弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总
弹性力学基本概念和考点汇总

基本概念:

(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:

作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定:

连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变;

设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,

0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。

设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律,

0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态;

过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件)

如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称;

在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

(1) 平面问题的平衡微分方程;

00yx

x x xy y

y f x y

f x y

τστσ??++=????++=??(记)

(2) 平面问题的平衡微分方程(极坐标);

10210f f ρρ?ρ?

ρ?

ρ?ρ???σ?τσσ?ρρ??ρ

?σ?ττρ???ρρ

-+++=+++=

1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。

2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。 二、 几何方程;

(1) 平面问题的几何方程;

x y xy u

x v y v u x y

εεγ?=

??=???=+

??(记)

(2) 平面问题的几何方程(极坐标);

1212

121u

u v v u v ρρρ???ρ?ρ?ρ?εεερ

εεερρ??

γγγρρ?ρ

?=+=??=+=+

??=+=

+-??

1、几何方程反映了位移和应变之间的关系。

2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。(刚体位移) 三、 物理方程;

(1) 平面应力的物理方程;

()()()1

1

21x x y y y x xy xy

E E

E

εσμσεσμσμγτ=

-=-+=(记)

(2) 平面应变的物理方程;

()22111121x x

y y y

x xy

xy

E E E

μμ

εσσμμμεσσμμγτ??-=- ?-????-=- ?-??

+= (3) 极坐标的物理方程(平面应力);

1

()1

()12(1)E E G E

ρρ???ρρ?ρ?ρ?

εσνσεσνσνγττ=

-=-+==

(4) 极坐标的物理方程(平面应变);

221()

11()12(1)E E E

ρρ???ρρ?ρ?

μμεσσμμμεσσμμγτ-=---=--+=

四、 边界条件; (1) 几何边界条件;

平面问题:()()

()()

s s u u s v v v == 在u s 上;

(2) 应力边界条件;

平面问题:

()()x

yx x

s

xy

y y

s

l m f l m f σ

ττ

σ+=+=(记)

(3) 接触条件;

光滑接触:()()n n

σσ'= n 为接触面的法线方向 非光滑接触:()()

()()

n n n n u u σσ'='= n 为接触面的法线方向

(4) 位移单值条件;

()()2u u θπθ+=

(5) 对称性条件:

在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

一﹑概念

1.弹性力学,也称弹性理论,是固体力学学科的一个分支。

2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、断裂力学、复合材料力学。

3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。.

4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛

5.弹性力学基本方法:差分法、变分法、有限元法、实验法.

6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学 三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.

7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。 8.几何方程反映的是形变分量与位移分量之间的关系。 9.物理方程反映的是应力分量与形变分量之间的关系。

10.平衡微分方程反映的是应力分量与体力分量之间的关系。

11当物体的位移分量完全确定时,形变分量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。

12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。

13.圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。

14. 圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。 15.求解平面问题的两种基本方法:位移法、应力法。

16.弹性力学的基本原理:解的唯一性原理﹑解的叠加原理﹑圣维南原理。

会推导两种平衡微分方程

17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数 (2)由式(2-24),根据应力函数求得应力分量

(3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主

要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。(或者根据已知面力确定应力函数或应力分量表达式中的待定系数

18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形

的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式

(2)按式(2-24),由应力推出应力函数f 的一般形式(含待定函数项); (3)将应力函数f 代入相容方程进行校核,进而求得应力函数f 的具体表达形式;

(4)将应力函数f 代入式(2-24),由应力函数求得应力分量

(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全

5.平面问题的应力边界条件为

7.圣维南原理的三个积分式

如果给出单位宽度上面力的主矢量和主矩,则三个积分边界条件变为

8.艾里应力函数

)()()

()(s f m l s f m l y s y xy x s xy x =+=+σττσ?

?

?

??

?--±=--±=--±=?±=??±=??±=?2

/2/2/2/2/2/2/2/2/2

/2/2/1

)(1)

(1

)(1)

(1

)(1)(h h y

h h l x xy h h x

h h l x x h h x

h h l x x dy y f dy ydy y f ydy dy y f dy τσσs

h h l x xy h h l x x N h h l x x F dy M

ydy F dy =?=?=??

