铣削加工道具的选择

铣削加工道具的选择
铣削加工道具的选择

铣削加工刀具的选择

选择刀具应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其他相关因素正确选用刀具及刀柄。刀具选择总的原则是:适用、安全、经济。

适用是要求所选择的刀具能达到加工的目的,完成材料的去除,并达到预定的加工精度。如粗加工时选择有足够大并有足够的切削能力的刀具能快速去除材料;而在精加工时,为了能把结构形状全部加工出来,要使用较小的刀具,加工到每一个角落。再如,切削低硬度材料时,可以使用高速钢刀具,而切削高硬度材料时,就必须要用硬质合金刀具。

安全指的是在有效去除材料的同时,不会产生刀具的碰撞、折断等。要保证刀具及刀柄不会与工件相碰撞或者挤擦,造成刀具或工件的损坏。如加长的直径很小的刀具切削硬质的材料时,很容易折断,选用时一定要慎重。

经济指的是能以最小的成本完成加工。在同样可以完成加工的情形下,选择相对综合成本较低的方案,而不是选择最便宜的刀具。刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高则可以使总体成本可能比使用普通刀具更低,产生更好的效益。如进行钢材切削时,选用高速钢刀具,其进给只能达到100mm/min,而采用同样大小的硬质合金刀具,进给可以达到500mm/min以上,可以大幅缩短加工时间,虽然刀具价格较高,但总体成本反而更低。通常情况下,优先选择经济性良好的可转位刀具。

选择刀具时还要考虑安装调整的方便程度、刚性、耐用度和精度。在满足加工要求的前提下,刀具的悬伸长度尽可能得短,以提高刀具系统的刚性。

下面对部分常用的铣刀作简要的说明。

1.圆柱铣刀

圆柱铣刀主要用于卧式铣床加工平面,一般为整体式,如图1所示。该铣刀材料为高速钢,主切削刃分布在圆柱上,无副切削刃。该铣刀有粗齿和细齿之分。粗齿铣刀,齿数少,刀齿强度大,容屑空间大,重磨次数多,适用于粗加工;细齿铣刀,齿数多,工作较平稳,适用于精加工。圆柱铣刀直径范围d=50mm~100mm,齿数Z=6~14个,螺旋角β=30°~45°。当螺旋角β=0°时,螺旋刀齿变为直刀齿,目前生产上应用少。

图1

2.面铣刀

面铣刀主要用于立式铣床上加工平面、台阶面等。面铣刀的主切削刃分布在铣刀的圆柱面或圆锥面上,副切削刃分布在铣刀的端面上。面铣刀按结构可以分为整体式面铣刀、硬质合金整体焊接式面铣刀、硬质合金机夹焊接式面铣刀、硬质合金可转位式面铣刀等形式。图2所示是硬质合金整体焊接式面铣刀。该铣刀是由硬质合金刀片与合金钢刀体经焊接而成,其结构紧凑,切削效率高,制造较方便。刀齿损坏后,很难修复,所以该铣刀应用不多。

图2

3.立铣刀

立铣刀主要用于立式铣床上加工凹槽、台阶面、成形面(利用靠模)等。图3所示为高速钢立铣刀。该立铣刀的主切削刃分布在铣刀的圆柱面上,副切削刃分布在铣刀的端面上,且端面中心有顶尖孔,因此,铣削时一般不能沿铣刀轴向做进给运动,只能沿铣刀径向做进给运动。该立铣刀有粗齿和细齿之分,粗齿齿数3~6个,适用于粗加工;细齿齿数5~10个,适用于半精加工。该立铣刀的直径范围是φ2mm~φ80mm。柄部有直柄、莫氏锥柄、7:24锥柄等多种形式。该立铣刀应用较广,但切削效率较低。

