微分算子的谱分析

微分算子的谱分析
微分算子的谱分析

某些线性微分方程的算子解法

第23卷第5期 唐山师范学院学报 2001年9月 Vol. 23 No.5 Journal of Tangshan Teachers College Sep. 2001 ────────── 收稿日期:2001-06-20 作者简介:崔万臣(1953-),男,河北丰南人,唐山师范学院数学系讲师。 - 41 - 某些线性微分方程的算子解法 崔万臣 (唐山师范学院 数学系,河北 唐山 063000) 摘 要:给出了某些基本类型的线性微分方程的算子解法。 关键词:算子;逆算子;线性方程;特征根 中图分类号:O17 文献标识码:A 文章编号:1009-9115(2001)05-0041-02 在常微分方程中,方程求解问题是很重要的内容。一般常微分方程的求解不是容易的,但常系数线性方程的求解已经有了较多的方法。本文给出某些基本类型的常系数线性微分方程的算子解法。 1 算子的概念和性质 定义1 记d D dx =;222d D dx =… …n n n d D dx =。称2n D,D ......D 极其多项式n n 11n 1n L(D)D a D a D a --=++++ 为微分算子,简称算子。于是方程n n 11n 1n n n 1d d d y a y ......a y a y f (x)dx dx dx ---++++=可记为L(D)y f (x)= 定义2 设L(D)为一算子,若存在算子H(D)使L(D)(H(D)f (x))f (x)=,则称H(D)为L(D)的逆算子,记为1H(D)L(D)=于是方程L(D)y=f(x)等价于1y f (x)L(D) =可以证明,算子具有以下性质(证明略) 1.11221122L(D)(a y a y )a L(D)y a L(D)y +=+ 2.()()()()1212L (D)L D y L D L D y = 3. x x 11e e (L()0)L(D)L()λλ=λ≠λ 4.()x x 11e f (x)e f x L(D)L(D ) λλ=+λ 2 某些基本类型微分方程的算子解法 类型Ⅰ k L(D)y f (x)=,其中k f (x)为x 的k 次多项式。分两种情况讨论 1°若L(0)≠0,由逆算子定义直接可求得特解k k 1y f (x)Q(D)f (x)L(D) == 2°若L(0)=0,此时,()()()s 11L(D)D L D L 00,s 0=≠> 由性质2,方程的特解k k s 111y f (x)f (x)L(D)D L(D) == 例1 求方程22(D 1)y x 5+=+特解

微分算子法

高阶常微分方程的微分算子法 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 32230D y D y Dy --= 或3 2 (23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++L ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32 (6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+

微分算子法典型例题讲解

高阶常微分方程的微分算子法 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++ ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin3x e x 从而通解是 22123cos3sin3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0 ()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1(cos )x -),解得 1s i n ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

最新奇异Hamilton算子的谱分析

奇异H a m i l t o n算子 的谱分析

奇异Hamilton算子的谱分析 解读大兴安岭:咋不转过身来?哲夫1、十年后将无树可采主题词:大兴安岭的生态环境已经失衡,最多可以再采伐十六年,弄不好十四年,再糟一点,十年后将无树可伐…樟子松大兴安岭林区开发初期总面积为849万公顷,活立木蓄积7.3亿立方米,有林地蓄积7.0亿立方米,其中可采的成过熟林蓄积4.6亿立方米。全区森林覆被率75.7%。近些年,人祸加上天灾,原有天然林资源遭受到严重破坏,过去随处可见的高大林木已被中幼龄林木所代替。1995年森林覆盖率为74.24%,2002年是78.4%,有林地面积似乎增加了,但森林资源数量和质量却大幅度减少,每公顷蓄积量比1962下降了27.8%;部分森林的郁闭度在0.4以下。兴安落叶松和樟子松的面积和蓄积所占的比重下降了三分之一以上,而白桦所占的比重且增加了三分之一以上。2002年的森林资源数量与1962年相比,针叶林蓄积量由5.8亿立方米减少到3.6亿,减少37.9%;而阔叶树蓄积量由1.1亿立方米增加到3.6亿立方米,增加了26.4%。优势树种兴安落叶松与白桦蓄积比值发生了重大变化,由7:1变为2.6:1。1987年和1956年相比,幼龄林增加了1.5倍,中龄林增加了2.5倍,近熟林减少了38.4%,成过熟林减少了41.0%。伐木场的工人从树种结构分析,樟子松减少了41.8%,兴安落叶松的面积增加了4.6%,而白桦增加了91.4%。其他阔叶树减少了7.8%。1998国家批准的"天保工程实施方案"规定,大兴安岭林区有林地面积中74.9%划为生态保护区,25.1%划为商品林经营区。1998年木材产量310.3万立方米,1999年木材产量288.5万立方米;实际消耗森林蓄积492.6万立方米,两年间共减产木材102万立方米,森林资源消耗减少174.2万立方米。木材产量由天保实施前1997年350.4万立方米,减至2001年214.4万立方米,年减少木材产量136万立方米。目前年生产木