??-=-=-=2

/2/2/2

/2/2

/1)(1)(1)(τ

σ

σy x y x y f x y x x f y y x xy y y x x ???-=-??=-??=),(,),(,),(2

2

222φτφσφσ填空 计 算 理 解 计算

一、单项选择题(按题意将正确答案的编号填在括弧中,每小题2分,共10分)

1、弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .相容方程

B .近似方法

C .边界条件

D .附加假定

2、根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )

的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A .几何上等效

B .静力上等效

C .平衡

D .任意 3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。

A .平衡方程、几何方程、物理方程完全相同

B .平衡方程、几何方程相同,物理方程不同

C .平衡方程、物理方程相同,几何方程不同

D .平衡方程相同,物理方程、几何方程不同

在研究方法方面:材力考虑有限体ΔV 的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。

4、常体力情况下,用应力函数表示的相容方程形式为024422444=??+???+??y

Φ

y x Φx Φ,

6、设有函数???

?

??-+???? ??-+-=Φh y h y qy h y h y qx 332332251344, (1)判断该函数可否作为应力函数?(3分)

(2)选择该函数为应力函数时,考察其在图中所示的矩形板和坐标系(见题九图)中能解决什么问题(l >>h )。(15分)

解:

(1)将φ代入相容方程024422444=??+???+??y

Φ

y x Φx Φ,显然满足。因此,该函数可以作为

应力函数。

O

x

h/2

h/2y

(2)应力分量的表达式:

???

? ??--=??Φ?-=???? ??-+-=?Φ?=-+=?Φ?=2

23

233223

33222461342,3346y h h

qx

y x h y

h y q x h qy h qy h y qx y xy y x τσσ

考察边界条件:在主要边界y =±h/2上,应精确满足应力边界条件

()q h y h y q h

y h

y y -=????

??-+-=-=-=2

332

1342σ ()

013422

332

=???? ??-+-===h

y h

y y h y h y q σ ()

0462

2232

=???? ??--=±=±=h

y h

y xy y h h qx τ 在次要边界x =0上,应用圣维南原理,可列出三个积分的应力边界条件:

())(0

3342

/2/3302

/2/奇函数=???

?

??-=??-=-dy h qy h qy dy h h x h h x σ

()0

3342

/2/3302

/2/=???

?

??-=??-=-ydy h qy h qy ydy h h x h h x σ

()

2/2

/==-?dy x h h xy

τ

在次要边界x =l 上,应用圣维南原理,可列出三个积分的应力边界条件:

())(0

33462

/2/33322

/2/奇函数=???

?

??-+-=??-=-dy h qy h qy h y ql dy h h l x h h x σ

()233462

/2/33322

/2/ql ydy h qy h qy h y ql ydy h h l x h h x -=???

? ??-+-=??-=-σ

()ql y h h ql dy h h l x h h xy -=?

??

? ??--=??-=-2

/2/2232

/2/46τ

对于如图所示的矩形板和坐标系,结合边界上面力与应力的关系,当板内发

生上述应力时,由主边界和次边界上的应力边界条件可知,左边、下边无面力;而上边界上受有向下的均布压力;右边界上有按线性变化的水平面力合成为一力偶和铅直面力。

所以,能够解决右端为固定端约束的悬臂梁在上边界受均布荷载q 的问题。

2009 ~ 2010学年第 二 学期期末考试试卷 ( A )卷

一. 名词解释(共10分,每小题5分)

1. 弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。

2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

应力符号的规定为: 正面正向、负面负向为正,反之为负 。4. 弹性力学中,正面是指 外法向方向沿坐标轴正向 的面,负面是指 外法向方向沿坐标轴负向 的面 。

1. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有

哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:

平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。 2. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数Φ求解,应力

函数Φ必须满足哪些条件?

答:(1)相容方程:04

=Φ?

(2)应力边界条件(假定全部为应力边界条件,σs s =):

()()()上在στστσs s f l m f m l y

s xy y x s yx x =?????=+=+

(3)若为多连体,还须满足位移单值条件。 二. 问答题(36)

1. (12分)试列出图5-1的全部边界条件,在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。(板厚1=δ)

图5-1

解:在主要边界2h y ±=上,应精确满足下列边界条件:

()

l qx h y y -=-=2

σ,()

02

=-=h y yx

τ; ()

02

=+=h y y

σ,()

12

q h y yx

-=+=τ

在次要边界0=x 上,应用圣维南原理列出三个积分的应力边界条件,当板厚1

=δ时,

()?+-=-=2

20h h N x x F dy σ,()?+-=-=2

20h h x x M ydy σ,()?+-=-=2

20h h S x xy F dy τ

在次要边界l x =上,有位移边界条件:()0==l x u ,()0==l x v 。这两个位移边界条

件可以改用三个积分的应力边界条件代替:

()l

q F dy h h N x x ?+-=+-=2

210

σ,

()2

622

20qlh

ql l F M ydy S h h x x +---=?+-=σ,

()

2

22

ql F dy h h S x xy

--=?+-=τ 2. (10分)试考察应力函数3

cxy =Φ,0>c ,能满足相容方程,并求出应力分量(不计

体力),画出图5-2所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。

图5-2

解:(1)相容条件:将3

cxy =Φ代入相容方程02442244

4=?Φ

?+??Φ?+?Φ?y

y x x ,显然满足。 (2)应力分量表达式:cxy y

x 62

2=?Φ?=σ,0=y σ,23cy xy -=τ

(3)边界条件:在主要边界2

h

y ±

=上,即上下边,面力为()chx h y y 32±=±=σ,()

22

4

3ch h y xy -=±=τ 在次要边界l x x ==,0上,面力的主失和主矩为

()()()???

??

????-=-===????+-+-=+-=+-=223

222

02202

204300h h h h x xy h h x x h h x x h c dy cy dy dy y dy τσσ

()()()???

?

?????-=-=====??????+-+-=+-+-=+-+-=2232

2203222

2

2222243260

6h h h h x xy h h h h l x x h h h h l

x x h c dy cy dy clh dy cly dy y dy cly dy τσσ 弹性体边界上的面力分布及在次要边界l x x ==,0上面力的主失量和主矩如解图所示。

3. (14分)设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q, 如图5-3

所示,试求应力分量。(提示:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量0=x σ )

图 5-3

解:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量0=x σ,

(1) 假设应力分量的函数形式。0=x σ

(2) 推求应力函数的形式。此时,体力分量为g f f y x ρ==,0。将0=x σ代入应

力公式22y x ?Φ?=σ有02

2=?Φ

?=y

x σ对x 积分,得()x f y =?Φ?, (a )

()()x f x yf 1+=Φ。 (b )

其中()x f ,()x f 1都是x 的待定函数。

(3)由相容方程求解应力函数。将式(b )代入相容方程04

=Φ,得

()()04

1444=+dx

x f d dx x f d y 这是y 的一次方程,相容方程要求它有无数多的根(全部竖柱内的y 值都应该满

足),可见它的系数和自由项都必须等于零。()044=dx x f d ,()04

14=dx

x f d ,两个方程要求

()Cx Bx Ax x f ++=23,()231Ex Dx x f += (c)

()x f 中的常数项,()x f 1中的一次和常数项已被略去,因为这三项在Φ的表达式

中成为y 的一次和常数项,不影响应力分量。得应力函数

()()

2323Ex Dx Cx Bx Ax y ++++=Φ (d)

(4)由应力函数求应力分量。

022=-?Φ

?=x x xf y

σ, (e)

gy E Dx By Axy yf x

y y ρσ-+++=-?Φ

?=262622, (f)

C Bx Ax y

x xy

---=??Φ?-=2322τ. (g)

(5) 考察边界条件。利用边界条件确定待定系数 先来考虑左右两边2b x ±=的主要边界条件:

()02=±=b x x σ,()02=-=b x xy τ,()q b x xy =+=2τ。

将应力分量式(e)和(g)代入,这些边界条件要求:

()0

2=±=b x x σ,自然满足; ()

04

32

2

=-+-

=-=C Bb Ab b x xy

τ (h ) ()

q C Bb Ab b x xy =---

=+=2

2

4

3τ (i) 由(h )(i ) 得 b

q

B 2-

= (j )

考察次要边界0=y 的边界条件,应用圣维南原理,三个积分的应力边界条件为

()

()02262

2

22

==+=?

?+-=+-Eb dx E Dx dx b b y b b y

σ; 得 0=E

()()02263

2

202

2==+=??+-=+-Db dx x E Dx xdx b b y b b y σ, 得 0=D

()04332

22

02

2=--=??