图3

4.键槽铣刀

键槽铣刀主要用于立式铣床上加工圆头封闭键槽等,如图4所示。该铣刀外形似立铣刀,端面无顶尖孔,端面刀齿从外圆开至轴心,且螺旋角较小,增强了端面刀齿强度。端面刀齿上的切削刃为主切削刃,圆柱面上的切削刃为副切削刃。加工键槽时,每次先沿铣刀轴向进给较小的量,然后再沿径向进给,这样反复多次,就可完成键槽的加工。由于该铣刀的磨损是在端面和靠近端面的外圆部分,所以修磨时只要修磨端面切削刃,这样,铣刀直径可保持不变,使加工键槽精度较高,铣刀寿命较长。键槽铣刀的直径范围

为φ2mm~φ63mm。

图4

5.三面刃铣刀

三面刃铣刀主要用于卧式铣床上加工槽、台阶面等。三面刃铣刀的主切削刃分布在铣刀的圆柱面上,副切削刃分布在两端面上。该铣刀按刀齿结构可分为直齿、错齿和镶齿三种形式。图5所示是直齿三面刃铣刀。该铣刀结构简单,制造方便,但副切削刃前角为零度,切削条件较差。该铣刀直径范围是50mm~200mm,宽度4mm~40mm。

图5

6.角度铣刀

角度铣刀主要用于卧式铣床上加工各种角度槽、斜面等。角度铣刀的材料一般是高速钢。角度铣刀根据本身外形不同,可分为单刃铣刀、不对称双角铣刀和对称双角铣刀3种。图6所示是单角铣刀。圆锥面上切削刃是主切削刃,端面上的切削刃是副切削刃。该铣刀直径范围是40mm~100mm。

图6#p#分页标题#e#

7.模具铣刀

模具铣刀主要用于立式铣床上加工模具型腔、三维成形表面等。模具铣刀按工作部分形状不同,可分为圆柱形球头铣刀、圆锥形球头铣刀和圆锥形立铣刀3种形式。图7所示是圆柱形球头铣刀,图8所示是圆锥形球头铣刀。在该两种铣刀的圆柱面、圆锥面和球面上的切削刃均为主切削刃,铣削时不仅能沿铣刀轴向做进给运动,也能沿铣刀径向做进给运动,而且球头与工件接触往往为一点,这样,该铣刀在数控铣床的控制下,就能加工出各种复杂的成形表面,所以该铣刀用途独特,很有发展前途。如图9所示圆锥形立铣刀其作用与立铣刀基本相同,只是该铣刀可以利用本身的圆锥体,方便地加工出模具型腔的出模角。

图7

图8

图9

加工中心上用的立铣刀主要有3种形式:球头刀(R=D/2),端铣刀(R=0)和R刀(R

选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。刀具直径的选用主要取决于设备的规格和工件的加工尺寸,还需要考虑刀具所需功率应在机床功率范围之内。

生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选端铣刀或面铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面

和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。

平面铣削应选用不重磨硬质合金端铣刀或立铣刀,可转为面铣刀。一般采用二次走刀,第一次走刀最好用端铣刀粗铣,沿工件表面连续走刀。选好每次走刀的宽度和铣刀的直径,使接痕不影响精铣精度。因此,加工余量大又不均匀时,铣刀直径要选小些。精加工时,铣刀直径要选大些,最好能够包容加工面的整个宽度。表面要求高时,还可以选择使用具有修光效果的刀片。在实际工作中,平面的精加工,一般用可转位密齿面铣刀,可以达到理想的表面加工质量,甚至可以实现以铣代磨。密布的刀齿使进给速度大大提高,从而提高切削效率。精切平面时,可以设置6~8个刀齿,直径大的刀具甚至可以有超过10个的刀齿。

加工空间曲面和变斜角轮廓外形时,由于球头刀具的球面端部切削速度为零,而且在走刀时,每两行刀位之间,加工表面不可能重叠,总存在没有被加工去除的部分。每两行刀位之间的距离越大,没有被加工去除的部分就越多,其高度(通常称为“残留高度”)就越高,加工出来的表面与理论表面的误差就越大,表面质量也就越差。加工精度要求越高,走刀步长和切削行距越小,编程效率越低。因此,应在满足加工精度要求的前提下,尽量加大走刀步长和行距,以提高编程和加工效率。而在2轴及2.5轴加工中,为提高效率,应尽量采用端铣刀,由于相同的加工参数,利用球头刀加工会留下较大的残留高度。因此,在保证不发生干涉和工件不被过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀或R刀(带圆角的立铣刀)。不过,由于平头立铣刀和球头刀的加工效果是明显不同的,当曲面形状复杂时,为了避免干涉,建议使用球头刀,调整好加工参数也可以达到较好的加工效果。

