数电实验报告

数电实验报告
数电实验报告

数字电子技术实验报告

学院:工程学院 专业:※※※ 姓名: ※※※ 学号: ※※※

指导教师:※※ 时间: 2013.12.10

目录

实验一 2位二进制乘法器 (1)

一、实验要求: (1)

二、实验原理: (1)

三、实验分析 (1)

四、实验电路(如图1-7): (4)

五、仿真结果: (4)

六、注意事项: (6)

实验二可控加/减法 (7)

一、实验要求: (7)

二、实验原理: (7)

三、实验分析: (7)

四、实验电路: (11)

五、仿真结果: (13)

六、注意事项: (14)

实验三可控乘/除法 (15)

一、实验要求: (15)

二、实验原理: (15)

三、实验分析: (15)

四、实验电路: (19)

五、仿真结果: (20)

六、注意事项: (21)

实验四模拟信号可控乘除法 (22)

一、实验要求: (22)

二、实验原理: (22)

三、实验分析: (24)

四、实验电路 (26)

五、仿真结果: (27)

六、注意事项: (32)

实验五自动控制增益电路 (33)

一、实验要求: (33)

二、实验原理: (33)

三、实验分析: (34)

四、实验电路: (35)

五、仿真结果: (36)

六、注意事项: (39)

参考文献 (40)

总结 (41)

实验一2位二进制乘法器

一、实验要求:

用加法器实现两位二进制数的乘法。

二、实验原理:

设两位二进制数分别为A1A0和B1B0,就跟我们平常进行手工乘法一样,我们需要列乘式,则它们之间的乘法可用如下计算表示(如图1-1):

图1-1 二进制数间乘法图

所以我们如果实现了两个一位二进制的相乘,再利用加法器就可以得出结果,而两个位二进制的乘法即与运算。

三、实验分析

乘法的相乘利用与门实现,比如74LS08,然后将乘出的结果进行相加可以利用加法实现,比如四位加法器74LS283。

74LS08只是含有4个独立的与门,没有什么需要深入分析的。74LS283是快速进位集成4位加法器,所谓快速进位,是指加法运算过程中,各级进位信号同时送到各位全加器的进位输出端。超前进位加法器使每位的进位直接由加数和被加数产生,而无需等待低位的进位信号。这种加法器比串行进位加法器速度快了不少。74LS283是由4个全加器构成的,全加器的结构图如下图1-2:

1位二进制数和

1位二进制数相加

低位来的进位高位进位

图1-2 全加器的结构图

全加器真值表如表1-1全加器的逻辑图如图1-2:

表1-1 全加器真值表图1-3-全加器在实现了74LS283实现了相加之后,我们还需要考虑结果输出,我们拟采用7段数码管输出。既然用了7段数码管,就要考虑用共阴还是共阳,其实这两种没有什么本质区别,共阴即二极管的负极接到一起,COM端(公共端)给高电平点亮;共阳即二极管的正极接到一起,COM端(公共端)给低电平点亮。所要注意的是译码器的选择不同,7段共阳数码管需要74LS47译码,7段共阴数码管需要74LS48译码。选择数码管和与之相应的译码器即可。

74LS47与7段共阳数码管连接方式,以及其数码管十六进制显示对应图形如图1-4:

如图1-4 数码管十六进制显示对应图形

为保证数码管正常工作,数码管的COM端(公共端)需要连接一个电阻限流,大概10K。其中74LS08芯片内含有4个与门,加法器74L S283为4为二进制加法器,所以用一片74LS08和一片74LS283即可实现两位二进制数的乘法电路。

四与门74LS08如图1-5:

图1-5 四与门74LS08

加法器74LS283如图1-6:

图1-6 加法器74LS283

四、实验电路(如图1-7):

图1-7 实验电路

五、仿真结果:

1、01 * 01 = 1 (如图1-8)

图1-8 01 * 01 = 1的仿真结果

图1-9 10 * 01 = 2的仿真结果3、01 * 11 = 3(如图1-10)

图1-10 01 * 11 = 3

4、10 * 11 = 6(如图1-11)

图1-11 10 * 11 = 6

图1-12 11 * 11 = 9

六、注意事项:

1、数码管与译码器的选择:应注意7段共阴数码管应该用74LS48译码,7段共阳数

码管应该用74LS47译码。

2、由于74LS系列的芯片输出电流不小,所以7段数码管的公共端应接限流电阻,阻

值在1K到10K之间即可,否则数码管会因为电流过大而烧毁。

3、7段数码管除了A、B、C、D、E、F、G、DP这8个管脚以外,还有两个COM端

(公共端),在数码管内部这两个管脚实际上是连在一起的,焊接时只需要连其中一

个即可。

实验二可控加/减法

一、实验要求:

用加法器实现加/减法电路,其中步长要求为3、6、9,而且为一键可控,加/减法的范围为0-99,显示最好用十进制显示。

二、实验原理:

加法可以利用加法器实现,而对于减法,我们也可以利用加法器实现,即加上相应的补码即可。我们可以用控制电路和计数器实现步长变换,再用加法器实现加减电路(其中减法为加其补码)。

三、实验分析:

步长要求3、6、9,其中3的二进制表示为0011,6的二进制表示为0110,9的二进制表示为1001,从它们的二进制特征入手,1001循环左移1位即为0011,0011循环左移1位即为0110,我们可以利用双向移位寄存器进行移位实现,比如74LS194。

加/减法部分我们可以利用加法器加上其原码或补码来实现,二进制的补码等于其反码加一,而我们又知道一位二进制数与1相异或就是取反,然后再加1就可以得到它的补码,与0相异或就等于它本身。利用这个性质我们可以实现其加减的控制。用到的异或门比如74LS32。

要实现持续的加/减法,我们就需要将上一次的结果锁存起来,然后再一次输入到输入端,这就要用到锁存器,比如8位数据锁存器74LS273。

我们在实验箱上连线检查时,老师提出了一个清零要求,即在加/减过程中可以随时清零,然后重新开始加/减,另外计数范围在0-99之间,所以加到99时也应该自动清零。这个功能是在实验箱上没有实现的,在后来焊接的板子上我们另加了清零功能。根据结果到99或者超过99清零,我们采用了四输入与非门74LS20,通过逻辑门的的运算,然后加到74LS273的CLR端(清零端)。当加数为3时,最多可以正好加到99,再加3即为102,为了保持住99这一状态,我们采用了到102时立即清零,102的二进制表示为01100110,所以将4个1的位直接输入到四输入与非门的输入端,实现清零。当加数为6时,可以加到96,再加6即102,和加3时情况一样,不在讨论。当加数为9时,加到99时,再加9即为108,所以我们采用到108时立即清零,108的二进制表示为01101100,所以将4个1的位直接