时间序列分析方法第章谱分析

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞ ∞-}{t Y 的性质。 假设+∞ ∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:

注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞ ∞-}{j γ,原则上都可 以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: ω的下面我们考虑)1(MA 过程, 此时:z z θψ+=1)(,则母体谱为: 可以化简成为: 显然,当0>θ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数;当0<θ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数。

对)1(AR 过程而言,有: 这时只要1||<φ,则有:)1/(1)(z z φψ-=,因此谱函数为: 该谱函数的性质为:当0>φ时,谱函数)(ωY s 在],0[π内是ω的单调递增函数;当0<φ时,谱函数)(ωY s 在],0[π内是ω的单调递减函数。 一般地,对),(q p ARMA 过程而言: ) (ωY s 利用上述谱公式,可以实现谱函数与自协方差函数之间的转换。 解释母体谱函数 假设0=k ,则利用命题6.1可以得到时间序列的方差,即0γ,计算公式为: 根据定积分的几何意义,上式说明母体谱函数在区间],[ππ-内的面积就是0γ,也就是过程的方差。

微分算子法中D的运算

微分算子法中D 的运算 D :微分的意思,如Dx 2=2x , D 3x 2=0 D 1:积分的意思,如D 1x=2x 2 ******************************************************************************* 定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序 例: x x x x e e k e e D 22222225)12()1()1(=+=+=+ 推论:) (1)(F 1k F e e D kx kx = (F(k)≠0) 例:x e y y 2=+'' x e y D 22)1(=+ x x x e e e D y 22222*5 1121)1(1=+=+= ****************************************************************************** 定理2:)(sin sin )(F 22a F ax ax D -?= )(cos cos )(F 22a F ax ax D -?= 注意使用公式时的前后顺序 推论:) (1sin sin )(F 122a F ax ax D -?= (F(-a 2) ≠0) 例:x y y 3cos 24=+) ( x y D 3cos 2)1(4 =+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=??=+-??=?+?=?+?=遇到sinax,cosax 时,要凑出D 2来。F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。 ******************************************************************************* 定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)() (1)()(F 1x v k D F e x v e D kx kx += 例:x e x y y 22y 44?=+'-''

