生物传感器及其在农药残留中的应用

生物传感器及其在农药残留中的应用
生物传感器及其在农药残留中的应用

专业文献综述

题目: 生物传感器及其在农药残留中的应用姓名: 李枞

学院: 植物保护

专业: 农药学

班级: 5

学号: 2011102159

指导教师: 杨红职称: 教授

2012 年05月01日

生物传感器及其在农药残留中的应用

摘要:生物传感器是一种新型的分析工具,在农药残留的检测中具有极其重要的应用价值。本文介绍了生物传感器的定义、原理、分类和特点,并对生物传感器分析农药残留物的应用、研究进展和发展趋势进行了探讨。

关键词:生物传感器;农药残留物;应用;研究进展

The Application of Biosensor in the Determination of Pesticide Residues Abstract:Biosensor is a new analysis tool.It has very important applied value in the pesticide residues analyse.This article describes the definition,theory,classification and characteristics of biological sensors in detail,and discussed the applications,research development and development trends of biosensor analysis of pesticide residues.

Key word:biosensor;pesticide residues;application;research development

前言

自上世纪80年代以来,国际上农药残留分析新技术的研究非常活跃,不断有新方法、新技术涌现,以满足现场快速检测样品量的迅速增加,对分析的灵敏度、特异性和快捷性提出了更苛刻的要求。生物传感器法就是其中日渐成熟的一种。生物传感器具有体积小、成本低、灵敏度高、选择性及抗干扰能力强、响应快等优点。近年来,随生物技术的日臻完善、微电子学技术的迅速发展以及实际应用领域的迫切要求,作为一种多学科交叉的高技术、作为一种强有力的分析工具,它已成功地应用于医学、国防、环境、食品工业及农业等领域。该文主要对生物传感器在农药残留分析中的应用进行了概述。

1生物传感器

生物传感器实际上是一种特殊的化学传感器,是用生物活性物质( 如酶、抗体、抗原、细胞等) 作识别元件,配以适当的物理或化学信号转换器所构成的分析工具。

1. 1 生物传感器的工作原理

生物传感器以生物化学和传感技术为基础,其工作原理可用图1表示:待测物质经扩散作用进入分子识别元件,经分子识别,与分子识别元件特异性结合,发生生物化学反应,产生的生物学信息通过信号转换器转化为可以定量处理的光信号或电信号,再经仪表的放大和输出,即可达到分析检测的目的。

图1

1.2生物传感器的分类

生物传感器主要有下面三种分类命名方式:

根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器(enzymesensor),微生物传感器(microbialsensor),细胞传感器(organallsensor),组织传感器(tissuesensor)和免疫传感器(immunolsensor)显而易见,所应用的敏感材料依次为酶微生物个体、细胞器、动植物组织、抗原和抗体。

根据生物传感器的换能器即信号转换器分类有:生物电极传感器(bioelectrode),半导体生物传感器(semiconductbiosensor),光生物传感器(opticalbiosensor)、热生物传感器(calorimetricbiosensor)、压电晶体生物传感器(piezoelectricbiosensor)等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。

以被测目标与分子识别元件的相互作用方式进行分类有生物亲合型生物传感器(affinitybiosensor)。

三种分类方法之间实际互相交叉使用。

1.3生物传感器的特点

与其他分析方法相比,生物传感器的特点如下:

①待测的样品不用经过预先处理,除缓冲液外无需其它试剂,可以同时对样品进行分离和检测。

②所用催化剂为固定化生物活性物质,可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。

③专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响,可以检测较混浊的样品,而不影响测定结果,不像pH试纸检测法等方法。

④分析速度快,准确度高,样品用量微。

⑤操作系统比较简单,可以实现连续监测,容易实现自动化测量。

⑥传感器连同测定仪的成本远低于大型分析仪器,便于推广普及。

⑦有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生。在生产控制中能得到许多复杂的物理化学传感器综合作用才能获得的信息。同时它们还指明了增加产物得率的方向。

2生物传感器在农药残留检测中的应用

目前生物传感器在农药残留检测中应用非常广泛,不同种类的生物传感器特点不同,用途也有明显差异。根据生物敏感部件的不同,下面主要介绍酶传感器、微生物传感器、免疫传感器及压电传感器等。

2.1酶生物传感器

酶生物传感器是指酶与特定的固相载体特异性的结合形成酶复合物,将其装在一个小柱子中制成一个固定化反应柱,或将酶固定在电极上以电化学的方式将酶促反应的产物信息传导出去。酶生物传感器的基本原理是用电极、热敏电阻等来检测酶促反应中所参与的物质以及伴随反应的光热等,将之转变成电信号输出。

不同的农药残留物与酶作用的方式不同:有些残留物经过酶的催化转变成其他物质;有些残留物可特异性的抑制酶的活性;有些残留物可作为调节因子或辅助因子对酶起到修饰作用。

最早的生物传感器是以酶作为电极,葡萄糖作为底物被检测到的。1967年Updike和Hicks[1]用葡萄糖氧化酶作为电极制成传感器来检测样品中葡萄糖含量。自此,越来越多的学者对酶生物传感器产生兴趣,并极大的推动了它的发展。

在诸多酶生物传感器中,乙酰胆碱酯酶类生物传感器是研究最多的[2]。它是根据农药对靶标酶即乙酰胆碱酯酶(AChE)有抑制作用的原理研制的。乙酰胆碱是高等动物中神经信号的传递中介,乙酰胆碱的除去依赖于胆碱酯酶(AChE),在胆碱酯酶的催化下,乙酰胆碱水解为乙酸和胆碱,反应式如下:

这些反应生成产物必须迅速去除,否则连续的刺激会造成机体兴奋,最后导致传递阻断而引起机体死亡。有机磷和氨基甲酸酯类农药与乙酰胆碱类似,能与酶酯基的活性部位发生不可逆的键合从而抑制酶活性,酶反应产生的pH值变化可由电位型生物传感器测出。自1951年Giang与Hall发现有机磷农药在体外也能抑制AChE后,许多研究报告都是基于这一原理。这类传感器的基本类型是与pH电极相连,通过检测有无抑制剂情况下pH的变化值测得农药的浓度。依据信号转换器的类型,酶传感器大致可分为酶电极(主要包括离子选择电极、气敏电极、氧化还原电极等电化学电极)、酶场效应晶体管传感器(FET—酶)和酶热敏电阻传感器等。