输入到另一个四输入与非门的输入端,实现清零。这样总共就用到了两个4输入与非门,当加到102或者108时候都清零,因此再用一个与门实现即可。总体来说,清零功能用到了2个四输入与非门74LS20和一个与门74LS08。

由于74LS195和74LS273都属于时序电路芯片,所以电路整体需要一个时钟脉冲来形成同步时序电路。我们不想用实验箱上的脉冲,所以我们设计了一个秒脉冲产生电路。由于加/减的速度不能过快,否则会看不清,所以我们拟定脉冲的频率为1S。由于石英晶振的频率都基本固定,最低的也有几十KHz,所以我们采用时钟分频来产生秒脉冲。CD4060是一个14级计数(分频)芯片,查阅资料得32.768K的晶振经过14级分频以后大概是2Hz左右,所以在需要经过一个D触发器(1位二进制计数器)即可实现2分频,从而得到秒脉冲。又因为步长控制为一键可控,所以需要一个按键脉冲,即按一下来一个脉冲,因为我们只需要上升沿即可,所以这个可以通过单片机的复位电路来实现,比较容易得到。

基本功能都实现以后,我们需要考虑的是74LS47的输入为4位BCD码,所以我们要将加/减出来的二进制数转换为BCD码,再输入到74LS47共阳译码器的输入端,才能显示正确的数字。在此,我们提出了两种方案。

方案1:

在电路内部进行BCD码转换,数字0-9的二进制表示与BCD码表示相同,数字10-15的二进制表示与BC D码表示之间的关系是:BCD = Binary + 6。二进制码转换成BCD码的转换真值表如表2-1

B

1

1

1

1

1

1

1

1

表2-1 二进制码转换成BCD码的转换真值表

方案2:

利用二进制转BCD码的芯片,即74LS185,这个芯片的功能是5位二进制转7位BCD 码,我们所需要的是将8为二进制转为BCD码,所以我们需要3片74LS185进行级联。电路图如图2-1:

图2-1 3片74LS185的级联

图2-2 74LS32 74LS194如图2-3:

图2-3 74LS194 74LS283如图2-4:

图2-4 74LS283

图2-574LS273

四、实验电路:

1、秒脉冲产生电路(如图2-6):

图2-6 秒脉冲产生电路

2、按键脉冲电路(如图2-7):

图2-7 按键脉冲电路

3、主体电路:

方案1(如图2-8):

图2-8 方案一的主体电路方案2:

控制电路部分(如图2-9):

图2-9 方案二的控制电路部分

二进制转BCD码显示部分(如图2-10):

图2-10 方案二的二进制转BCD码显示部分

五、仿真结果:

1、加/减3(如图2-11):

图2-11 加/减3的仿真结果

2、加/减6(如图2-12):

图2-12 加/减6的仿真结果

3、加/减9(如图2-13):

图2-13 加/减9的仿真结果

最后,考虑到第三个实验可控乘/除法也需要用到显示部分,所以我们在实际电路板中采用了方案2,即用74LS185来将二进制转换为BCD码。

六、注意事项:

1、在作加法时,第一个74LS283的CO端(进位输入端)一定要接地,否则TTL型管脚

悬空为高电平,会导致相加错误。

2、在显示电路部分,74LS185的使能端一定要接高电平,否则74LS185不会正常工作。

另外,第三个74LS185的E端一定要接地,否则显示不正常。

实验三可控乘/除法

一、实验要求:

用移位寄存器实现可控乘/除法电路,其中步长要求为2、4、8,而且为一键可控,乘/除范围为0-64,显示最好用十进制显示。

二、实验原理:

乘/除法我们可以通过移位寄存器实现,乘2即左移1位,除2即右移1位,步长部分我们也可以利用移位寄存器实现2、4、8的转换。

三、实验分析:

步长要求2、4、8,2的二进制表示为0010,4的二进制表示为0100,8的二进制表示为1000,我们可以很容易观察出依次左移一位即可实现补偿控制。我们可以利用移位寄存器实现,比如双向移位寄存器74LS194.

乘2即将该二进制数左移一位,除2即将该二进制数右移一位,利用该性质,我们可以实现乘/除4、8,4即左/右移两位,8即左/右移三位。对于一次移两位即以上的我们可以利用分频器实现,即移2位我们就将其2分频,移3位我们就将其3分频,比如74LS194构成的扭环形计数器。根据乘/除的数来选择时钟脉冲,这就要用到数据选择器,比如74LS151。

要实现持续的乘/除法,我们就需要将上一次的结果锁存起来,然后再一次输入到输入端,这就要用到数据锁存器,比如8位数据锁存器74LS273。

基本功能实现以后,我们需要考虑的是74LS47的输入为4位BCD码,所以我们要将乘/除出来的二进制数转换为BCD码,再输入到74LS47共阳译码器的输入端,才能显示正确的数字。在此,我们提出了两种方案。

方案1:

在电路内部进行BCD码转换,数字0-9的二进制表示与BCD码表示相同,数字10-15的二进制表示与BCD码表示之间的关系是:BCD = Binary + 6。而在乘/除时,我们只需要对16、32、64这三个数字进行转换即可,其他的数字不必理会,减少了很多的麻烦。二进制码转换成BCD码的转换真值表如下表3-1:

1

1

1

1

1

1

1

1

表3-1 二进制码转换成BCD码的转换真值表

方案2:

利用二进制转BCD码的芯片,即74LS185,这个芯片的功能是5位二进制转7位BCD 码,我们所需要的是将8位二进制转为BCD码,所以我们需要3片74LS185进行级联。电

路图如图3-1:

图3-1 3片74LS185 74LS194(如图3-2):