波谱分析技术

第四节波谱分析技术 一、专家评议 波谱包括核磁共振 (NMR),顺磁共振 (ESR),磁共振成像 (MRI),核电四级矩共振 (NQR),光磁共振 (LMR) 等几种. 其中核磁共振 NMR 是化学研究上鉴定化合物结构的利器,在波谱仪器中最主要与最常见,将继续是本次评议的重点。 本次对于核磁共振 NMR 的评议介绍有以下两个主题: 如何选购合适的核磁共振谱仪,谱仪探头的评议介绍。 核磁共振谱仪在市场供应方面,和色谱光谱等其它常见的仪器存在明显的不同。核磁共振谱仪由于价格比较昂贵(近百万到千万元人民币, 200-1000 兆超导谱仪),使用的单位少(几百),生产的厂家数目少(三家左右)。 目前生产检测化合物结构用的核磁共振谱仪的厂家有: 1.美国的 Varian 公司 (2009 年下半年为安捷伦公司收购,本评议仍以 Varian 公司 称呼); 2.德国在瑞士设厂的 Bruker 公司 (Bruker-Biospin): 3.日本电子公司 (JEOL,Ltd.) 在中国境内的核磁共振谱仪已将近 800 台,这些年来每年以近 80 台的速度增加之中。中国国产核磁共振谱仪正开展中。 中国自主研发核磁共振谱仪的进展是国人非常关注的事情。几年前列入国家"十一五科技支撑计划”,由中科院武汉物理与数学研究所领军,结合厦门大学等单位组成课题组,研发组装了两台 500 兆超导核磁共振谱仪,在2009 年底完成组装工作,2010 年初进行课题验收。我们展望下一次能进行国产核磁共振谱仪的评议介绍,期望国产谱仪能早日进入国内外市场。 二、应用报告及仪器介绍 1如何选购合适的核磁共振谱仪 波谱评议的专家组成员经常参与单位内外的核磁共振谱仪采购评鉴或认证工作。在评议会议上,专家们都很感慨购买单位普遍存在不知道如何正确选购核磁共振谱仪,有许多选错谱仪型号或部件,或由于经费充裕而选购了不必要的部件,觉得有必要借此次核磁共振谱仪的评议机会向大家阐明注意要点。 采购核磁共振谱仪,有以下事项需要进行评估与考虑:

姚老师最爱的两招:表格法与微分算子法

姚老师最爱的两招:表格法与微分算子法,因为效率高,所以喜欢,仅此而已!录入可是字字辛苦,希望大家珍惜哦! 一、 分部积分的表格法 分部积分主要针对被积函数为两类函数乘积的类型,主要可以归纳为反幂、对幂、幂三、幂指和三指五种,幂可以扩展为多项式函数,三主要指正弦和余弦两类三角函数,基本原则是把其中一类函数拿去凑微分,遵循“反对幂三指”、越往后越先凑微分的原则,前四种称为“终止模式”,最后一种称为“循环模式”。当涉及到幂函数(多项式函数)次数较高时,需多次用到分部积分,计算较繁且易出错,因此介绍一个推广公式: 定理:设(),()u u x v v x ==有1n +阶连续导数,则 (1)()(1)(2)(3)1(1)''''''(1)n n n n n n n uv dx uv u v u v u v u vdx +---++=-+-++-? ?。(此定理及证 明可略,仅告诉大家,我不是瞎编乱造,而是有理论依据的!) 【证:用数学归纳法。 当0n =时,''uv dx uv u vdx =-??。 设1n k =≥时,(1)()(1)(2)(3)1(1)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx +---++=-+-+ +-?? (*) 则当1n k =+时,(2)(1)(1)(1)'k k k k uv dx udv uv u v dx ++++==-???, 将上式的'u (*)式中的u ,则有 (1)()(1)(2)1(2)'''''''(1)k k k k k k u v dx u v u v u v u vdx +--++=-+++-? ?, 从而(2)(1)()(1)(2)2(2)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx ++--++=-+-+ +-??,得证。】 上述式子并不好记,它的一个直观表达就是表格法,如下表。 1))1)2) v v +-- 下面通过例子给予演示: (1)“幂三”型 例1.1 52(325)cos x x x xdx +-+? 解:

第一节 有界线性算子的谱

第一节 有界线性算子的谱 一、算子代数 定义:()L X 是一复Banach 空间,并且为一具有线性运算与乘法运算的代数系统,我们称其为算子代数。 性质:设,,(),R S T L X α∈∈C ,则有 1、结合律:()()RS T R ST =,(,)m n m n T T T m n +=∈N ; 2、()()()ST S T S T ααα==; 3、(),()R S T RS RT R S T RT ST +=++=+; 4、单位算子I 满足:IT TI T ==; 5、:T X X →为同构?存在,()A B L X ∈,使得AT I TB ==;必定A B =,称它为T 的逆,记作1 T -,并称T 为可逆算子。以()GL X 记()L X 中的可逆算子的全体。 6、若,()S T GL X ∈,则()ST GL X ∈,且 11111(),()()n n ST T S T T -----==。 当()T GL X ∈时约定10()(0),n n T T n T I --=>=,因而对任何,k k Z T ∈有意义。 注:1、算子乘法不满足交换律; 2、,(1)n n ST S T T T n ≤≤≥; 3、若在()L X 中,n n S S T T →→,则必有n n S T ST →。 定义:设T 属于某算子代数,称 010 ()(3.1.1)n n n n n f T T I T T αααα∞ ===++ ++ ∑、 (其中系数(0)n n α∈≥C 为算子幂级数。 性质:设通常幂级数0 ()n n n f λαλ ∞ ==∑有收敛半径R ,则当(),T L X T R ∈<时级数 (3.1.1)绝对收敛:

典型序列的频谱分析

天津城市建设学院 课程设计任务书 2012—2013学年第1学期 计算机与信息工程学院电子信息工程系电子信息科学与技术专业 课程设计名称:数字信号处理 设计题目:典型序列的频谱分析 完成期限:自2012 年12月17 日至2012 年12月28 日共2 周 设计依据、要求及主要内容: 一.课程设计依据 《数字信号处理》是电子信息类专业极其重要的一门专业基础课程,这门课程是将信号和系统抽象成离散的数学模型,并从数学分析的角度分别讨论信号、系统、信号经过系统、系统设计(主要是滤波器)等问题。采用仿真可帮助学生加强理解,在掌握数字信号处理相关理论的基础上,根据数字信号处理课程所学知识,利用Matlab产生典型信号并进行频谱分析。 二.课程设计内容 1、对于三种典型序列------单位采样序列、实指数序列、矩形序列,要求:(1)画出以上序列的时域波形图;(2)求出以上序列的傅里叶变换;(3)画出以上序列的幅度谱及相位谱,并对相关结果予以理论分析;(4)对以上序列分别进行时移,画出时移后序列的频谱图,验证傅里叶变换的时移性质;(5)对以上序列的频谱分别进行频移,求出频移后频谱所对应的序列,并画出序列的时域波形图,验证傅里叶变换的频移性质。 2、自行设计一个周期序列,要求:(1)画出周期序列的时域波形图;(2)求周期序列的DFS,并画出幅度特性曲线;(3)求周期序列的FT,并画出幅频特性曲线;(4)比较DFS和FT的结果,从中可以得出什么结论。 三.课程设计要求 1.要求独立完成设计任务。 2.课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3.课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4.测试要求:根据题目的特点,编写Matlab程序,绘制结果图形,并从理论上进行分析。 5.课设说明书要求: 1)说明题目的设计原理和思路、采用方法及设计流程。 2)详细介绍运用的理论知识和主要的Matlab程序。 3)绘制结果图形并对仿真结果进行详细的分析。

微分算子法

高阶常微分方程的微分算子法 撰写 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 32230D y D y Dy --= 或32 (23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此 三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成 11()(()())n n n L y D a x D a x y -≡+++L ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32 (6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+

微分算子法

微分算子法

高阶常微分方程的微分算子法 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 3 2 230D y D y Dy --= 或3 2(23)0 D D D y --= 我们熟知,其实首先要解特征方程 32230 D D D --= 得0,1,3D =-故知方程有三特解 31,,x x e e -,由于此三特解为线性 无关,故立得通解 31 23x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()() ()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1 (),,()n a x a x L 是某区间 (,) a b 上的连续函数,上述方 程又可写成 11()(()())n n n L y D a x D a x y -≡+++L () f x = 可以把上面括号整体看作 一种运算,常称为线性微分 算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写 成 32(6116)0 D D D y -+-=