由于单酶传感器只能测定数目有限的环境污染物,所以可以在一个生物传感器上偶联几种酶促反应来增加可测分析物的数目。BernabeilM用AChE和胆碱氧化酶(ChOD)双酶系统,制备了测对氧磷和涕灭威的电流型H2O2传感器,其检测范围为10~ 100ppb。Mary T. L. 等也根据AChE和胆碱氧化酶的联合固定及顺序反应原理制成了生物传感器,Ache的抑制作用通过H2O2传感器测得H2O2形成的降低而获得,该传感器可检测10nmol对氧磷, 并可稳定2个月, 在4℃磷酸盐缓冲液中可贮存一年。还有将ChOD和BChE共同固定在膜上对马拉硫磷、对硫磷进行监测, 检测限分别可达到2ppb、6ppb,这种方法已成功地用于地表水和土壤样品中几种农药的检测研究。但高含量的重金属离子、无机阴离子及一些有机物对传感器的响应有负干扰。

Starodub[3]等分别用乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BchE)为敏感材料,制作了离子敏场效应晶体管型传感器,两种生物传感器均可用于蔬菜等样品中有机磷农药毒死稗、DDVP和伏杀磷的测定,检测限为10-5~ 10-7mol/L。LeaPogacnik[4]等用其作为敏感材料,做成了光热生物传感器,对蔬菜中的有机磷和氨基甲酸酯类农药进行测定,其结果与GC-MS 检测结果一致。李元光[5]用乙酰胆碱酯酶电极和单片机结合研制的掌上型有机磷农药现场检测仪可测定0.5~43.1μg/ml的敌敌畏和0.1~ 15μg/ml的对硫磷,且仪器的响应时间短,仅需3min。

传统检测有机磷农药的酶传感器,几乎都是建立在胆碱酯酶的基础上,由于检测步骤多,测量时间相对长,抑制物多,且抑制过程多为不可逆抑制,造成再生困难等,难于满足现场快速检测的要求。有机磷水解酶(OPH) 是一类水解有机磷化合物的酶,其优点是将

有机磷农药作为酶的底物,而不是抑制剂,能专一性地切断它的磷氰、磷硫、磷氟和磷氧键,产生两分子质子、一分子乙醇及其它产物,这些产物在许多情况下带有发色基团或具有电活性,向周围装置提供了一系列可测信号,后续的信号转换器将这些信号转换成光或电信号,从而可以进行有机磷农药的定量分析[6]。利用此原理开发新形式的传感器,如双重的安培-电位型传感器,双酶(AChE和OPH)传感器等用于检测多组分农药样品,再加上基因工程的进步,使得OPH传感器有着更为广阔的发展空间。

AshokMulchandani[7]等采用有机磷水解酶结合电化学、光学转换器检测有机磷农药,可达到快速、简单、灵敏、高效。Nogue用一种固化了醛脱氢酶的酶传感器检测有机磷和氨基

甲酸酯农药,其最小检出量为9ng/kg,而传统方法的最小检出量为400ng/kg[8]。Turdean开发出一种以固化酶抑制为基础的生物电极电流计, 可选择性的检测低浓度的有机磷农药[9]。

2.2微生物传感器

微生物传感器是利用细菌、放线菌和真菌等微生物活细胞制成的传感器。常见的微生物传感器种类很多,它们之间的差异主要是信号转化器类型的不同。微生物传感器的测定原理有两类:一类是利用微生物在消化底物时需要氧的参与,即呼吸作用;另一类是利用微生物所含酶种类的不同。

酶可与底物进行特异性的结合,但是用于农药残留检测不仅成本高,而且稳定性差。微生物生长快、繁殖旺,它可源源不断地吸收外界营养物质通过自身代谢一部分转变成自身结构物质;另一部分转变成代谢产物和废物迅速排出体外,因此为生物被认为是天然的复合酶系统。将微生物固定在特定的膜上制成的生物传感器稳定性强、适用范围广、寿命长成本低。例如,Pandard等[10]将小球藻固定在聚乙烯包被的碳电极表面与三氧化铝之间,借助二极管照明可以在短时间内测出除草剂中的多种成分的含量。

微生物传感器的研究近几年来发展很快,Koblizek等从嗜热蓝细菌中获得PSⅡ颗粒,将其作为传感器因子,研制出一种微生物传感器,用作多种农药残留的检测。这种感受器不仅稳定性好而且灵敏度高[11]。Larsen[12]利用一种小型微生物Pseudmonas sp固定化后可以将三氧化氮转化成一氧化二氮的原理,将该菌固定到校毛细血管中,置于一氧化二氮小电化学感受器的前端,研制成微生物传感器。它可将产生的一氧化二氮在其他电负性的银表面还原。这种传感器灵敏度高、抗逆性强。

Mulchandani等[13]将含有OPH基因片段的质粒通过转化导入到一种摩拉氏菌(Moraxella sp)的菌体内,然后筛选出可表达OPH的工程菌。将适量的菌体与3:1的石墨粉和矿物油混在一起制成传感器,这种传感器灵敏度高、反应时间长、因此发展潜力很大。

2.3免疫传感器

利用农药与特异性抗体结合反应特性研制免疫传感器,可用于对相应农药残留进行快速定量定性检测。免疫传感器利用的是抗体和抗原之间的免疫化学反应。抗体是上百个氨基酸分子高度有序排列而成的高分子,当免疫系统细胞暴露在抗原物质或分子(如有机污物)上时,抗体中有对抗原结构进行特殊识别、结合的部位,根据“匙-锁”模型,抗体可与其独特的抗原高度专一地可逆结合,其间有静电力、氢键、疏水作用和范德华力,将抗体固定在固相载体上,可从复杂的基质中富集抗原污染物,达到测定污染物浓度的目的。酶、微生物传感器在测定污染物时有催化过程,可直接通过放大、转换系统产生相应

