下: A B A∨B A∨B?A?B?A∧?B F F F T T T T F T T F T F F T F T F F T F T T T F F F F

P Q P∧Q P∨Q P∧Q P∨Q P→Q P←Q P?Q F F F F F T T T T F T F T T F T F F T F F T T F F T F T T T T F T T T T 註解: T = 真,F = 假

卡诺图化简

卡诺图化简法 卡诺图化简法又称为图形化简法。该方法简单、直观、容易掌握,因而在逻辑设计中得到广泛应用。 一卡诺图的构成 卡诺图是一种平面方格图,每个小方格代表一个最小项,故又称为最小项方格图。 1.结构特点 卡诺图中最小项的排列方案不是唯一的,图2.5(a)、(b)、(c)、(d)分别为2变量、3变量、4变量、5变量卡诺图的一种排列方案。图中,变量的坐标值应0表示相变量的反变量,1表示相应变量的原变量。各小方格依变量顺序取坐标值,所得二进制数对应的十进制数即相应最小项的下标i。 在五变量卡诺图中,为了方便省略了符号“m”,直接标出m的下标i。

图2. 5 2~5变量卡诺图 从图2.5所示的各卡诺图可以看出,卡诺图上变量的排列规律使最小项的相邻关系能在图形上清晰地反映出来。具体地说,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。以四变量卡诺图为例,图中每个最小项应有4个相邻最小项,如m5的4个相邻最小项分别是m1,m4,m7,m13,这4个最小项对应的小方格与m5对应的小方格分别相连,也就是说在几何位置上是相邻的,这种相邻称为几何相邻。而m2则不完全相同,它的4个相邻最小项除了与之几何相邻的m3和m6之外,另外两个是处在“相对”位置的m0(同一列的两端)和m10(同一行的两端)。这种相邻似乎不太直观,但只要把这个图的上、下边缘连接,卷成圆筒状,便可看出m0和m2在几何位置上是相邻的。同样,把图的左、右边缘连接,便可使m2和m10相邻。通常把这种相邻称为相对相邻。除此之外,还有“相重”位置的最小项相邻,如五变量卡诺图中的m3,除了几何相邻的m1,m2,m7和相对相邻的m11外,还与m19相邻。对于这种情形,可以把卡诺图左边的矩形重叠到右边矩形之上来看,凡上下重叠的最小项相邻,这种相邻称为重叠相邻。 归纳起来,卡诺图在构造上具有以下两个特点: ☆ n个变量的卡诺图由2n个小方格组成,每个小方格代表一个最小项; ☆ 卡诺图上处在相邻、相对、相重位置的小方格所代表的最小项为相邻最小项。 二卡诺图的性质 卡诺图的构造特点使卡诺图具有一个重要性质:可以从图形上直观地找出相邻最小项合并。合并的理论依据是并项定理AB+AB=A。例如,

看懂真值表.

1.最小项的基本概念 由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是 1. 每项都只有三个因子 2. 每个变量都是它的一个因子 3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的 形式出现,各出现一次 一般情况下,对n个变量来说,最小项共有2n个,如n=3时,最小项有23=8个 2.最小项的性质 为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。 由此可见,最小项具有下列性质: (1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。 (2)不同的最小项,使它的值为1的那一组变量取值也不同。 (3)对于变量的任一组取值,任意两个最小项的乘积为0。 (4)对于变量的任一组取值,全体最小项之和为1。 3.最小项的编号 最小项通常用m i表示,下标i即最小项编号,用十进制数表示。以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项

二、逻辑函数的最小项表达式 利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式 。下面举例说明把逻辑表达式展开为最小项表达式的方法。例如,要将 化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成 包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即 又如,要将化成最小项表达式,可经下列几步: (1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式; (2)利用分配律除去括号,直至得到一个与或表达式;