图3-2 74LS194

数电实验报告册

湖北理工学院电气与电子信息工程学院 实验报告 课程名称:电子技术实验(数电部分) 专业名称: 班级: 学号: 姓名: 1

湖北理工学院电气与电子信息工程学院实验报告规范实验报告是检验学生对实验的掌握程度,以及评价学生实验课成绩的重要依据,同时也是实验教学的重要文件,撰写实验报告必须在科学实验的基础上进行。真实的记载实验过程,有利于不断积累研究资料、总结研究实验结果,可以提高学生的观察能力、实践能力、创新能力以及分析问题和解决问题的综合能力,培养学生理论联系实际的学风和实事求是的科学态度。 为加强实验教学中学生实验报告的管理,特指定湖北理工学院电气与电子信息工程学院实验报告规范。 一、每门实验课程中的每一个实验项目均须提交一份实验报告。 二、实验报告内容一般应包含以下几项内容: 1、实验项目名称:用最简练的语言反映实验内容,要求与实验课程安排表中一致; 2、实验目的和要求:明确实验的内容和具体任务; 3、实验内容和原理:简要说明本实验项目所涉及原理、公式及其应用条件; 4、操作方法与实验步骤:写出实验操作的总体思路、操作规范和操作主要注意事项,准确无误地记录原始数据; 5、实验结果与分析:明确地写出最后结果,并对实验得出的结果进行具体、定量的结果分析,说明其可靠性; 6、问题与建议(或实验小结):提出需要解决问题,提出改进办法与建议,避免抽象地罗列、笼统地讨论。(或对本次实验项目进行总结阐述。) 三、实验报告总体上要求字迹工整,文字简练,数据齐全,图标规范,计算正确,分析充分、具体、定量。 四、指导教师及时批改实验报告,并将批改后的报告返还学生学习改进。 五、实验室每学期收回学生的实验报告,并按照学校规章保存相应时间。 2

数电实验报告 实验二 组合逻辑电路的设计

实验二组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路的设计方法及功能测试方法。 2.熟悉组合电路的特点。 二、实验仪器及材料 a) TDS-4数电实验箱、双踪示波器、数字万用表。 b) 参考元件:74LS86、74LS00。 三、预习要求及思考题 1.预习要求: 1)所用中规模集成组件的功能、外部引线排列及使用方法。 2) 组合逻辑电路的功能特点和结构特点. 3) 中规模集成组件一般分析及设计方法. 4)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 在进行组合逻辑电路设计时,什么是最佳设计方案 四、实验原理 1.本实验所用到的集成电路的引脚功能图见附录 2.用集成电路进行组合逻辑电路设计的一般步骤是: 1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表; 2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式; 3)画出逻辑图; 4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。 五、实验内容 1.用四2输入异或门(74LS86)和四2输入与非门(74LS00)设计一个一位全加器。 1)列出真值表,如下表2-1。其中A i、B i、C i分别为一个加数、另一个加数、低位向本位的进位;S i、C i+1分别为本位和、本位向高位的进位。 A i B i C i S i C i+1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 10 1 1 1 00 1 1 1 1 1 1 2)由表2-1全加器真值表写出函数表达式。

数电实验报告

数字逻辑与数字电路实验报告 实验名称简易迷宫游戏

一、设计课题的任务要求 题目:简易迷宫游戏 设计并实现一个简易迷宫游戏机。 【基本要求】: 1、用8×8 点阵进行游戏显示。 2、迷宫游戏如图1 所示,采用双色点阵显示,其中红色LED 为迷宫墙壁,绿色LED表示人物。通过BTN0~BTN3 四个按键控制迷宫中的人物进行上下左右移动,使人物从起始点出发,走到迷宫的出口,游戏结束。 3、普通计时模式:通过按键BTN7 启动游戏,必须在30 秒内找到出口,否则游戏失败。用两个数码管进行倒计时显示。游戏胜利或者失败均要在8×8 点阵上有相应的画面出现。 4、迷宫中的人物在行走过程中,如果碰到墙壁,保持原地不动。 【提高要求】: 1、多种迷宫地图可以选择。 2、在计时的基础上增加计步的功能,每按一次控制按键步数加1,碰壁不计算步数,计步结果用数码管显示。 3、为游戏增加提示音乐,在不同时间段采用不同频率的信号控制蜂鸣器发声报警。 4、增加其他游戏模式。 5、自拟其它功能。 二、系统设计(包括设计思路、总体框图、分块设计) 设计思路: 依据题目要求,在实验中需要使用到8*8双色点阵输出迷宫图案,使用数码管输出计步步数和倒计时时间,使用蜂鸣器发出警报。由于实验要求需要使用到大量的按键输入。所以需要在输入输出模块中需要按键消抖模块。实验的输出模块共有点阵输出模块,数码管输出模块,蜂鸣器输出模块,在数码管和点阵输出中需要使用到扫描输出的概念。在游戏进行中需要实时判断并且记录人的位置,需要进行记时,计步,所以在整个系统中需要使用状态机进行当前状态转换,控制整个程序。所以在核心实现模块中包括行走模块,状态输出模块,计步模块,计时模块。 输入部分:消抖模块 时钟部分:多级分频器 控制部分:倒计时器,计步器,行走模块,状态机

北京邮电大学数电实验一实验报告

北京邮电大学数字电路与逻辑 设计实验 学院: 班级: 作者: 学号:

实验一 Quartus II原理图输入法设计 一、实验目的: (1)熟悉Quartus II原理图输入法进行电路设计和仿真 (2)掌握Quartus II 图形模块单元的生成与调 (3)熟悉实验板的使用 二、实验所用器材: (1)计算机 (2)直流稳压电源 (3)数字系统与逻辑设计实验开发板 三、实验任务要求 (1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模 块单元。 (2)用(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能, 并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号。 (3)用3线-8线译码器(74LS138)和逻辑门设计实现函数 ,仿真验证其功能,并下载到实验板测试。要求用拨码开关设定输入信号,发光二极管显示输出信号。 四、设计思路和过程 (1)半加器的设计 半加器电路是指对两个输入数据位进行加法,输出一个结果位和进位,不产生进位输入的加法器电路。是实现两个一位二进制数的加法运算电路。数据输入AI被加数、BI加数,数据输出SO和数(半加和)、进位C0。 在数字电路设计中,最基本的方法是不管半加器是一个什么样的电路,按组合数字电路的分析方法和步骤进行。 1.列出真值表 半加器的真值表见下表。表中两个输入是加数A0和B0,输出有一个是和S0,另一个是进位C0。