微分算子法典型例题讲解

高阶常微分方程的微分算子法 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

一个具有混合边界条件的Laplace算子谱分析

万方数据

万方数据

万方数据

万方数据

一个具有混合边界条件的Laplace算子谱分析 作者:周巧, ZHOU Qiao 作者单位:盐城生物工程高等学校,计算机系,江苏,盐城,224051 刊名: 内江师范学院学报 英文刊名:JOURNAL OF NEIJIANG NORMAL UNIVERSITY 年,卷(期):2010,25(12) 参考文献(10条) 1.杨国梁;周周;杨志勇二阶常系数非齐次线性微分方程特解的一种求法 2009(z2) 2.王益艳基于多结构元素的数学形态学边缘检测算法[期刊论文]-四川文理学院学报 2009(05) 3.裴瑞昌;马草川一类混合边值问题的无穷多解[期刊论文]-四川师范大学学报(自然科学版) 2007(04) 4.王竹溪;郭敦仁特殊函数概论 2000 5.邱为钢三角形拉普拉斯算子谱分析 2007(03) 6.邱为钢;张华;姚仁勇三角形拉普拉斯算子谱分析[期刊论文]-杭州师范学院学报(自然科学版) 2005(01) 7.陈化关于具分形边界连通区域上的谱渐近及Weyl-Berry猜想 1998(06) 8.肯尼思;法尔科内分形几何--数学基础及应用 2001 9.CHEN Shi-Jun;DU Wen-jun;LU Yan-qin Gene chip analysis of mutation of HBV-DNA open reading frame[期刊论文]-Chinese Journal of Experimental and Clinical Virology 2004(04) 10.Dmitri Vassilevich Heat kernel expansion:user's manual 2003(5/6) 本文链接:https://www.360docs.net/doc/2316698470.html,/Periodical_njsfxyxb201012004.aspx

典型序列的谱分析及特性___数字信号课程设计

兰州城市学院 课程设计报告 课程名称_____________数字信号处理__________ 设计题目典型序列的谱分析及特性 专业_____电子信息科学与技术____________ 班级电信111班 学号20110602050135 姓名_______________闫宝山_____________ 完成日期2015年1月1日

课程设计任务书 设计题目:_________ 典型序列的谱分析及特性_______________ _________________________________________________________ 设计内容与要求: 1对于三种典型序列------单位采样序列、实指数序列、矩形序列,要求: (1). 画出以上序列的时域波形图; (2). 求出以上序列的傅里叶变换; (3). 画出以上序列的幅度谱及相位谱,并对相关结果予以理论分析; (4). 对以上序列分别进行时移,画出时移后序列的频谱图,验证傅里叶变换的时移性质; (5). 对以上序列的频谱分别进行频移,求出频移后频谱所对应的序列,并画 出序列的时域波形图,验证傅里叶变换的频移性质。 2 自行设计一个周期序列,要求; (1).画出周期序列的时域波形图; (2).求周期序列的DFS,并画出幅度特性曲线; 1图(1).画出周期序列的时域波形图 课程设计评语 成绩:

指导教师:_______________ 年月日

目录 第1章设计任务及要求 (1) 1.1 设计任务 (1) 1.2 设计要求 (1) 第2章设计原理 (2) 2.1 三种典型序列的表达式及程序 (2) 2.1.1 单位采样序列 (2) 2.1.2 实指数序列 (2) 2.1.3 矩阵序列 (3) 2.2 时移、频移与傅里叶变换原理 (3) 2.2.1 时移原理 (3) 2.2.2 频移原理 (4) 2.2.3 傅里叶变换(DFT)原理 (4) 第3章设计实现 (5) 3.1 单位采样序列的谱分析及特性实现 (5) 3.2 实指数序列的谱分析及特性实现 (6) 3.3 矩阵序列的的谱分析及特性实现 (8) 第4章设计结果及分析 (10) 4.1 三种典型序列的结果 (10)

微分算子法中D的运算

微分算子法中D 的运算 D:微分的意思,如Dx 2=2x , D 3x 2=0 D 1:积分的意思,如D 1x=2x 2 ******************************************************************************* 定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序 例: x x x x e e k e e D 22222225)12()1()1(=+=+=+ 推论:) (1)(F 1k F e e D kx kx = (F(k)≠0) 例:x e y y 2=+'' x e y D 22)1(=+ x x x e e e D y 22222*5 1121)1(1=+=+= ****************************************************************************** 定理2:)(sin sin )(F 22a F ax ax D -?= )(cos cos )(F 22a F ax ax D -?= 注意使用公式时的前后顺序 推论:) (1sin sin )(F 122a F ax ax D -?= (F(-a 2) ≠0) 例:x y y 3cos 24=+)( x y D 3cos 2)1(4=+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=??=+-??=?+?=?+?=遇到sinax,cosax 时,要凑出D 2来。F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。 ******************************************************************************* 定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)() (1)()(F 1x v k D F e x v e D kx kx += 例:x e x y y 22y 44?=+'-''