卡诺图化简方法.pdf

卡诺图化简方法 学生姓名:陈曦指导教师:杜启高 将输出与输入之间的逻辑关系写成与、或、非等运算的组合式,就是逻辑函数式。 一、逻辑函数的卡诺图表示法 将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻 地排列起来,所得到的图形称为n变量最小项的卡诺图。 为了保证图中几何位置相邻地最小项在逻辑上也具有相邻性,这些数码不能按自然二进制数从小到大地顺序排列,而必须按图中的方式排列,以确保相邻的两个最小项仅有一个变量是不同的。 从卡诺图上可以看到,处在任何一行或一列两端的最小项也仅有一个变量不同,所以它们也具有逻辑相邻性。因此,从几何位置上应当将卡诺图看成是上下、左右闭合的图形。 任何一个逻辑函数都能表示为若干最小项之和的形式,自然也可以用卡诺图来表示任意一个逻辑函数。具体做法是:首先将逻辑函数化为最小项之和的形式,然后在卡诺图上标出与之相对应的最小 项,在其余位置上标入0,就得到了表示该逻辑函数的卡诺图。也就是说,任何一个逻辑函数都等于 卡诺图中填入1的那些最小项之和。 二、用卡诺图化解逻辑函数 化简时依据的基本原理就是具有相邻性的最小项可以合并,并消去不同的因子。由于在卡诺图上 几何位置相邻与逻辑上的相邻性是一致的,因而从卡诺图上能直观的找出那些具有相邻性的最小项并 将其合并化简。 合并最小项的原则:若两个最小项相邻,则可以合并为一项并消去一对因子。若四个最小项相邻 并排列成一个矩形组,则可合并为一项并消去两队因子。若八个最小项相邻并且排列成一个矩形组, 则可以合并成一项并消去三对因子。合并后的结果中只剩下公共因子。

卡诺图化简法步骤:(一)将函数式化为最小项之和的形式; (二)画出表示该逻辑函数的卡诺图; (三)找出可以合并的最小项; (四)画出包围圈并选取化简后的乘积项。 在画包围圈时要注意:(一)包围圈越大越好; (二)包围圈的个数越少越好; (三)同一个“1”方块可以被圈多次; (四)画包围圈时,可先圈大,再圈小; (五)每个圈要有新的成分,如果某一圈中所有的“1”方块均被别的包围圈包围,就可以舍掉这个包围圈; (六)不要遗漏任何方块。 通常我们都是通过合并卡诺图中的1来求得化简结果得。但有时也可以通过合并卡诺图中的0先求出'Y的化简结果,然后再将'Y求反而得到Y。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b| 2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|. 3.已知xy<0,x<y且|x|=1,|y|=2. (1)求x和y的值; (2)求的值. 4.计算:|﹣5|+|﹣10|÷|﹣2|. 5.当x<0时,求的值. 6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.

7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值. 9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|. 10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|. 11.若|x|=3,|y|=2,且x>y,求x﹣y的值. 12.化简:|3x+1|+|2x﹣1|. 13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.

14.++=1,求()2003÷(××)的值. 15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值? (2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值? (3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值? 16.计算:|﹣|+|﹣|+|﹣|+…+|﹣| 17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值. 18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.

化简比练习题90道

化简比练习题90道 不夯实基础,难建成高楼。 1. 连一连。 1 0.5∶0.03 5011∶422 15∶427 1 1.2∶6 12 ∶931 3.75∶22.6 2. 化简下面各比。 21∶35=0.65∶1.3= 714 ∶=∶49= 1015 7 7∶=0.27∶0.18= 3. 六班有男生20人,女生28人。 男生人数是女生人数的 女生人数是男生人数的 。。 男生人数与女生人数的比是,比值是。女生人数与全