2 该电路有两个输出端,属于多输出组合数字电路,电路的逻辑表达式如下函数的逻辑表达式为:SO=AI⊕BI CO=AB 所以,可以用一个两输入异或门和一个两输入与门实现。

数电实验报告

选课时间段: 序号(座位号): 杭州电子科技大学 实验报告 课程名称: 数字原理与系统设计实验 实验名称: 组合电路时序分析与自动化设计 指导教师: 学生姓名 学生学号 学生班级 所学专业 实验日期

实验一、设计8位串行进位加法器电路设计: 一位全加器: 八位串行进位加法器:

仿真波形:

实验二、设计5人表决电路 代码: module BJDL45(A,B,C,D,E,YES,NO); input A,B,C,D,E; output YES,NO; reg YES,NO; always@ (A,B,C,D,E,YES,NO) case ({A,B,C,D,E}) 5'B00000:{YES,NO}<=2'B01; 5'B00001:{YES,NO}<=2'B01; 5'B00010:{YES,NO}<=2'B01; 5'B00011:{YES,NO}<=2'B01; 5'B00100:{YES,NO}<=2'B01; 5'B00101:{YES,NO}<=2'B01; 5'B00110:{YES,NO}<=2'B01; 5'B00111:{YES,NO}<=2'B10; 5'B01000:{YES,NO}<=2'B01; 5'B01001:{YES,NO}<=2'B01; 5'B01010:{YES,NO}<=2'B01; 5'B01011:{YES,NO}<=2'B10; 5'B01100:{YES,NO}<=2'B01; 5'B01101:{YES,NO}<=2'B10; 5'B01110:{YES,NO}<=2'B10; 5'B01111:{YES,NO}<=2'B10; 5'B10000:{YES,NO}<=2'B01; 5'B10001:{YES,NO}<=2'B01; 5'B10010:{YES,NO}<=2'B01; 5'B10011:{YES,NO}<=2'B10; 5'B10100:{YES,NO}<=2'B01; 5'B10101:{YES,NO}<=2'B10; 5'B10110:{YES,NO}<=2'B10; 5'B10111:{YES,NO}<=2'B10; 5'B11000:{YES,NO}<=2'B01; 5'B11001:{YES,NO}<=2'B10; 5'B11010:{YES,NO}<=2'B10; 5'B11011:{YES,NO}<=2'B10; 5'B11100:{YES,NO}<=2'B10; 5'B11101:{YES,NO}<=2'B10; 5'B11110:{YES,NO}<=2'B10; 5'B11111:{YES,NO}<=2'B10; default: {YES,NO}<=2'B10; endcase

数电实验报告一

姓名:谭国榕班级:12电子卓越学号:201241301132 实验一逻辑门电路的研究 一、任务 1.熟悉实验室环境及实验仪器、设备的使用方法。 2.掌握识别常用数字集成电路的型号、管脚排列等能力。 3.熟悉74 LS系列、CMOS 4000B系列芯片的典型参数、输入输出特性。 4.掌握常规数字集成电路的测试方法。 二、实验设备及芯片 双踪示波器(DF4321C)1台 信号发生器(DF1641B1)1台 数字万用表(UT58B)一台 数电实验箱1个(自制) 芯片2个:74LS04 CD4069 。 三、实验内容 1.查阅芯片的PDF文件资料,分清管脚名与逻辑功能的对应关系及对应的真值表。74LS04:

CD4069: 2.静态测试 验证6非门74LS04、4069逻辑功能是否正常,并用数字万用表测量空载输出的逻辑电平值(含高、低电平)。 结论:由表格可以看出,CD4069输出的高电平比74LS04高,输出的低电平比74LS04低,所以CD4069的噪声容限相对于74LS04来说较大,故其抗干扰能力强。 3.动态测试 测逻辑门的传输延迟时间:将74LS04、4069中的6个非门分别串接起来,将函数发生器的输出调为方波,对称,幅度:0-5V,单极性,加至第一个门的输入端,并用示波器的通道1观察;用示波器的通道2观察最后一个非门的输出信号,对比输入输出波形以及信号延迟时间。

调节方波信号:

74LS04输出延迟特性: CD4069输出延迟特性:

输出延迟时间的实验数据表: 结论:74LS04的输出延迟比CD4069的输出延迟要短,说明前者的工作速度比后者快。 4.观察电压传输特性 用函数发生器的输出单极性的三角波,幅度控制在5伏,用示波器的X-Y 方式测量TTL 、 CMOS 逻辑门的传输特性,记录波形并对TTL 、CMOS 两种类型电路的高电平输出电压、低电平输出电压以及噪声容限等作相应比较。 (1) 调节函数发生器的输出:单极性三角波,对称,幅度:5V ,频率:500Hz ,从函数发生 器的下部50Ω输出端输出信号; 如图: (2) 扫描方式改为X-Y ,CH1、CH2 接地,调光标使其处于左下角附近; (3) CH1 用 2.0V/DIV (DC ),接函数发生器输出(即非门的输入);CH2 用 0.2V/DIV (DC ),接非门输出。 (4) 记录示波器波形(如图)。

数电实验实验报告

数字电路实验报告

实验一 组合逻辑电路分析 一.试验用集成电路引脚图 74LS00集成电路 74LS20集成电路 四2输入与非门 双4输入与非门 二.实验内容 1.实验一 自拟表格并记录: 2.实验二 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。否则,报警信号为“1”,则接通警铃。试分析密码锁的密码ABCD 是什么? X1 2.5 V A B C D 示灯:灯亮表示“1”,灯灭表示“0” ABCD 按逻辑开关,“1”表示高电平,“0”表示低电平

ABCD 接逻辑电平开关。 最简表达式为:X1=AB ’C ’D 密码为: 1001 A B C D X1 X2 A B C D X1 X2 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 三.实验体会: 1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。 2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片 ,和使用仿真软件来设计和构造逻辑电路来求解。 实验二 组合逻辑实验(一) 半加器和全加器 一.实验目的 1. 熟悉用门电路设计组合电路的原理和方法步骤 二.预习内容 1. 复习用门电路设计组合逻辑电路的原理和方法步骤。 2. 复习二进制数的运算。 3. 用“与非门”设计半加器的逻辑图。 4. 完成用“异或门”、“与或非”门、“与 非”门设计全加器的逻辑图。 5. 完成用“异或”门设计的3变量判奇 电路的原理图。 三.元 件参考 U1A 74LS00D U1B 74LS00D U1C 74LS00D U1D 74LS00D U2A 74LS00D U2B 74LS00D U2C 74LS00D U3A 74LS20D X1 2.5 V X2 2.5 V VCC 5V A B C D