的信号;而免疫传感器中的抗体与污染物作用时没有催化过程,需要有其它体系帮助才能

完成物理信号的转换和放大[14]。免疫传感器分为竞争法和夹心法两类。根据使用的信号转

换器,有电化学免疫传感器、光学免疫传感器、压电免疫传感器及表面等离子体共振(SPR )型传感器。

Wan-Li Xing [15]等人研制了便携式的光纤免疫传感器检测甲基对硫磷,其最小检测限为0.1ng/mL 。Antje J 等人用安培免疫移行传感器检测水样中的trazine 杀虫剂, 检测限达1μg/L, 时间仅1~ 3min 。对另一种类似杀虫剂阿特拉津,则有压电晶体免疫传感器、流注(FIA) 分析免疫传感器、安培免疫电极测定。光纤免疫传感器可用于对硫磷的测定,且灵敏度高,可达1nmol/L 。还有人用波导干涉仪(Waveguide Mach-Zchnder Interferometer)免疫传感器检测杀虫剂。多氯联苯也是一种杀虫剂,在水、食物、牛奶中可检测到它们的存在,过量会引起脑瘤。Zhao 等人用多克隆抗体PCB 抗体(Abs) 制作敏感膜光纤免疫传感器对其测定,下限为10mg/L ,时间仅几十秒到几分钟[16]。

李建平等[17]利用除草剂对植物类囊体束缚酶分解过氧化氢的拮抗作用,研制了一种快速检测痕量除草剂的电化学生物传感器。将植物类囊体用聚乙烯醇,苯乙烯吡啶( PVA-SbQ) 光敏聚合剂在紫外光诱导下产生大分子网状结构进行包埋,制成生物敏感膜,并固定在铂电极表面。根据加入除草剂时类囊体膜束缚酶分解过氧化氢活性的变化,可以对百草枯、敌草龙、扑草净、阿特拉津、莠灭净等除草剂进行检测。

2.4压电生物传感器

压电生物传感器是一种高灵敏度的压电质量传感与特定的生物反应结合在一起的生

物分析方法。该传感器工作原理是[18]:表面吸附会降低压电晶体的振荡频率,将对污染物

中的目标物质有效的敏感材料涂在石英晶体表面,当石英晶体与配基接触时就会发生吸附,从而完成对污染物的测定。频率的变化于物质质量相关,符合Sauerbey 方程A m f f /103.226??=?-(Δf 为涂着晶基频变化值,f 为晶体共振频率,A 为晶体面积,Δm 为涂层质量)。压电生物传感器的原理是:石英晶体以一个基础频率震荡,当污染物中的抗原或抗体与包被在晶体表面的抗体或抗原进行特异性结合时,负载的增加引起晶片震荡频率相应下降,下降值与吸附物质量有相关性。

自1972年Shons 首次将抗原包被在石英晶体表面检测牛血清蛋白抗体以来,压电免疫传感器在很多领域广泛应用起来。

3在农药残留分析中的前景展望

尽管生物传感器在一定的实验室条件下使用状态良好,但并没有在工业中得以广泛应用,其最大问题仍然是稳定性、精确度和可信度。生物传感器的研制过程有诸多难点,其一是如何高效地筛分出高活性的酶和选择合适的固定化方法。为了使传感器具有令人满意的灵敏度,关键是保证有足够量高活性酶尽可能牢固地固定在半导体片上。为了缩短传感器的响应时间及延长寿命,在工艺上,将基膜做得尽可能的薄则成为另一个难点。生物传

感器研制的第三个难点是如何改进传感器对应用条件的适应性与稳定性[19]。依托现代生物

技术如生物酶抑制技术、ELISA 、PCR 、芯片技术等,便携、灵敏、快速、稳定的生物传感

器是将来的发展趋势[20]。

①适当的生物化合物、酶、受体、DNA 和新种微生物的有效性:生物传感器的发展要求生物化合物具有一定的有效性。溶胶凝胶材料作为酶固定化载体开辟了生物传感器新的研究领域。由于涉及检测特异性,所以必须使用合适的化合物, 并加以正确设计,试验不同

的方法,以回收昂贵的辅因子。

②免疫试剂和分子印痕高聚物的有效性:免疫化学法用于农残分析的主要问题是其特异性太高或太低,所以要将传感器成功地应用于农残分析就取决于新设计的免疫化学物的商业可行性,而且确定免疫试剂的有效性十分必要。

③应用基因工程技术,可创造出检测能力更强的生物元件:如在检测有机磷时,不同来源的酶敏感性相差很大,采用定点突变可使酶敏感性大幅度提高。

④与其它仪器集成:HPLC或CE与高选择性和灵敏度的生物传感器检测系统的联合已经被几个研究机构开发出来。

⑤向便携式、小型化、低成本、高灵敏度和高选择性的生物传感器发展:为了对食品中的痕量的残留农药或生物毒素进行精确分析,必须提高生物传感器的灵敏度和稳定性、改善生物材料结构及性能,尤其是研制生物敏感材料,将是生物传感器发展的方向之一。小型仪器可减少样品体积、试剂消耗和生产费用。此外,可能会开发出多分析物生物传感器,从而将多种生物成分固定在一个微片上,用同一传感片检测几种农药残留物及其代谢产物。当然,还有一些问题如样品介质的系统封闭、极低体积(μL级别)样品的转移等急需解决,这无疑将有助于降低分析费用。