班人数的比是,比值是。 -----欢迎登陆明师在线浏览更多的学习资讯!----- 重点难点,一网打尽。.化简下面各比,并求出比值。 5. 工人叔叔配制不同浓度的盐水,写出每种盐水中盐与盐水的质量比,化简后填入。 6. 有四个杯子,里面放着不同质量的水,现在向每个杯子里面加盐,使每个杯子的盐和盐水的最简比相同。如果在1号杯中加入10克盐,那么应分别在其他几个杯子中加入多少克盐? 举一反三,应用创新,方能一显身手! 7. 如下图,两个平行四边形的重叠部分的面积相当于甲平行四边形面积的 -----欢迎登陆明师在线浏览更多的学习资讯!----- 1 12 1 边形面积的。甲平行四边形与乙平行四边形的面积比是。 8 智力提高练习猎狗问题 我国著名数学家苏步青小的时候,曾经做过一道很有名的”猎狗问题”。请你也来试一试:甲、乙两人同时从相

距50千米的两地相对出发。猎狗以每小时5千米的速度奔跑,遇到乙后立即返向甲奔去,再遇甲后,又向乙奔去……就这样,猎狗不停地来回奔跑于甲、乙之间,直到甲、乙相遇,猎狗才停歇,如果甲每小时行3千米,乙每小时行2千米,这只猎狗一共跑了多少千米? 参考答案 1. 略 2.∶1∶2∶6∶2∶1∶2757 3. 5∶ 7∶12 757124、略 5、1: 1:10 1:6B杯浓度最淡,A和C浓度一样. 略.∶提示:甲× 11 =乙×。 128 智力提高练习:50÷×5=50 ======*以上是由明师教育编辑整理 ====== -----欢迎登陆明师在线浏览更多的学习资讯!----- 求六年级数学求比值和化简比练习题 化简下列各比。 5:152430分钟:1.5小时1吨:400千克 0.875:74 求下列各比的比值。 9.6:31 360千克:0.45吨 25厘米:1米45分:2时 一、填一填.

逻辑函数的卡诺图化简法

第十章 数字逻辑基础 补充:逻辑函数的卡诺图化简法 1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。卡诺图是按一定 规则画出来的方框图。 优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。 缺点:当变量超过六个以上,就没有什么实用价值了。 公式化简法优点:变量个数不受限制 缺点:结果是否最简有时不易判断。 2.最小项 (1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的 形式出现一次。 注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。 如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB ) Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B A C B A C AB ABC ) 结论: n 变量共有2n 个最小项。 三变量最小项真值表 (2)最小项的性质 ①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。 (3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。 3.最小项表达式——标准与或式 任何逻辑函数都可以表示为最小项之和的形式——标准与或式。而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。 例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B) =ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++ 例2.写出下列函数的标准与或式:C B AD AB Y ++=

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法 逻辑函数的卡诺图化简法 由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。运用卡诺图法可以较简便的方法得到最简表达式。但首先需要了解最小项的概念。 一、最小项的定义及其性质 1.最小项的基本概念 由A、B、C三个逻辑变量构成的许多乘积项中有八个 被称为A、B、C的最小项的乘积项,它们的特点是 1. 每项都只有三个因子 2. 每个变量都是它的一个因子 3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次 一般情况下,对n个变量来说,最小项共有2n个,如n=3 时,最小项有23=8个

2.最小项的性质 为了分析最小项的性质,以下列出3个变量的所有最 小项的真值表。 由此可见,最小项具有下列性质: (1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。 (2)不同的最小项,使它的值为1的那一组变量取值也不同。 (3)对于变量的任一组取值,任意两个最小项的乘积为0。 (4)对于变量的任一组取值,全体最小项之和为1。 3.最小项的编号 最小项通常用mi表示,下标i即最小项编号,用十进制数表示。以ABC为例,因为它和011相对应,所以就称ABC 是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3 按此原则,3个变量的最小项

二、逻辑函数的最小项表达式 利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式 。下面举例说明把逻辑表达式展开为最小项表达式的方法。例如,要将化成最小项表达式,这时可利用的基本运算关系, 将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即 又如,要将化成最小项表达式,可经下列几步: (1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式; (2)利用分配律除去括号,直至得到一个与或表达式; (3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。 由此可见,任一个逻辑函数都可化成为唯一的最小项表达式。