数电实验报告1

实验一门电路逻辑功能及测试 一、实验目的 1、熟悉门电路逻辑功能。 2、熟悉数字电路学习机及示波器使用方法。 二、实验仪器及材料 1、双踪示波器 2、器件 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 74LS04 六反相器1片 三、预习要求 1、复习门电路工作原理相应逻辑表达示。 2、熟悉所有集成电路的引线位置及各引线用途。 3、了解双踪示波器使用方法。 四、实验内容 实验前按学习机使用说明先检查学习机是否正常,然后选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意Vcc及地线不能接错。线接好后经实验指导教师检查无误方可通电。试验中改动接线须先断开电源,接好线后在通电实验。 1、测试门电路逻辑功能。 (1)选用双输入与非门74LS20一只,插入面包板,按图 连接电路,输入端接S1~S4(电平开关输入插口),输 出端接电平显示发光二极管(D1~D8任意一个)。 (2)将电平开关按表1.1置位,分别测出电压及逻辑状态。(表1.1) 输入输出 1 2 3 4 Y 电压(V) H H H H 0 0.11 L H H H 1 4.23 L L H H 1 4.23 L L L H 1 4.23 L L L L 1 4.23

2、异或门逻辑功能测试 (1)选二输入四异或门电路74LS86,按图接线,输入端1﹑2﹑4﹑5接电平开关,输出端A ﹑B ﹑Y 接电平显示发光二极管。 (2)将电平开关按表1.2置位,将结果填入表中。 表 1.2 3、逻辑电路的逻辑关系 (1)选用四二输入与非门74LS00一只,插入面包板,实验电路自拟。将输入输出逻辑关系分别填入表1.3﹑表1.4。 输入 输出 A B Y Y 电压(V ) L L L L 0 0 0 0.16 H L L L 1 0 1 4.18 H H L L 0 0 0 0.17 H H H L 0 1 1 4.18 H H H H 0 0 0 0.17 L H L H 1 1 0.17 输入 输出 A B Y L L 0 L H 1 H L 1 H H 输入 输出 A B Y Z L L 0 0 L H 1 0 H L 1 0 H H 1

数字电路实验报告

数字电路实验报告 姓名:张珂 班级:10级8班 学号:2010302540224

实验一:组合逻辑电路分析一.实验用集成电路引脚图 1.74LS00集成电路 2.74LS20集成电路 二、实验内容 1、组合逻辑电路分析 逻辑原理图如下:

U1A 74LS00N U2B 74LS00N U3C 74LS00N X1 2.5 V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V GND 图1.1组合逻辑电路分析 电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。 真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 表1.1 组合逻辑电路分析真值表 实验分析: 由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。 2、密码锁问题: 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。

试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下: U1A 74LS00N U2B 74LS00N U3C 74LS00N U4D 74LS00N U5D 74LS00N U6A 74LS00N U7A 74LS00N U8A 74LS20D GND VCC 5V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V X1 2.5 V X2 2.5 V 图 2 密码锁电路分析 实验真值表记录如下: 实验真值表 A B C D X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 表1.2 密码锁电路分析真值表 实验分析: 由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。由此可见,该密码锁的密码ABCD 为1001.因而,可以得到:X1=ABCD ,X2=1X 。

数电实验报告

河 北 科 技 大 学 实 验 报 告 级 专业 班 学号 年 月 日 姓 名 同组人 指导教师 高观望 实验名称 实验二 基本门电路逻辑功能的测试 成 绩 实验类型 验证型 批阅教师 一、实验目的 (1)掌握常用门电路的逻辑功能,熟悉其外形及引脚排列图。 (2)熟悉三态门的逻辑功能及用途。 (3)掌握TTL 、CMOS 电路逻辑功能的测试方法。 二、实验仪器与元器件 (1)直流稳压电源 1台 (2)集成电路 74LS00 四2输入与非门 1片 74LS86 四2输入异或门 1片 74S64 4-2-3-2输入与或非门 1片 74LS125 四总线缓冲门(TS ) 1片 CD4011 四2输入与非门 1片 三、实验内容及步骤 1.常用集成门电路逻辑功能的测试 在数字实验板上找到双列直插式集成芯片74LS00和74LS86。按图进行连线。测试各电路的逻辑功能,并将输出结果记入表中。 门电路测试结果 2.测试与或非门74S64的逻辑功能 在实验板上找到芯片74S64,实现Y AB CD =+的逻辑功能。 真值表 Y Y &

3.用与非门组成其他逻辑门电路 (1)用与非门组成与门电路 按图接线,按表测试电路的逻辑功能。根据测得的真值表,写出输出Y的逻辑表达式。 真值表 逻辑表达式:Y=AB (2)用与非门组成异或门电路 按图接线,将测量结果记入表中,并写出输出Y 的逻辑表达式。 真值表 逻辑表达式:B A Y ⊕= 4.三态门测试 (1)三态门逻辑功能测试 三态门选用 74LS125将测试结果记入表中。 (2)按图接线。将测试结果记录表中。 真值表

数字电子技术实验报告汇总

《数字电子技术》实验报告 实验序号:01 实验项目名称:门电路逻辑功能及测试 学号姓名专业、班级 实验地点物联网实验室指导教师时间2016.9.19 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。线接好后经实验指导教师检查无误方可通电实验。实验中

1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显 图 1.1 示发光二极管D1~D4任意一个。 (2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。 表1.1 输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H 0 0 L H H H 1 1 L L H H 1 1 L L L H 1 1 L L L L 1 1 2. 异或门逻辑功能的测试

图 1.2 (1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。 (2)将逻辑开关按表1.2的状态,将结果填入表中。 表1.2 输入输出 1(K1) 2(K2) 4(K35(K4) A B Y 电压(V) L H H H H L L L H H H H L L L H H L L L L L H H 1 1 1 1 1 1 1 1