4结束语

与国外相比,国内在农药残留快速检测方面较为落后,主要采用酶抑制技术,如酶液比色法、pH测定法和纸片速测法等。目前大多数是以简单的生化技术形成的酶片、检测箱、速测卡、速测仪等, 存在对农药检测的种类有限,不能给出定性和定量结果,且灵敏度较低等缺点。20世纪90年代国内开始有几家单位开展农药免疫分析的研究,且主要集中于ELA,其中大都以ELISA为主,但其只适合分析一种或一类农药,且试剂价格昂贵。与上述方法相比,生物传感器法可大大提高检测灵敏度,缩短检测时间,以更低廉的费用分析更多的样品,减少有机溶剂的使用,对相应的农药残留进行更快速精确的定性定量检测。它在测定方法多样化、提高测量灵敏度、缩短响应时间、提高仪器自动化程度和适应现场检测能力等方面已取得了长足进步。它甚至可以插入生物组织或细胞内实现超微量快速跟踪分析。

生物传感器法在日本、美国等国家发展较快,在我国还主要停留在研究开发阶段[21]。但随着新技术、新材料的不断涌现,生物传感器在实验室研究的良好基础上,再解决其稳定性、精确度、货架寿命等问题后,必将更加小型化、实用化、商品化,投入市场使用也指日可待,使我国农药残留快速检测技术的应用出现多元化的局面。可以预见,随着性能的日趋成熟和品种的不断增加,生物传感器在农药残留分析中具有广阔的应用前景。

参考文献:

[1] Clark L C,Lyons C. Electrode systems for continuous monitoring cardiovascular surgery[J].

Ann. N. Y. Acad. Sci.1962,102:29-45.

[2] 李彦文,杨仁斌,郭正元. 生物传感器在环境污染物检测中的应用[J]. 环境科学动态,2004,1:

27-29.

[3] 肖凯军,等. 高频电磁场强化浸取果胶的研究[J]. 食品科学,2001,22(3):50~52.

[4] 候春友,等. 微波条件下提取果胶的研究[J]. 郑州粮食学院学报,1999, 20(2): 8~11.

[5] 孔臻,等. 微波法从苹果渣中提取果胶的研究[J]. 郑州粮食学院学报,2000,21(2): 11~15.

[6] 刘峥,等. 微波法提取柚皮中的果胶[J]. 食品研究与开发,2003,24(1):88~91.

[7] 肖红,等. 橙皮果胶制备中提取和除杂的研究[J]. 海南大学学报自然科学版,2000,3(1):33~39.

[8] 张燕,等. 离子交换树脂法提取桔皮中果胶[J]. 食品研究与开发,2003,24(4): 52~54.

[9] 何立芳,等. 树脂在果胶提取中的应用[J]. 龙岩师专学报,1991,9(3):127~128.

[10] Pandard P,Vasseur P,Rawson D W,et https://www.360docs.net/doc/2315864966.html,parison of two types of sensors using eukaryotic

algae to monitor pollution of aquatic system[J].Water Res. 1993,27:427-431.

[11] 耿敬章,仇农学.生物传感器及其在食品残留检测中的应用[J]. 农药质量控制,2005.13(1):

42-43.

[12] Damgaard L R,Larsen L H,Revsbech N P. Microscale biosensors for environmental

monitoring[J]. Trends in Analytical Chemistry.1995.14(7):300-303.

[13] Muichandani P,Chen W,Muichandani A,et al.Amperometricmicrobial biosensor for direct

determination of organophosphate pesticide using recombinant microorganism with surface express dorganophosphorus hydrolase[J]. Biosensors & bioelectronics,2001,16:433-437.

[14] 舒肇,等. 利用柑桔类果皮中果胶酯酶制备低甲氧基果胶的研究初报[J]. 广东农业科学,1994,

4.

[15] 王文,等. 苹果皮渣再生利用果胶提取技术的研究[J]. 北京农业大学学报,1995,21(3):280~285.

[16] 江华,等. 果胶超滤截留率研究[J]. 林产化工通讯,1997(3):22~24.

[17] 吴永娴,等. 超滤浓缩果胶的喷雾干燥研究[J]. 西南农业大学学报,1996,18(5):432~435.

[18] 李颖矫,张荣全,叶非.生物传感器在农药残留分析中的应用[J]. 农药科学与管理,2003,24(8):

11-13.

[19] 董文宾,徐颖,姜海英,等. 生物传感器及其在食品分析中的应用[J]. 陕西科技大学学,2004,

22(1):57~62.

[20] 朱江,陆贻通. 现代生物技术在环境检测中的应用[J]. 上海环境科学,2003, 22(10): 718~722.

[21] 涂忆江. 我国农药残留快速检测技术的研究与应用现状[J]. 农药科学与管理,2003,24(4):

14~16.

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

生物传感器分析解析

阅读报告 生物传感器 教学单位:机电工程学院 专业名称:机械设计制造及其自动化 学号: 学生姓名: 指导教师: 指导单位:机电工程学院 完成时间: 电子科技大学中山学院教务处制发

生物传感器 摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 关键词:传感器生物传感器

目录 1 生物传感器 (1) 1.1生物传感器简介 (1) 2 生物传感器的介绍 (2) 2.1组成结构及工作原理 (2) 2.2技术特点 (2) 2.3国内外应用发展情况及应用案例 (3) 2.3.1国内应用发展 (3) 2.3.2国外应用发展 (3) 2.3.3应用案例 (4) 参考文献 (6)