镶硬质合金刀片的端铣刀和立铣刀主要用于加工凸台、凹槽和箱口面。为了提高槽宽的加工精度,减少铣刀的种类,加工时应采用直径比槽宽小的铣刀,先铣槽的中间部分,然后再利用刀具半径补偿(或称直径补偿)功能对槽的两边进行铣加工。

对于要求较高的细小部位的加工,可使用整体式硬质合金刀,它可以取得较高的加工精度,但是注意刀具悬升不能太大,否则刀具不但让刀量大,易磨损,而且会有折断的危险。

铣削盘类零件的周边轮廓一般采用立铣刀。所用的立铣刀的刀具半径一定要小于零件内轮廓的最小曲率半径。一般取最小曲率半径的0.8~0.9倍即可。零件的加工高度(Z方向的吃刀深度)最好不要超过刀具的半径。若是铣毛坯面时,最好选用硬质合金波纹立铣刀,它在机床、刀具、工件系统允许的情况下,可以进行强力切削。

钻孔时,要先用中心钻或球头刀打中心孔,用以引正钻头。先用较小的钻头钻孔至所需深度Z,再用较大的钻头进行钻孔,最后用所需的钻头进行加工,以保证孔的精度。在进行较深的孔加工时,特别要注意钻

头的冷却和排屑问题,一般利用深孔钻削循环指令G83进行编程,可以工进一段后,钻头快速退出工件进行排屑和冷却;再工进,再进行冷却和排屑直至孔深钻削完成。

加工中心机床刀具是一个较复杂的系统,如何根据实际情况进行正确选用,并在CAM软件中设定正确的参数,是数控编程人员必须掌握的。只有对加工中心刀具结构和选用有充分的了解和认识,并且不断积累经验,在实际工作中才能灵活运用,提高工作效率和生产效益并保证安全生产。

切削加工常用计算公式

附录3:切削加工常用计算公式 1. 切削速度Vc (m/min) 1000n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 金属切除率Q (cm 3/min) Q = V c ×a p ×f 净功率P (KW) 3p 1060Kc f a Vc P ????= 每次纵走刀时间t (min) n f l t w ?= 以上公式中符号说明 D — 工件直径 (mm) ap — 背吃刀量(切削深度) (mm) f — 每转进给量 (mm/r ) lw — 工件长度 (mm)

铣削速度Vc (m/min) 1000n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 每齿进给量fz (mm) z n Vf fz ?= 工作台进给速度Vf (mm/min) z n fz Vf ??= 金属去除率Q (cm 3/min) 1000Vf ae ap Q ??= 净功率P (KW) 61060Kc Vf ae ap P ????= 扭矩M (Nm) n 10 30P M 3 ?π??= 以上公式中符号说明 D — 实际切削深度处的铣刀直径 (mm ) Z — 铣刀齿数 a p — 轴向切深 (mm) a e — 径向切深 (mm)

切削速度Vc (m/min) 1000n d Vc ?π?= 主轴转速n (r/min) d 1000 Vc n ?π?= 每转进给量f (mm/r) n Vf f = 进给速度Vf (mm/min) n f Vf ?= 金属切除率Q (cm 3/min) 4Vc f d Q ??= 净功率P (KW) 310240kc d Vc f P ????= 扭矩M (Nm) n 10 30P M 3?π??= 以上公式中符号说明: d — 钻头直径 (mm) kc1 — 为前角γo=0、切削厚度hm=1mm 、切削面积为1mm 2时所需的切 削力。 (N/mm 2) mc — 为切削厚度指数,表示切削厚度对切削力的影响程度,mc 值越 大表示切削厚度的变化对切削力的影响越大,反之,则越小 γo — 前角 (度)