绝对值化简例题及练习题

绝对值的化简 ⑴ 下列各组判断中,正确的是 A .若a b =,则一定有a b = B .若 a b >,则一定有a b > C. 若 a b >,则一定有 a b > D .若a b =,则一定有() 2 2a b =- ⑵ 如果2 a >2 b ,则 ( ) A .a b > B . a > b C .a b < D a < b ⑶ 下列式子中正确的是 ( ) A . a a >- B . a a <- C . a a ≤- D . a a ≥- ⑷ 对于1 m -,下列结论正确的是 ( ) A .1|| m m -≥ B . 1|| m m -≤ C . 1||1 m m --≥ D . 1||1 m m --≤ ⑸若 220 x x -+-=,求x 的取值范围. 已知:⑴52 a b ==,,且a b <;分别求a b , 的值 ⑵ ()2 120 a b ++-=,分别求a b , 的值 已知2332x x -=-,求x 的取值范围 1、(若a b >且 a b <,则下列说法正确的是( ) A .a 一定是正数 B .a 一定是负数 C .b 一定是正数 D .b 一定是负数 例4、(2级)数,a b 在数轴上对应的点如右图所示,试化简 a b b a b a a ++-+-- .巩固(2级)实数a b c ,, 在数轴上的对应点如图,化简a c b a b a c +--++-

例5、(8级)(北大附中2005-2006学年度第一学期期中考试)设,,a b c 为非零实数,且0 a a +=, ab ab =, c c -=.化简 b a b c b a c -+--+-. . 巩固、(第7届希望杯2试)若0a <,0ab <,那么15 b a a b -+---等于 . 例5、(8级)已知0abc ≠,求ab ac bc ab ac bc ++的值. (6级)若a ,b ,c 均不为零,求a b c a b c + + . . 1、(2级)(人大附期中考试)如果有理数a 、b 、c 在数轴上的位置如图所示,求 a b a c b c ++--+的值. (4级)若0a <,化简a a --. 3、(6级)若0a <,试化简233a a a a --.

逻辑式与真值表

课题:逻辑式与真值表 课时:两课时 教学目标:1、了解逻辑式的概念; 2、会填写逻辑式的真值表; 3、理解等值逻辑式的涵义; 4、能够判断逻辑式是否等值 教学重点:理解等值逻辑式的概念,并能判断逻辑式是否等值。 教学难点:填写逻辑式的真值表 教学过程: 一、创设情境,导入课题 A 、A ·(B+C )、[(A B)+C] + D 、1、0 有常量1、0以及逻辑变量经逻辑运算构成的式子叫做逻辑代数式,简称逻辑式。 逻辑运算的优先次序依次为“非运算”、“与运算”、“或运算”,如果有添加括号的逻辑式,首先要进行括号内的运算。 二、动脑思考,探索新知 列出逻辑变量的一切可能取值与相应的逻辑式的值的表,叫做逻辑式的真值表。 问题1:试写出AB B A +?的真值表。 A B AB B A +? 1 1 1 0 0 1 0 分析:可以先写出B A ?和AB ,再计算AB B A +? 问题2:试写出B A +与B A ?的真值表,并观察它们值的关系 A B A+B B A + A B B A ? 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1

如果对于逻辑变量的任何一组取值,两个逻辑式的值都相等,这样的两个逻辑式叫做等值逻辑式,等值逻辑式可用“=”连接,并称为等式。需要注意,这种相等是状态的相同。 问题3:用真值表验证下列等式是否成立 A·(B+C)=A·B+A·C A B C B+C A·(B+C)A·B A·C A·B+A·C 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 可以看出对于逻辑变量的任何一组值,A·(B+C)与A·B+A·C的值都相同,所以A·(B+C)=A·B+A·C。 随堂练习 1.填写下列真值表,并判断有没有等值逻辑式 (1) A B A·B B A?B A+ (2) A B A+B B A? A+B

相关文档
最新文档