生物传感器的应用现状和发展趋势

生物传感器的应用现状和发展趋势 【摘要】改革开放以来,国民生活的各个方面都取得了明显的进步。随着科学的发展生产力的不断提高,生物传感器的应用越来越广泛。为我们的生产生活带来了很大的方便,研究生物传感器的应用现状和发展趋势,有利于我们对生物传感器进行全面深入的了解,有利于生物传感器的自身发展,同时有利于生物传感器的应用广泛推广。因此有必要详细说明生物传感器的应用现状和发展趋势。 【关键词】生物传感器;应用现状;发展趋势 1.前言 生物传感器作为一种高科技手段,在医学、军事、食品、农业等各个领域均得到了广泛的应用。它具有传感器不可替代的地位,利用生物中独特的物质,通过一系列的化学反应,检测出相关物质。生物传感器相对与传统的传感器相比,具有高灵敏度、高选择度、成本低廉、运用普及度高、污染程度小的特点。因此,研究生物传感器的应用现状和发展趋势具有重要意义。 2.简要介绍生物传感器 Gronow将生物传感器定义为一种含有固定化生物物质(如酶、抗体、全细胞、细胞器或其联合体)并与一种合适的换能器紧密结合的分析工具或系统,它可以将生化信号转化为数量化的电信号。生物传感器一般由两个主要部分组成:一是生物分子识别元件(感受器),是具有分子识别能力的生物活性物质(如酶、抗体、组织切片、细胞、细胞器、细胞膜、核酸、有机物分子等);二是信号转换器(换能器),主要有电化学电极、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等。当待测物与分子识别元件特异性结合后,所产生的复合物通过信号转换器转变为可以输出的电信号、光信号等,从而达到分析检测的目的。 3.生物传感器的具体应用 3.1 制药方面 生物传感器在生产药物时具体作用表现为对具体进行生化反应进行检测,生物传感器可以及时的测量有关生化反应的各项数据,并将它及时反馈给系统。在抗癌药物及癌症治疗方面,生物传感器发挥了极其重要的作用。在实验室中对癌细胞进行培养,并把用相应药物与之发生反应,通过生物传感器对实验数据进行测量,来具体观察药物对癌细胞的作用。在不同药物间的对比中,选出最具有抗癌性的药物。 3.2 食品方面

生物传感器作业第一次

1.什么是生物传感器?主要由哪几部分组成,分别有什么功能. 答: 生物传感器:用生物质作为敏感元件的一种传感器。 主要部件:生物敏感膜(或称作分子识别原件)和换能器 生物敏感膜是生物传感器的关键元件,直接决定传感器的功能和质量 换能器的作用是将各种生物的、化学的和物理的信息转化成电信号 2.什么是酶联免疫测定法?描述其两种检测方法,可画图说明.并举一两个例子。答: 所谓酶联免疫测定法是指用酶促反应的放大作用来显示初级免疫学反应。主要有: 一、夹心法,多用于检测大分子物质,其操作步骤如下: (1)将特异性抗体与固相载体连接,形成固相抗体:洗涤除去未结合的抗体及杂质。 (2)加受检标本:使之与固相抗体接触反应一段时间,让标本中的抗原与同相载体上的抗体结合,形成固相抗原复合物。洗涤除去其他未结合的物质。(3)加酶标抗体:使同相免疫复合物上的抗原与酶标抗体结合。彻底洗涤未结合的酶标抗体。此时固相载体上带有的酶量与标本中受检物质的量正相关。(4)加底物:酶催化底物成为有色产物。根据颜色反应的程度进行该抗原的定性或定量。 举例:(1)应用双抗体夹心法可检测人体中的免疫球蛋白D的含量;(2)应用双抗体夹心法检测患者血清中的抗环瓜氨酸肽抗体的含量。 二、竞争法,多用于小分子或半抗原的检测,操作步骤如下: (1)将特异抗体与固相载体连接,形成固相抗体,洗涤。

(2)待测管中加受检标本和一定量酶标抗原的混合溶液,使之与固相抗体反应。如受检标本中无抗原,则酶标抗原能顺利地与固相抗体结合。如受检标本中含有抗原,则与酶标抗原以同样的机会与固相抗体结合,竞争性地占去了酶标抗原与固相载体结合的机会,使酶标抗原与固相载体的结合量减少。参考管中只加酶标抗原,保温后,酶标抗原与同相抗体的结合可达最充分的量。洗涤。 (3)加底物显色:参考管中由于结合的酶标抗原最多,故颜色最深,参考管颜色深度与待测管颜色深度之差,代表受检标本抗原的量。待测管颜色越淡,表于标本中抗原含量越多。 图示如下: 举例:(1)利用竞争法检测乙型肝炎病毒核心抗体的影响因素;(2)利用竞争法检测蓝舌病抗体的含量。 3. DNA的三级结构? 答: 一级结构:脱氧核苷酸在长链上的排列顺序 二级结构:双螺旋链(碱基配对原则) 三级结构:超螺旋结构 4.生物敏感元件的固定化方法有哪几种?分别有什么特点.酶和DNA分别常用哪几种固定方法. 答: (1)生物敏感元件常用固定方法有:夹心法、包埋法、吸附法、共价结合法、交联法、微胶囊法 (2)各方法的特点: 夹心法:操作简单,不需要化学处理,固定生物量大,响应速度快,重现性好,

生物传感器的原理及应用

生物传感器的原理及应用 摘要: 随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器;原理;应用;发展 Abstract: As information technology and biological engineering technology, bio-sensors has been very rapid development,today's developed countries regard the biosensor technology as the key to the 21st century, given a high priority. Biosensors are widely used in traditional medicine not only to promote the development of medicine, but also in space life science, food industry, environmental monitoring and widely used in military and other fields. Keyword s: biosensor; principle; application; development

目录 一. 引言 (4) 二. 生物传感器的原理 (4) 三. 生物传感器的应用 (5) 3.1.生物传感器在医学领域的应用 (5) 3.1.1. 基于中医针灸针的传感针 (5) 3.1.2.生物芯片 (5) 3.1.3.生物传感器的临床应用 (5) 3.2.生物传感器在非传统医学领域的应用 (6) 3.2.1.在空间生命科学发展中的应用 (6) 3.2.2.在环境监测中的应用 (6) 3.2.3.在食品工程中的应用 (6) 3.2.4.在军事领域的应用 (6) 四. 生物传感器的未来 (7) 五. 结束语 (7) 六. 参考文献 (7)