典型零件的机加工工艺分析

第4章典型零件的机械加工工艺分析 本章要点 本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下:1.介绍机械加工工艺规程制订的原则与步骤。 2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。 本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。 §机械加工工艺规程的制订原则与步骤 §机械加工工艺规程的制订原则 机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题: 1.技术上的先进性 在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。 2.经济上的合理性 在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。 3.有良好的劳动条件 在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。 由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。 §制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。 2.对零件进行工艺分析 在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括: (1)分析零件的作用及零件图上的技术要求。

螺纹铣刀的铣螺纹加工详解

螺纹铣刀的铣螺纹加工详解 编辑:洛希尔螺纹刀具 随着时代的进步,数控行业在我国大中型机械加工业用得越来越广泛,一些大型零件的螺纹加工,传统的螺纹车削和丝锥、板牙已无法满足生产的需要。而在数控铣床或加工中心得到广泛应用的今天,采用三轴联动机床进行螺纹加工,改变了螺纹的加工工艺方法,取得了良好的效果。 一、内孔 1.加工范围 孔径较大的盲孔或通孔,由于麻花钻加工太慢或不能加工,往往选择螺旋铣削的方式。而且由于该方式选择的刀具不带底刃,所以更适合小切深、高转速及大进给的加工情况。 2.加工特点 螺旋铣削加工孔是建立在螺旋式下刀方法基础上的加工方法,螺旋铣孔时有一个特点:每螺旋铣削一周,刀具的Z轴方向移动一个下刀高度。 3.螺纹铣刀的选择 选择16mm 的三刃转位铣刀,刀具转速S=3000r/min,进给量F=2500mm/min。 4.说明 这种方法在螺旋铣削内孔上很有特色,其程序编写的实质就是将一个下刀高度作为螺旋线高度编成一个子程序,通过循环调

用该螺旋线子程序,完成整个孔的铣削加工。该方法加工孔不受铣刀规格等因素影响,所以在数控铣床和加工中心上应用比较理想。 5.应用实例及程序编写 如图1所示的零件图中,要加工螺纹M36×的底孔通孔。 首先,计算螺纹M36×的底孔直径为:公称直径×P(螺 距)=×=。确认该零件的加工毛坯为80mm ×80mm ×30mm的45钢,选定刀具为16mm三刃转位铣刀,刀具转速S=3000r/min,进给量F=2500mm/min。圆弧导入点为A(图2),在0A段建立刀补,圆弧导出点为B,在0B 段取消刀补。 参考程序编写如下(本文涉及到的参考程序均在FANUC系统中验证使用)。 主程序如下。 %(程序开始符) O0001;(主程序名) T1;(刀具为16mm的立铣刀) G80G40G69 ;(取消固定循环、刀具半径补偿和旋转指令) G90G54G00X0Y0M03S3000;(程序初始化) H01;(1 号刀具长度补偿) ;(快速移动点定位) G01Z0F50;(工进到)

典型零件的机械加工(钳工方向.

模块二典型零件的机械加工(钳工方向) 项目三摇杆零件加工 工作任务: 试拟图5-13所示摇杆零件的工艺路线。零件材料为HT200,毛坯为铸件,生产批量5000件。 图5-13 摇杆零件图 任务一:选择机床和加工方式 1、车床 卧式车床

(1)车床的功能与型号; 1)车床的功能 车床适用于加工各种轴类、套筒类和盘类零件上的回转表面,如内外圆柱面、圆锥面 及成形回转表面、车削端面及各种常用的公制、英制、模数制和径节制螺纹,还可以钻孔、 扩孔、铰孔、滚花等工作。 2)车床的型号 通用机床的型号表示方法如下: (△)□(□)△△(△)(□)(/△) 分类代号 类代号 通用特性及结构性代号 组、系代号 主参数或设计顺序号 第二主参数 重大改进顺序号 同一型号机床的变型代号 (2)CA6140车床的组成与技术性能。 1)主要组成部件 主轴箱:支承并传动主轴,使主轴带动工件按照规定的转速旋转,实现主运动。 床鞍与刀架:装夹车刀,并使车刀纵向横向或斜向运动。 尾架:用后顶尖支承工件,并可在其上安装钻头等孔加工工具,以进行孔加工。 床身:车床的基本支承件,在其上安装车床的主要部件,以保持它们的相对位置。 溜板箱:把进给箱传来的运动传递给刀架,使刀架实现纵向进给、横向进给、快速移动或车 螺纹。其上有各种操作手柄和操作按钮,方便工人操作。 进给箱:改变被誉为加工螺纹时的螺距或机动进给的进给量。 CA6140主要技术性能参数 床身上最大工件回转直径 400mm 最大工件长度(4种规格) 750mm;1000mm;1500mm;2000mm 最大车削长度直 650mm;900mm;1400mm;1900mm 刀架上最大工件回转直径 210mm