算子总结;哈密尔顿算子;拉普拉斯算子

?:向量微分算子、哈密尔顿算子、Nabla算子、劈形算子,倒三角算子是一个微分算 子。Strictly speaking, ?del is not a specific operator, but rather a convenient mathematical notation for those three operators, that makes many equations easier to write and remember. The del symbol can be interpreted as a vector of partial derivative operators, and its three possible meanings—gradient, divergence, and curl—can be formally viewed as the product of scalars, dot product, and cross product, respectively, of the del "operator" with the field. Δ、?2 or ?·?:拉普拉斯算子(Laplace operator),定义为梯度(▽f)的散度(▽·f)。 , grad F=▽F,梯度(gradient),标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。▽f= div F=▽·F,散度(divergence),是算子▽点乘向量函数,矢量场的散度是一个标量函数,与求梯度正好相反,div F表示在点M处的单位体积内散发出来的矢量F的通量,描述了通量源的密度,可用表征空间各点矢量场发散的强弱程度。当div F>0 ,表示该点有散发通量的正源;当div F<0 表示该点有吸收通量的负源;当div =0,表示该点为无源场。即闭合曲面的面积分为0是无源场,否则是有源场。 rot F 或curl F=? ×F,旋度(curl,rotation),是算子▽叉乘向量函数,矢量场的旋 度依然是矢量场,意义是向量场沿法向量的平均旋转强度,向量场在曲面上旋量的总和等于该向量场沿该曲面边界曲线的正向的环量,也就是封闭曲线的线积分。旋量为0的向量场叫无旋场,只有这种场才有势函数,也就是保守场。即闭合环路的线积分为0是无旋场,否则就是有旋场。 基本关系: 一个标量场f的梯度场是无旋场,也就是说它的旋度处处为零:

自谱分析

信号分析原理测试信号的频域分析是把信号的幅值、相位或能量变换以频率坐标轴表示,进而分析其频率特性的一种分析方法又称为频谱分析。对信号进行频谱分析可以获得更多有用信息,如求得动态信号中的各个频率成分和频率分布范围,求出各个频率成分的幅值分布和能量分布,从而得到主要幅度和能量分布的频率值。 自谱分析 对于一个振动信号或其它类型的随机信号,有时为了研究其内在规律,需要分析随机信号的周期性,这就需要将信号从时域变换到频域,得到的频谱中每个频率都对应信号的一个周期谐波分量。 频谱分析使信号处理中最基本的分析方法之一,广泛应用于各种工程技术领域。 自谱分析就是对一个信号进行频谱分析,包括幅值谱(PEAK)、幅值谱(RMS)、功率谱和功率谱密度等。其中幅值谱(PEAK)反映了频域中各谐波分量的单峰幅值,幅值谱(RMS)反映了各谐波分量的有效值幅值,功率谱反映了各谐波分量的能量(或称功率),功率谱密度反映了各谐波分量的能量分布情况。 频谱分析通常使用一定长度(例如1024点)FFT分析方法,当信号数据长度大于2倍的1024点时,可以对信号数据采用两种不同的分析方式:全程平均方式和瞬时分析方式,使用全程平均方式时,将整个信号分成若干段数据,分别进行FFT 分析,得到各自的频谱之后,再进行平均,最后的结果较全面反映全程数据的频谱特性;当使用瞬时分析时,可以随意选择一段数据,随即进行FFT分析,得到的频谱就是最后结果,它不能反映全部数据的频谱特性,但反映了当前选择的数据段的频谱特性。 FFT为快速傅立叶变换,傅立叶变换的定义为: 傅立叶变换本身是连续的,无法使用计算机计算,而离散傅立叶变换的运算量又太大,为提高运算速度,通常使用快速傅立叶变换方法(FFT),但此时所得到的频谱不是连续的曲线了,具有一定的频率分辨率Δf,且Δf = SF / N,SF为信号采样频率,N为FFT分析点数(常为1024点)。由于频率分辨率的存在,以及时域信号为有限长度等原因,使FFT分析结果具有泄露的可能,为此常常使用一些措施来消除,如平滑、加窗、能量修正、细化分析等等。

相关文档
最新文档