? ??-+-=??+-=+-bC Ab dx C x b q Ax dx b b y b b xy τ (k )

由(h )(j )(k )得 2

b q A -

=, 4q

C =

将所得A 、B 、C 、D 、E 代入式(e )(f )(g )得应力分量为:

0=x σ,gy y b

q xy b q y ρσ---=2

6

, 4322q

x b q x b q xy -+=τ 填空题(每个1分,共10×1=10分)。

1.弹性力学的研究方法是在弹性区域内部,考虑静力学、几何学和物理学方面建立三套方程,即 方程、 方程以及 方程;在弹性体的边界上,还要建立边界条件,即 边界条件和 边界条件。

2.弹性力学基本假定包括 假定、 假定、 假定、 假定和 假定。

1.平衡微分 几何 物理 应力 位移

2.连续 均匀 各向同性 完全弹性 小变形 一、单项选择题(每个2分,共5×2=10分)。

1. 关于弹性力学的正确认识是 A 。

A. 弹性力学在工程结构设计中的作用日益重要。

B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题

作假设。

C. 任何弹性变形材料都是弹性力学的研究对象。

D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 2. 所谓“完全弹性体”是指 B 。

A. 材料应力应变关系满足胡克定律。

B. 材料的应力应变关系与加载时间历史无关。

C. 本构关系为非线性弹性关系。

D. 应力应变关系满足线性弹性关系。 3. 所谓“应力状态”是指 B 。

A. 斜截面应力矢量与横截面应力矢量不同。

B. 一点不同截面的应力随着截面方位变化而改变。

C. 3个主应力作用平面相互垂直。

D. 不同截面的应力不同,因此应力矢量是不可确定的。 4.弹性力学的基本未知量没有 C 。

A. 应变分量。

B. 位移分量。

C. 面力分量。

D. 应力分量。

5.下列关于圣维南原理的正确叙述是 D 。

A. 边界等效力系替换不影响弹性体内部的应力分布。

B. 等效力系替换将不影响弹性体的变形。

C. 圣维南原理说明弹性体的作用载荷可以任意

平移。

D. 等效力系替换主要影响载荷作用区附近的应

力分布,对于远离边界的弹性体内部的影响比较小。

二、计算题(共15分)

如图所示的三角形截面水坝,其左侧作用着比重为γ的液体,右侧为自由表面。试写出以应力分量表示的边界条件。

解:在平面应力边界条件下,应力须满足

x yx x xy y y

l m f l m f σττσ?+=??+=??

(1) (5)

在x ytg β=表面处,cos l β=, (1)

sin m β=-; (1)

0x f =, ....................................(1) 0y f = (1)

代入公式(1),得

cos sin 0

cos sin 0

x yx xy y σβτβτβσβ-=??

-=? ....................................(1) 在x ytg α=-处,cos l α=-, (1)

sin m α=-; (1)

cos x f y γα=, ....................................(1) sin y f y γα= (1)

代入公式(1),得

cos sin cos cos sin sin x yx xy

y y y σαταγα

τασαγα--=??

--=? (1)

四、计算题(共10分)

试考虑下面平面问题的应变分量有否可能存在,若存在,需满足什么条件?

x Axy ε=,3y By ε=,2xy C Dy γ=-;

解:应变分量存在的必要条件是满足形变协调条件,即

22

222y xy

x y x x y

εγε???+=

???? ………………………………(4) 将各分量分别代入,得

22

x

y ε??=0, ………………………………(2) 22

y

x ε??=0, ………………………………(2) 2xy x y

γ???=0 (2)

无论A 、B 、C 、D 取何值,都满足形变协调条件。

基本概念解释(24分,6小题) (1) 弹性力学的基本假定 (2) 平面应变问题 (3) 平面应力问题 (4) 圣维南原理 (5) 逆解法

1、 简单题(40分,4题) (1) 列出图示全部边界条件。

(2) 求出下列应力函数的应力分量,并考察该应力函数是否满足相容方程 A : )43(22

2243

y h y x h

F +=

Φ B :)2(10)134(4332332h y

h

y qy h y h y qx -+--=Φ (3) 根据圣维南原理,比较图示中OA 边的面力是否等效,b h >>。

2、 综合题(36分)

(1) 设单位厚度的悬臂梁在左端受到集中力和力矩作用(如图),体力不计,h l >>,试

用应力函数3

3

2

Dxy Cy By Axy +++=Φ求解应力分量。

(2) 矩形截面的长柱,密度为ρ,在一边侧面上受均布正应力q ,试求应力分量,体力

不计。

弹性力学基本概念和考点

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处

所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程: (1) 平面问题的平衡微分方程; 00yx x x xy y y f x y f x y τστσ??++=????++=??(记) (2) 平面问题的平衡微分方程(极坐标); 10210f f ρρ?ρ? ρ?ρ?ρ? ??σ?τσσ?ρρ??ρ ?σ?ττρ???ρρ -+++=+++= 1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。 2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。 二、 几何方程; (1) 平面问题的几何方程; x y xy u x v y v u x y εεγ?= ??=???=+ ??(记) (2) 平面问题的几何方程(极坐标);

弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? ,σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? ,εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

2011年期末考试试卷(A答案)—弹性力学

,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A)卷 《弹性力学》 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 20分) 、五个基本假定在建立弹性力学基本方程时有什么用途?(10分) 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义, 亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。(4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此, 反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 (6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步 地说,就是物体的弹性常数也不随方向而变化。(8分) 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照 原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。(10分)2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分) 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分) 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 三、计算题(80分) 2.1 已知薄板有下列形变关系:, , ,2 3Dy C By Axy xy y x - = = =γ ε ε式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分) 1、相容条件: 将形变分量带入形变协调方程(相容方程)

(完整word版)徐芝纶弹性力学主要内容及知识点,推荐文档

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。 2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。 3内力,即物体本身不同部分之间相互作用的力。 3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。 4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。 5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负) 6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。 7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。 6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。 7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。 8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0 V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。 9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。 10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

弹性力学期末考试复习

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:?x、?y、?z、?xy、?yz、、?zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题: (1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。

弹性力学概念说课讲解

弹性力学概念

力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。 弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。) 弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数 研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。求解的未知函数:应力、应变和位移。解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移 弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。(用处:可以使用

线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量。即简化几何方程,简化平衡微分方程) 上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态外力是其他物体作用于研究对象的力(分为体力和面力) 体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力) 内力假想将物体截开,则截面两边有互相作用的力,称为内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同) 形变就是物体形状的改变。在弹性力学中,通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 所谓位移就是位置的移动应力单位截面积上的内力 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面(xOy面),且沿厚度(z向)不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 归纳起来讲,所谓平面应力的问题,就是只有平面应力分量存在,且仅为x,y 的函数的弹性力学问题

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途? 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立? 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题? 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么? 答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。在两种平面问题中,平衡微分方程和几何方程都适用。2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为换为,就得到平面应变问题的物理方程。 5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。 在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在

弹性力学期末考试卷A答案

2009 ~ 2010学年第二学期期末考试试卷(A )卷 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显着的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1 图3-2 四.简答题(24分) 1.(8分)弹性力学中引用了哪五个基本假定五个基本假定在建立弹性力学基本方程时有什么用途 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,

弹性力学空间问题

弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。 §10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,

弹性力学概念.

力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。) 弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数 研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。求解的未知函数:应力、应变和位移。解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移 弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。(用处:可以使用线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量。即简化几何方程,简化平衡微分方程) 上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态 外力是其他物体作用于研究对象的力(分为体力和面力) 体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力) 内力假想将物体截开,则截面两边有互相作用的力,称为内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同) 形变就是物体形状的改变。在弹性力学中,通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 所谓位移就是位置的移动应力单位截面积上的内力 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面(xOy面),且沿厚度(z向)不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 归纳起来讲,所谓平面应力的问题,就是只有平面应力分量存在,且仅为x,y的函数的弹性力学问题 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于

弹性力学期末考试第一份试卷和答案

2011----2012学年第二学期期末考试试卷(1 )卷题号一二三四五六七八九十总分评分 评卷教师 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学期末测试模拟试题