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

生物传感器的发展现状与趋势

生物传感器的应用与发展趋势 摘要:生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术, 是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续检测的特点。生物传感器的高度自动化、微型化与集成化,减少了对使用者环境和技术的要求,适合野外现场分析的需求,在生物、医学、环境监测,视频,医药及军事医学等领域有着重要的应用价值。 关键词:生物传感器;应用;发展趋势 1生物传感器 从几百年以前,人类就已经在使用生物传感器,而生物传感器的研究始于1962年,Clark和Lyons首先提出使用含酶的修饰膜来催化葡萄糖,用pH计和氧电极来检测相应的信号转变。1967年,Updike和Hick 正式提出了生物传感器这一概念,并成功制备了第一支葡萄糖生物传感器,这一工作对生物学来说具有里程碑意义。生物传感器研究的全面展开是从20世纪80年代开始的,1977年,Kambe等用微生物作识别元素制备了生物传感器,为拓宽检测物的范围,所用到的识别元素不断得到扩展,如细胞、DNA、RNA、抗体等识别元素先后被应用于生物传感器的构筑中。换能器的种类和质量也不断得到提高和发展,随后细胞、DNA、RNA、抗体等识别元素也被应用于生物传感器中。逐渐从电化学向光谱学、热力学、磁力、质量及声波等方向拓展,这也使得生物传感器在种类和应用领域上得到发展。 1.1 生物传感器简介 生物传感器指对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器如氧电极、光敏管、场效应管、压电晶体等等及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器:微生物、免疫、酶免疫和细胞器传感器,研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。缺点是生物固化膜不稳定。 在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。 1.2 生物传感器的分类 生物传感器主要有下面三种分类命名方式: 1.根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器,微生物传感器,细胞传感器,组织传感器和免疫传感器。相应的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。 2.根据生物传感器的换能器即信号转换器分类有:生物电极传感器,半导体生物传感器,光生物传感器,热生物传感器,压电晶体生物传感器等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。 3.以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器、代谢型或催化型生

生物传感器的应用及发展趋势

生物传感器的应用及发展趋势 摘要: 生物传感器是一类特殊的化学传感器,是以生物体成分(如酶,抗原,抗体,激素等)或生物体本身(细胞,微生物,组织等)作为生物体敏感元件,对被测目标物具有高度选择性的检测器件。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器种类;原理;应用;趋势 一.生物传感器基本结构和工作原理 生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成,以分子识别部 分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分 是生物传感器选择性测定的基础。生物传感器通过物理,化学型信号转换器捕捉目标物 与敏感元件之间的反应,并将反应的程度用离散或连续的电信号表达出来,从而得出 被测量。 生物体中能够选择性地分辨特定特质的物质有酶、抗体、组织、细胞等。这些分子识 别功能物质通过识别过程可与被测目标结合成复合物,如抗体和抗原的结合、酶与基质的 结合。在设计生物传感器时,选择适合于测定对象的识别功能物质,是极为重要的前提; 要考虑到所产生的复合物的特性。根据分子识别功能物质制备的敏感元件所引起的化学变 化或物理变化,去选择换能器,是研制高质量生物传感器的另一重要环节。敏感元件中光、热、化学物质的生成或消耗会产生相应的变化量。根据这些变化量,可以选择适光的换能器。 二.生物传感器的分类及应用 1.酶生物传感器 酶传感器是生物传感器的一种,是利用生化反应所产生的或消耗的物质的量,通过电化学 装置转换成电信号,进而选择性地测定出某种成分的器件。酶生物传感器应用于检测血糖 含量,检测氨基酸含量,测定血脂,测定青霉素和浓度,测定尿素,测定血液中的酶含量 酶传感器中应用的新技术:纳米技术 固定化酶时引入纳米颗粒能够增加酶的催化活性,提高电极的响应电流值。首先,纳米颗 粒增强在载体表面上的固定作用;其次是定向作用,分子在定向之后,其功能会有所改善;第三,由于金、铂纳米颗粒具有良好的导电性和宏观隧道效应,可以作为固定化酶之间、 固定化酶与电极之间有效的电子媒介体,从而使得氧化还原中心与铂电极间通过金属颗粒 进行电子转移成为可能,酶与电极间可以近似看作是一种导线来联系的。这样就有效地提 高了传感器的电流响应灵敏度。孟宪伟等首次研究了二氧化硅和金或铂组成的复合纳米颗 粒对葡萄糖生物传感器电流响应的影响,其效果明显优于这=种纳米颗粒单独使用时对葡萄糖生物传感器的增强作用。其原因是纳米粒子具有吸附浓缩效应、吸附定向和量子尺寸颗 粒效应,复合纳米颗粒比单独一种纳米颗粒更易于形成连续势场,降低电子在电极和固定 化酶间的迁移阻力,提高电子迁移率,有效地加速了酶的再生过程,因此复合纳米颗粒可 以显著增强传感器的电流响应。 2.免疫传感器 免疫传感器应用于检测食品中的毒素和细菌,检测DNA 光纤,检测残留的农药,毒品和滥 用药物的检测。

生物传感器的应用现状及发展前景

生物传感器的应用现状 及发展前景 Hessen was revised in January 2021

生物传感器的应用现状及发展前景 摘要:到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、、、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(法则)转换成可用信号的器件或装置,通常由和转换元件组成”。 随着的到来,世界开始进入。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有、、、、、、、以及等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、、、抗体、抗原等)与换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类: ⑴按照感受器生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、、DNA传感器等等。

生物传感器的应用现状及发展前景

生物传感器的应用现状及发展前景 摘要:到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、、、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(法则)转换成可用信号的器件或装置,通常由和转换元件组成”。 随着的到来,世界开始进入。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有、、、、、、、以及等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、、、抗体、抗原等)与换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类: ⑴按照感受器生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、、DNA传感器等等。

电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例 摘要:生物电化学传感器是生物传感器中研究最早、种类最多的一个分支, 它具有专一、高效、简便、快速的优点, 已应用于生物、医学及工业分析等方面。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。 关键词:生物传感器,应用 引言 生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。 最早的生物传感器发明于1962年,英国Clark[1]利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。 1 工作原理及其分类 1.1 工作原理 传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。Rogers[2]等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。 1.2 主要分类 生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。 (1)根据生物传感器中信号检测器上的敏感物质分类 生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。(2)根据生物传感器的信号转换器分类