数电实验-实验报告-实验六

实验一 TTL与非门的参数测试 一、实验目的 ·掌握用基本逻辑门电路进行组合逻辑电路的设计方法。 ·通过实验,验证设计的正确性。 二、实验原理 1.组合逻辑电路的分析: 所谓组合逻辑电路分析,即通过分析电路,说明电路的逻辑。 通常采用的分析方法是从电路的输入到输出,根据逻辑符号的功能逐级列出逻辑函数表达式,最好得到表示输出与输入之间的关系的逻辑函数式。然后利用卡诺图或公式化简法将得到的函数化简或变换,是逻辑关系简单明了。为了使电路的逻辑功能更加直观,有时还可以把逻辑函数式转化为真值表的形式。 2.逻辑组合电路的设计: 根据给出的实际逻辑问题,求出实现这一逻辑功能的最简单电路,陈伟组合逻辑电路的设计。 3.SSI设计:设计步骤如下: ①逻辑抽象;分析时间的因果关系,确定输入和输出变量。 ②定义逻辑状态的含义:以二值逻辑0、1表示两种状态。 ③列出真值表 ④写出逻辑表达式,并进行化简,根据选定器件进行转换。 ⑤画出逻辑电路的连接图。 ⑥实验仿真,结果验证。 三、实验仪器及器件 数字万用表1台

多功能电路实验箱1台 四、实验内容 1.设计5421BCD 码转换为8421BCD 码(用双输入端与非门实现)。 四位自然二进制码 5421BCD码 B3 B2 B1 B0 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 伪码 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 根据5421BCD 码与8421BCD 码真值表可得 2.设A 、B 、C 、D 代表四位二进制变量,函数X=8A-4B+2C+D ,试设计一个组合逻辑电路,判断当函数值介于4

数电仿真实验报告

数字电子技术仿真 实验报告 班级: 姓名: 学号:

实验一组合逻辑电路设计与分析 一、实验目的 1.掌握组合逻辑电路的特点; 2.利用逻辑转换仪对组合逻辑电路进行分析与设计。 二、实验原理 组合逻辑电路是一种重要的、也是基本的数字逻辑电路,其特点是:任意时刻电路的输出仅取决于同一时刻输入信号的取值组合。 对于给定的逻辑电路图,我们可以先由此推导出逻辑表达式,化简后,由所得最简表达式列出真值表,在此基础上分析确定电路的功能,这也即是逻辑电路的分析过程。 对于组合逻辑电路的设计,一般遵循下面原则,由所给题目抽象出便于分析设计的问题,通过这些问题,分析推导出真值表,由此归纳出其逻辑表达式,再对其化简变换,最终得到所需逻辑图,完成了组合逻辑电路的设计过程。 逻辑转换仪是在Multisim软件中常用的数字逻辑电路设计和分析的仪器,使用方便、简洁。 三、实验电路及步骤 1.利用逻辑转换仪对已知逻辑电路进行分析。 (1)按图1-1连接电路。 图1-1 待分析的逻辑电路 (2)通过逻辑转换仪,得到下图1-2所示结果。 由图可看到,所得表达式为:输出为Y, D'+ABCD CD'+ABC' AB' + D C' BCD'+AB' A' + D BC' A'+ CD B' D'+A' C' B' A' Y

图1-5 经分析得到的真值表和表达式 (3)分析电路。观察真值表,我们发现:当输入变量A、B、C、D中1的个数为奇数时,输出为0;当其为偶数时,输出为1。因此,我们说,这是一个四输入的奇偶校验电路。 2.根据要求,利用逻辑转换仪进行逻辑电路的设计。 问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾推测器。为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才会产生报警控制信号,试设计报警控制信号的电路。 具体步骤如下: (1)分析问题:探测器发出的火灾探测信号有两种情况,一是有火灾报警(可用“1”表示),一是没有火灾报警(可用“0”来表示),当有两种或两种以上报警器发出报警时,我们定义此时确有警报情况(用“1”表示),其余以“0”表示。由此,借助于逻辑转换仪面板,我们绘出如图1-3所示真值表。 图1-3 经分析得到的真值表

数电实验报告

班级:姓名: 学号: 实验报告(一)TTL集成逻辑门的逻辑功能与参数测试1.测试TTL集成与非门74LS20的逻辑功能,测试结果记录如下表: 输入输出 An Bn Cn Dn Yn 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 2. 74LS20主要参数的测试 I CCL (mA) I CCH (mA) I il (mA) I OL (mA) N O= iL OL I I 3. 电压传输特性测试 V i(V) 0 0.4 0.7 0.9 1.0 1.1 1.2 1.3 1.4 2.0 3.0 4.0 … V O(V) 4.画出实测的电压传输特性曲线,并从中读出各有关参数值。

实验报告(二)CMOS 电路 1.用所给的集成电路(CD4007)实现F=ABC ,将实验结果填入真值表中,并测出高、低电平(真值表自拟,测试步骤自拟)。 2. 用所给的集成电路实现F=C B A ++(真值表自拟,测试步骤自拟)。 3. 用所给的集成电路,构成图2-2反相器。 (a )测最大灌电流I OL (V OL =0.1V ,接通图2-2中的虚线框①)。 (b )测最大拉电流I OH (V OH =4.9V,断开虚线框①,接通虚线框②。 4. 构成如图2-3所示的反相器,测最大灌电流I OL 。

实验报告(三)组合逻辑电路实验分析与设计(1) 写出由与非门组成的半加器电路的逻辑表达式 (2) 根据表达式列出真值表,并画出卡诺图判断能否简化 A B Z1 Z2 Z3 S C 0 0 0 1 1 0 1 1 实验: 1.测试由与非门组成的半加器电路的逻辑功能 A B S C 0 0 0 1 1 0 1 1 2.测试用异或门74LS86和与非门74LS00组成的半加器的逻辑功能 A B S C 0 0 0 1 1 0 1 1

数电实验报告

数电实验报告

《数字电子技术》 实验报告 姓名:*** 班级:****888

学号:2014*******8 指导老师:**** 编制时间:2016.06.10 北京联合大学 实验一基本集成逻辑门电路功能分析一、实验目的 1.理解TTL和CMOS普通门电路的参数含义。 2.掌握TTL和CMOS普通门电路的使用方法。 3.掌握分析普通门电路逻辑功能的一般方法。 4.理解TTL和CMOS普通门电路参数的一般分析方法。 二、实验元器件 双四输入与非门 74LS00×1片 六反相器 74LS04×1片 电阻 300Ω×1只 三、实验内容