《弹性力学》期末考试 学号: 姓名 一 选择题(每题3分,共36分) 1. 所谓“应力状态”是指 。 A. 斜截面应力矢量与横截面应力矢量不同; B. 不同截面的应力不同,因此应力矢量是不可确定的。 C. 3个主应力作用平面相互垂直; D.一点不同截面的应力随着截面方位变化而改变; 2. 应力不变量说明 。 A. 主应力的方向不变; B. 一点的应力分量不变; C.应力随着截面方位改变,但是应力状态不变; D. 应力状态特征方程的根是不确定的; 3 在轴对称问题中,σr 是,τr θ是 。 A.恒为零;B.与r 无关; C.与θ无关; D.恒为常数。 4. 半平面体在边界上受集中力下的解答是 。 A. 精确解; B.圣维南意义下的解; C.近似解; D.数值解。 5. 在与三个应力主轴成相同角度的斜面上,正应力σN = 。 A. σ1+σ2+σ3; B. (σx +σy +σz )/3; C. (σ1+σ2+σ3)/2; D. (σ1+σ2+σ3)/9。 6.等截面直杆扭转中,矩形截面上最大剪应力发生在 。 A .矩形截面长边上;B. 矩形截面短边上; C. 矩形截面中心; D. 矩形截面角点。 矩形薄板自由边上独立的边界条件个数,正确的是 个。 ; B. 3; C. 1; D. 4。 薄板弯曲问题的物理方程有 个。 ; B. 6; C. 2; D. 4。 σx ,σy ,τxy 个沿厚度分布是 。 B.三角分布; C.梯形分布; D.双曲线分布。 。 轴对称应力必然是轴对称位移;B. 轴对称位移必然是轴对称应力; C. 只要轴对称结构,救会导致轴对称应力; D. 对于轴对称位移,最多只有两个边界条件。 11. 下列关于弹性力学基本方程描述正确的是 D .变形协调方程是确定弹性体位移单值连续的唯一条件; 。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; 12.矩形薄板受纯剪作用,剪力强度为q 。设距板边缘较远处有一半 径为a 的小圆孔,试求孔边的最大应力和最小应力为 A. 1q, B. 2q, C. 3q, D. 4q. D A CA B B A D A 应力轴对称是说对称轴两端的应力对应点相等,位移轴对称是说对称轴两边对应点位移相等。如是应变位移则各点应力也对称,如是刚体位移和应力无关。

弹性力学基本概念

弹性力学中的基本假定1连续性假定在物体体积内都被连续介质所充满,没有任何空隙,亦即从宏观角度上认为物体是连续的。因此,所有的物理量均可以用连续函数来表示,从而可以应用数学分析工具2完全弹性假定物体是完全弹性的。这个假定包含两点含义:a.当外力取消时,物体回复到原状,不留任何残余变形,即所谓“完全弹性”b.应力与相应的应变成正比,即所谓“线性弹性”。根据完全弹性假定,物体中的应力与应变之间的物理关系可以用胡克定律来表示3均匀性物体是由同种材料组成的,物体内任何部分的材料性质均相同。这样,物体的弹性常数等不随位置坐标而变化4各向同性物体内任一点各方向的材料性质都相同。这样,弹性常数等也不随方向而变化。凡符合以上四个假定的物体,称为理想弹性体5小变形假定假定物体的位移和应变是微小的。物体在受力后,其位移远小于物体的尺寸,其应变远小于1。用途:a.简化几何方程,使几何方程成为线性方程。b.简化平衡微分方程面力是作用于物体表面上的外力 体力是作用于物体体积内的外力 应力单位截面积上的内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的 形变就是物体形状的改变。通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面,且沿厚度不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于柱面上,其方向平行于横截面,且沿长度方向不变 平衡微分方程表示区域内任一点(x,y)的微分体的平衡条件 平衡问题中一点应力状态1求斜面应力分量2由斜面应力分量求斜面上的正应力和切应力3求一点的主应力及应力方向4求一点的最大和最小的正应力和切应力 几何方程表示任一点的微分线段上,形变分量与位移分量之间的关系式 形变与位移的关系1如果物体的位移确定,则形变完全确定2当物体的形变分量确定时,位移分量不完全确定 边界条件表示在边界上位移与约束,或应力与面力之间的关系式。可分为:位移边界条件、应力边界条件和混合边界条件 位移边界条件实质上是变形连续条件在约束边界上的表达式 应力分量和正的面力分量的正负号规定不同在正坐标面上,应力分量与面力分量同号;在负坐标面上,应力分量与面力分量异号 应力边界条件两种表达方式:1在边界点取出一个微分体,考虑其平衡条件2在同一边界上,应力分量应等于对应的面力分量(数值相同,方向一致) 圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计只能应用于一小部分边界上(又称局部边界、小边界和次要边界) 圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计 应力边界条件上应用圣维南原理就是在小边界上将精确的应力边界条件式,代之为静力等效的主矢量和主矩的条件 形变协调条件的物理意义1形变协调条件是连续体中位移连续性的必然结果2形变协调条件是形变对应的位移存在且连续的必要条件

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学期末考试卷A答案

一、名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 一.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移 边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面 上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或 远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 二.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

图3-2 三. 简答题(24分) 1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途? 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 2. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。 3. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数Φ求解,应力函数Φ必须满足哪些条件? 答:(1)相容方程:04 =Φ? (2)应力边界条件(假定全部为应力边界条件,σs s =):()()()上在στστσs s f l m f m l y s xy y x s yx x =???? ?=+=+ (3)若为多连体,还须满足位移单值条件。 四. 问答题(36)

相关文档
最新文档