生物传感器应用

生物传感器在环境监测中的应用 摘要: 生物传感器以其方便快捷、灵敏度高、选择性好等优点,已然成为了各个学科中不可或缺的测试仪器。其广泛应用于食品工业、发酵工业、医学、环境监测等各个领域。在环境领域,生物传感器以又应用于水质、大气等介质中的各种污染物的检测,已经是日常监测中不可替代的分析仪器。本文对生物传感器在环境监测的应用进行综述。未来,生物传感器会越来越灵敏、越来越方便快捷,将会大大提高环境监测人员的工作效率。 关键词:生物传感器,污染物监测,环境监测。 1.生物传感器简介: 生物传感器是一种对生物物质敏感并将其浓度转化为电信号进行监测的仪器。一般由需要以下几个部位组成:识别元件、理化换能器、信号放大器以及分析系统等。识别元件一般由固定化的生物敏感材料制成,这些材料可以是酶、抗体、抗原、细胞、核酸、组织、微生物等物质;适当的理化换能器,如氧电极、光敏管等可以制成换能器,这是将一些物质浓度转化为电信号的关键;而信号放大装置的作用就是将电信号放大,然后方便信号接收进而给分析系统进行分析。生物传感器是一种将信息学、生物芯片、计算机等学科融合交叉的科学产物,是科技发展的过程必不可少的先进的检测装置。从第一支生物酶传感器的研制后,生物传感器以其高选择性、体积小、方便携带、实时监测、环境污染小、高灵敏度和连续测定等优点,在生物科学、环境科学、食品科学等领域皆有十分广阔的探索价值和应用前景[1]。 生物传感器有许多种分类方式:根据生物活性物质的类别,生物传感器可以分为酶传感器、免疫传感器、DNA传感器、组织传感器和微生物传感器等;根据检测原理,生物传感器可分光学生物传感器、电化学生物传感器及压电生物传

纳米材料在生物传感器中的应用

纳米材料在生物传感器中的应用 生物传感器是目前生命科学及临床医学测试方法研究中最为活跃的领域之一,而纳米材料则被认为是跨世纪材料研究领域的热点,有“21 世纪最有前途的材料”的美誉,受到国内外普遍重视,进入21世纪后,纳米科技的迅猛发展为新型生物传感器的研制提供了难得的机遇。纳米生物传感器是纳米科技与生物传感器的融合,其研究涉及到生物技术、信息技术、纳米科学、界面科学等多个重要领域,因而成为国际上的研究前沿和热点。 一、生物传感器 生物传感器是一类特殊形式的传感器,是一种对生物物质敏感并将其转换为声、光、电等信号进行检测的仪器。生物传感器具有接受器与转换器的功能,由识别元件(固定化的生物敏感材料,包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、理化换能器(如氧电极、光敏管、场效应管、压电晶体等) 和信号放大装置构成。生物传感器技术是一个非常活跃的工程技术研究领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起处在生命科学和信息科学的交叉区域,是发展生物技术必不可少的一种先进的检测与监控装置。与传统的分析方法相比, 具有以下特点:1)体积小、响应快、准确度高,可以实现连续在线检测;2)一般不需进行样品的预处理,可将样品中被测组分的分离和检测统一为一体,使整个测定过程简便、迅速,容易实现自动分析;3)可进行活体分析; 4)成本远低于大型分析仪器,便于推广普及。 生物传感器有许多种分类方式:1)根据生物活性物质的类别,生物传感器可以分为酶传感器、免疫传感器、DNA传感器、细胞传感器、组织传感器和微生物传感器等;2)根据检测原理,生物传感器可分光学生物传感器、电化学生物传感器和压电生物传感器等;3)按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型2种;4)可根据所监测的物理量、化学量或生物量而命名为热传感器、光传感器和胰岛素传感器等。 生物传感器的应用,涉及到医疗保健、疾病诊断、食品检测、环境监测、发酵工业等领域。 二、纳米材料 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学物理性质。纳米粒子作为一种常用的纳米材料,具有制备方法简单、尺寸可控、表面易于修饰、表征简便等优点,在分析化学领域得到了广泛的应用。 纳米材料的特点与传感器所要求的多功能、微型化、高速化相对应。另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好等优点,纳米材料能较好地符合上述要求。纳米材料引入生物传感器领域后,提高了生物传感器的检测性能,并促发了新型的生物传感器。纳米材料的独特的化学和物理性质使得其对生物分子或者细胞的检测灵敏度大幅提高,检测的反应时间也得以缩短,并且可以实现高通量的实时检测分析。

生物传感器应用及展望

生物传感器应用及展望 0 引言 有人把21世纪称为生命科学的世纪,也有人把21世纪称为信息科学的世纪。 生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。最早的生物传感器发明于1962年,英国Clark利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。 1 工作原理及分类 1.1 工作原理 传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。 Rogers等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。 1.2 主要分类 生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。 (1)根据生物传感器中信号检测器上的敏感物质分类 生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。 (2)根据生物传感器的信号转换器分类 生物传感器中的信号转换器与传统的转换器并没有本质的区别。例如:可以利用电化学

生物传感器在医学上的应用

生物传感器在医学上的应用 [摘要]:生物传感器作为一项新兴的科学技术已应用于医学检验分析领域中, 是近来国际上医学检测技术的热点之一[1]。生物传感器具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等特点[2]。本文综述了生传感器的基本概念、基本原理、特点、分类,并对国内外近几年光学、电化学和压电3种生物传感器及其应用。 [关键词] 生物传感器医学应用发展前景 1、引言 传感器是一种可以获取并处理信息的特殊装置, 如人体的感觉器官就是一套完美的传感系统,通过眼、耳、皮肤来感知外界的光、声、温度、压力等物理信息, 通过鼻、舌感知气味和味道这样的化学刺激。而生物传感器是一类特殊的传感器, 它以生物活性单元( 如酶、抗体、核酸、细胞等) 作为生物敏感单元, 对目标测物具有高度选择性的检测器。生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续监测, 特别是它的高度自动化、微型化与集成化的特点, 使其在近几十年获得蓬勃而迅速的发展。在国民经济的各个部门如食品、制药、化工、临床检验、生物医学、环境监测等方面有广泛的应用前景。特别是分子生物学与微电子学、光电子学、微细加工技术及纳米技术等新学科、新技术结合, 正改变着传统医学、环境科学、动植物学的面貌。生物传感器的研究开发, 已成为世界科技发展的新热点, 形成21 世纪新兴的高技术产业的重要组成部分, 具有重要的战略意义[2]。 2、生物传感综述 2. 1 生物传感器的基本概念[3] 生物传感器是用固定化的生物活性材料( 酶、蛋白质、DN A、抗体、抗原、生物膜等) 与物理化学换能器有机结合的一门交叉学科, 是发展生物技术必不可少的一种先进的检测方法与监控方法, 也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构: 包括一种或数种相关生物活性材料( 生物膜) 及能把生物活性表达的信号转换为电信号的物理或化学换能器( 传感器) , 二者组合在一起, 用现代微电子和自动化仪表技术进行生物信号的再加工, 构成各种可以使用的生物传感器分析装置、仪器和系统。 2. 2 生物传感器的工作原理及特点[3]