(一) TTL 双四输入与非门74LS00功能分析 (1)逻辑功能分析 参考图1.1连接电路。一只74LS00芯片中含有四个相同的2输入与非门,可以随意选用,此处选用的是第一个门电路。检查电路无误时方可通电。 图1.1 与非门逻辑功能测试电路 变换单刀双掷开关J1和J2的状态,用直流电压表测试电路的输出电压,将测试结果记入表1.1中。 表1.1 输入 输出 U 1/V U 2/V 实测值 逻辑值 0 0 5 5 0 5 5 5 5 5 5 U1A 7400N J2Key = A J1 Key = B VCC 5V 0.000 V +-

5 5 0 0 (2)电压传输特性分析 依照图1.3编辑电路。在0~5V 间逐步调整输入的直流电压,将随之变化的输出电压记入表1.2中。 图1.3 分析与非门电压传输特性仿真电路 表1.2 U I /V U O /V U I /V U O /V U I /V U O /V U I /V U O /V 5.0 0 3.8 0 2.6 0 1.4 5 4.8 0 3.6 0 2.4 5 1.2 5 4.6 0 3.4 0 2.2 5 1.0 5 4.4 0 3.2 0 2.0 5 0.8 5 4.2 0 3.0 0 1.8 5 0.4 5 4.0 0 2.8 1.6 5 5 5.000 V +-VSS U1A 7400N V2 1.8 V

数电实验实验报告

[键入文档标题] 实验一组合逻辑电路分析 一.试验用集成电路引脚图 74LS00集成电路74LS20集成电路 四2输入与非门双4输入与非门 二.实验内容 1.实验一 2.实验二 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。否则,报警信号为“1”,则接通警铃。试分析密码锁的密码ABCD是什么? ABCD接逻辑电平开关。 最简表达式为:X1=AB’C’D 密码为:1001

A B C D X1 X2 A B C D X1 X2 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 三.实验体会: 1.分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的相互转换来到达实验所要求的目的。 2.这次试验比较简单,熟悉了一些简单的组合逻辑电路和芯片,和使用仿真软件来设计和构造逻辑电路来求解。 实验二组合逻辑实验(一)半加器和全加器 一.实验目的 1.熟悉用门电路设计组合电路的原理和方法步骤 二.预习内容 1.复习用门电路设计组合逻辑电路的原理和方法步骤。 2.复习二进制数的运算。 3.用“与非门”设计半加器的逻辑图。 4.完成用“异或门”、“与或非”门、“与非”门设计全加器的逻辑图。 5.完成用“异或”门设计的3变量判奇电路的原理图。 三.元件参考 依次为74LS283、 74LS00、74LS51、 74LS136 其中74LS51:Y= (AB+CD)’, 74LS136: Y=A⊕B(OC门)四.实验内容 1.用与非门组成半加器,用或非门、与或非门、与非门组成全加器(电路自拟) 半加器 被加数A i0 1 0 1 0 1 0 1 加数B i0 0 1 1 0 0 1 1 前级进位C i-10 0 0 0 1 1 1 1 和S i0 1 1 0 1 0 0 1

数电实验报告

学生实验实习报告册 学年学期:2019 -2020 学年?春?秋学期 课程名称:数字电路与逻辑设计实验A 实验项目:基于FPGA的数字电子钟的设计与实现 姓名:康勇 学号:2018211580 学院和专业:计算机科学学院计算机科学与技术专业 班级:04911801 指导教师:罗一静 重庆邮电大学教务处制

1.系统顶层模块设计 本项目分为四个模块,分别为分频模块、计时模块、数码管动态显示模块、按键消抖模块。功能包括:基本时钟功能,整点报时功能,手动校时功能,秒表功能,小数点分割时分秒功能等。 设计思路如下: 图表 1数字时钟系统顶层模块设计思路 设计结果: 图表2数字时钟系统顶层模块设计电路图 2.分频模块电路设计及仿真 (1)模块功能

将输入的频率为50MHz的时钟信号利用74390通过2、5、100分频,对输入信号进行逐级分频。 (2)设计思路 图表3分频模块电路设计思路 (3)设计结果(电路) 图表4分频模块电路设计图 图表5模100电路图 (4)测试结果 图表6模100仿真图 图表7模5仿真图

图表8模2仿真图 3.计时模块设计及仿真 本模块主要功能是实现电子时钟计数功能。 图表9计时模块顶层设计电路图 3.1分、秒计时模块(模60计数) (1)模块功能(计数、进位) 电子时钟的分钟位和秒钟位均采用模60计数; 计数功能:从0到59; 进位功能:当计数记到59的时候,输出一个进位信号。 (2)设计思路 模60计数器可以通过一个模6计数器和一个模10计数器组成,由分钟位和秒位的特性可知,可以用模10计数器为个位,模6计数器为十位。当个位到9后,向十位进一。本模块使用器件74160。 计数功能:74160是十进制同步计数器(异步清零),为实现计数功能,首先将74160的LDN 反,CLRN反,ENT,ENP接高位,再接入时钟脉冲信号CLK,即可完成下图左侧(个位)模

数电实验报告(一)

数字电路实验设计报告

实验名称:组合逻辑研究(一)——QuartusⅡ软件的使用 实验目的: 1.学会使用QuartusⅡ软件,运用该软件设计电路原理图。 2.学会用语言设计电路原理图,并会对设计图进行功能和时序 仿真。 3.学会从QuartusⅡ软件中下载原理图到FPGA,测试电路功能。实验仪器: 1.计算机1台 2.数字电路实验板1块 实验内容: 1.利用软件,用原理图输入的方法实现三变量多数表决器电 路,进行功能和时序仿真,记录仿真波形。 2.利用QuartusⅡ软件,用VHDL文本输入的方法实现一位全加 器电路,进行功能和时序仿真,并下载入FPGA,在试验箱上 测试其电路功能。 设计过程及仿真结果: 1.三变量多数表决器原理图

功能仿真波形 时序仿真波形 2.一位全加器的VHDL语言描述 entity add1 is port( A,B,C: in bit; D,S: out bit ); end add1; architecture one of add1 is begin S<=A XOR B XOR C; D<=((A XOR B) AND C) OR (A AND B); end one;

一位全加器功能真值表 验证其功能 功能仿真波形 时序仿真波形

实验结果分析: (1)由仿真结果可以看出,三变量多数表决器电路原理图及一位全加器的VHDL语言描述正确。 (2)由仿真结果可知,功能仿真时对信号的输入没有延迟,而时序仿真时,当多个输入信号在同一时刻处同时发生变化时,此时电路存在竞争,会有冒险,故从仿真图上可以看到毛刺。

数电实验报告1-数电实验报告实验一

实验一门电路逻辑功能及测试 一、实验目得 1、熟悉门电路逻辑功能。 2、熟悉数字电路学习机及示波器使用方法。 二、实验仪器及材料 1、双踪示波器 2、器件 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86二输入端四异或门1片 74LS04 六反相器1片 三、预习要求 1、复习门电路工作原理相应逻辑表达示。 2、熟悉所有集成电路得引线位置及各引线用途。 3、了解双踪示波器使用方法。 四、实验内容 实验前按学习机使用说明先检查学习机就是否正常,然后选择实验用得集成电路,按自己设计得实验接线图接好连线,特别注意Vcc及地线不能接错。线接好后经实验指导教师检查无误方可通电。试验中改动接线须先断开电源,接好线后在通电实验。 1、测试门电路逻辑功能。 (1)选用双输入与非门74LS20一只,插入面包板,按图 连接电路,输入端接S1~S4(电平开关输入插口),输 出端接电平显示发光二极管(D1~D8任意一个)。 (2)将电平开关按表1、1置位,分别测出电压及逻辑状态。(表1、1)

2、异或门逻辑功能测试 (1)选二输入四异或门电路74LS86,按图接线,输入端1﹑2﹑4﹑5接电平开关,输出端A﹑B﹑Y接电平显示发光二极管。 (2)将电平开关按表1、2置位,将结果填入表中。 表1、2 3、逻辑电路得逻辑关系

(1)选用四二输入与非门74LS00一只,插入面包板,实验电路自拟。将输入输出逻辑关系分 别填入表1、3﹑表1、4。 (2)写出上面两个电路得逻辑表达式。 表1、3 Y=A ⊕B 表1、4 Y=A ⊕B Z=AB 4、逻辑门传输延迟时间得测量 用六反相器(非门)按图1、5接线,输80KHz 连续脉冲,用双踪示波器测输入,输出相位差,计算每个门得平均传输延迟时间得tpd 值 : tpd =0、2μs/6=1/30μs 5、利用与非门控制输出。 选用四二输入与非门74LS00一只,插入面包板,输入接任一电平开关,用示波器观察S对输出脉冲得控制作用: 一端接高有效得脉冲信号,另一端接控制信号。只有控制信号端为高电平时,脉冲信号才能通过。这就就是与非门对脉冲得控制作用。 6.用与非门组成其她门电路并测试验证 (1)组成或非门。 用一片二输入端与非门组成或非门 Y = A+ B = A ? B 画出电路图,测试并填表1、5 中。 表1、5 图如下: (2)组成异或门 ① 将异或门表达式转化为与非门表达式。 A ⊕B={[(AA)'B]'[A( B B)']}' ② 画出逻辑电路图。 ③ 测试并填表1、6。表1、6

数电实验报告(含实验内容)

数电实验报告(含实验内容) 班级:专业:姓名:学号:实验一用与非门构成逻辑电路 一、实验目的 1、熟练掌握逻辑电路的连接并学会逻辑电路的分析方法 2、熟练掌握逻辑门电路间的功能变换和测试电路的逻辑功能 二、实验设备及器材 KHD-2 实验台 集成 4 输入2 与非门74LS20 集成 2 输入4 与非门74LS00 或CC4011 三、实验原理 本实验用的逻辑图如图 2-1 所示 图1-1 图1-1 四、实验内容及步骤 1、用与非门实现图1-1电路,测试其逻辑功能,将结果填入表1-1中,并说明该电路的逻辑功能。 2、用与非门实现图1-1电路,测试其逻辑功能,将结果填入表1-2中,并说明该电路的逻辑功能。 3、用与非门实现以下逻辑函数式,测试其逻辑功能,

将结果填入表1-3中。 Y(A,B,C)=A’B+B’C+AC 班级:专业:姓名:学号:五、实验预习要求 1、进一步熟悉 74LS00、74LS20 和CC4011 的管脚引线 2、分析图 1-1 (a)、的逻辑功能,写出逻辑函数表达式,并作出真值表。 六、实验报告 1、将实验数据整理后填入相关的表格中 2、分别说明各逻辑电路图所实现的逻辑功能 A B C Z A B C Y 表1-1 表1-2 A B C Y 表1-3 班级:专业:姓名:学号:实验二组合逻辑电路的设计与测试 一、实验目的 1、掌握组合逻辑电路的设计与测试方法 2、进一步熟悉常用集成门电路的逻辑功能及使用 二、实验设备及器材 KHD-2 实验台 4 输入2 与非门74LS20 2 输入4 与非门74LS00 或CC4011

三、实验原理 使用中、小规模集成电路来设计组合电路是最常见的逻辑电路的设计方式。设计组合电路的一般步骤如图2-1 所示。 图 2-1 组合逻辑电路设计流程图 根据设计任务的要求建立输入、输出变量,并列出真值表。然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。并按实际选用逻辑门的类型修改逻辑表达式。根据简化后的逻辑表达,画出逻辑图,用标准器件构成逻辑电路。最后,用实验来验证设计的正确性。 四、实验内容及步骤 1、用与非门设计一个数码转换电路,将一个三位二进制码转换成3 位格雷码。即当输入信号为三位二进制代码时其输出为相应的3 位格雷码。要求: 1)分析逻辑功能,作出真值表,写出逻辑表达式。 班级:专业:姓名:学号: 2)简化逻辑表达式,画出逻辑图 3)按逻辑图连接逻辑电路并测试其逻辑功能。 2、用与非门设计一个一位的数值比较器,即比较两个1 位的二进制数A、B 的大小,假定当A>B 时,1 号灯亮,AB 时,1 号灯亮,A