生物传感器的应用现状及发展前景

生物传感器的应用现状及发展前景 摘要:信息时代到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、化工、医学、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国家标准GB7665-87 对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。 随着新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有电阻式传感器、激光传感器、温度传感器、光敏传感器、生物传感器、压力传感器、超声波测距离传感器、盐浓度传感器以及电导传感器等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年S.J.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类:

生物传感器的应用现状及发展前景

… 生物传感器的应用现状及发展前景 摘要:信息时代到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、化工、医学、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。 随着新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 \ 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有电阻式传感器、激光传感器、温度传感器、光敏传感器、生物传感器、压力传感器、超声波测距离传感器、盐浓度传感器以及电导传感器等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。

生物传感器在医学领域中的应用

医学检验需要建立各种快速检验方法,传统检验方法以实验室方法为主,包括一系列繁琐的操作过程,而且周期长,远远不能适应临床的需要,生物传感器的出现导致了分析生物学技术的一场革命,分析生物学从“半定量”向精确定量和自动化操作过程的转换。生物传感器是基于生物反应进行检测的一类特殊的化学传感器,它是以生物活性单元(如酶、抗体、核酸、微生物、细胞、组织等)作为生物敏感基元,对被测样品具有高度选择性的检测器,它通过各种化学、物理信号转换器捕捉目标与敏感基元三向的反应,然后将反应的程度用离散或连续的电信号表达出来,从而得出被检测品的浓度。由于生物传感器为临床检验提供了一条快速、操作简便的新型手段,已引起检验医学界的关注。 生物传感器是由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术,是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置[1],主要用于生物医学信息的检测。 1962年英国学者Clark和Lyons最先提出,可以将酶反应的高度特异性和电极响应的高度灵敏结合起来,由此提出酶电极概念[2]。1967年,updike和Hicks成功的研制出第一个以铂电极为基本的葡萄糖氧化酶传感器[3]。70年代,相继出现了电流型和电位型微生物电极、组织电极、线粒体电极。80年代,利用生物反应的光效应、热效应、场效应和质量变化而开发的生物传感器蓬勃发展,开始了生物电子学传感器的新时代。我国的生物传感器就始于这一时期:1988年梁逸曾将其全面系统地介绍给了国内化学界[4]。90年代,虽然我国生物传感器的某些研究项目处于国际领先地位,但目前国内尚无真正商品化的传感器面市,总体研究水平与国际上还有一段差距。到目前为止,生物传感器大致经历了3个发展阶段:第一代生物传感器是由固定了生物成分的非活性基质膜和电化学电极组成;第二代生物传感器是将生物成分直接吸附或共价结合到换能器表面,而无需非活性的基质膜,测定时不必向样品中加入其它试剂;第三代生物传感器是把生物活性成分直接固定在电子元件上,它们可以直接感知和放大界面物质变化,从而把生物识别和信号转换处理结合在一起。 1 生物传感器的工作原理及结构生物传感器的检测原理:待测物质进入生物活性材料(如酶、蛋白质、DNA、抗体、抗原、生物膜等),经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电、声、光等信号[5]。再经二次仪表放大并输出,便可知道待测物浓度。传感器的结构一般由两部分组成,其一是生物分子识别元件(感受器),是指将一种或数 生物传感器在医学领域中的应用 鲁然 [关键词] 生物传感器;医学领域 咱相关生物活性材料固定在其表面(也称生物敏感膜);其二是能把生物活性表达的信号转换为电、声、光等信号的物理或化学换能器,二者结合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。 2 生物传感器的分类及特点2.1 生物传感器的类型 生物传感器的类型和命名方法比较多而且不一,主要有两种分法即按分子识别元件分类和按换能器类型分类,两种方法如图1[6]。 2.2 生物传感器的特点 ①采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。②专一性强(选择特异性强),只对特定的底物起反应,而且不受颜色、浊度的影响。③分析速度快,可以在一分钟得到结果。④准确度高,一般相对误差可以达到1%。⑤操作系统比较简单,容易实现自动化分析。⑥成本低,在连续使用时,每例测定仅需要几分钱人民币。⑦有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生,能得到许多复杂的物理化学传感器综合作用才能获得的信息。同时它们还指明了增加产物产率的方向。 3 在医学领域中的应用分子生物传感器可以广泛应用于对体检中的微量蛋白、小分子有机物、核酸等多种物质的检测。在现代医学检验中这些项目是临床诊断及病情分析的重要依据,能够在体内的实时监控生物传感器对于手术中和重症监护的病人很有帮助。 3.1 酶传感器的应用 酶传感器是由固定化酶作为敏感元件的生物传感器。应用酶传感器可以省去提纯酶的复杂步骤。许多酶传感器都可以用于临床生化指标(葡萄糖、乳酸、尿素、尿酸、肌酸、肌酐、谷氨酰胺、血清中总蛋白、血清中胆固醇、血清中甘油三脂、天 作者单位:071000 河北保定252医院检验科 (鲁然) 图1 生物传感器的分类

相关文档
最新文档