数控加工中心铣削内螺纹刀具的设计

数控加工中心铣削内螺纹刀具的设计 上海市大众工业学校高明(201800) 【内容摘要】数控加工中心铣削内螺纹是一种较为新型的加工方法,螺纹铣削加工与传统螺纹加工方式相比,在加工精度、加工效率等方面具有极大优势。基于阀盖梯形内螺纹的尺寸和零件的材质,设计了专门的螺纹铣刀用于批量生产,来满足加工质量的要求。 关键词梯形内螺纹螺纹铣刀工效 [Abstract] The milling of internal thread is a new-style method of processing in Numerical Control Machining Center. Compared with the way of traditional thread processing, the milling of internal thread has the advantage over processing accuracy and efficiency. According to the size of the internal thread and the material of the part, we designed the special thread milling cutter to meet the need of processing quality and batch process. Keyword:metric trapezoidal screw internal thread thread milling cutter work efficiency 今年,上海中洲公司求助我校试制一批美国化工厂用的阀体和阀盖,两者的毛坯均为铜镍合金铸件,其中阀盖需加工一处3/4—6ACME英制梯形螺纹(图1)。 该梯形螺纹具有内径小,螺距大,牙槽深等特点。起初采用传统螺纹加工方法,即用普通螺纹车刀加工内螺纹,加工过程中出现撞刀、粘刀等现象,工效极差,且加工质量得不到保证。后改用数控加工中心,配以专门设计加工的铣刀铣削此内螺纹,工效提高了近10倍。

数控铣削加工工艺范围及铣削方式

页脚内容1 数控铣削加工工艺范围及铣削方式 铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。铣削的主要工作及刀具与工件的运动形式如图所示。 在铣削过程中,根据铣床,铣刀及运动形式的不同可将铣削分为如下几种: (1)根据铣床分类 根据铣床的结构将铣削方式分为 立铣和卧铣。由于数控铣削一个工序中一般要加工多个表面,所以常见的数控铣床多为立式铣床。 (2)根据铣刀分类 根据铣刀切削刃的形式和方位将铣削方式分为周铣和端铣。用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a )所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2 (b )所示。 图中平行于铣刀轴线测量的切削层参数ap 为背吃刀量。垂直于铣刀轴线测量的切削层参数ac 为切削宽度,fz 是每齿进给

量。单独的周铣和端铣主要用于加工平面类零件,数控铣削中常用周、端铣组合加工曲面和型腔。 (3)根据铣刀和工件的运动形式公类 根据铣刀和工作的相对运动将铣削方式分为顺铣和逆铣。铣削时,铣刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示;铣削时,铣刀切入工件时的切削速度方向 与工件进给方向相反,称为逆铣,如图(6-3)b所示。 顺铣与逆铣比较:顺铣加工可以提高铣刀耐用度2~3倍, 工件表面粗糙度值较小,尤其在铣削难加工材料时,效果更 加明显。铣床工作台的纵向进给运动一般由丝杠和螺母来实 现,采用顺铣法加工时,对普通铣床首先要求铣床有消除进 给丝杠螺母副间隙的装置,避免工作台窜动;其次要求毛坯 表面没有破皮,工艺系统有足够的刚度。如果具备这样的条件,应当优先考虑采用顺铣,否则应采用逆铣。目前生产中采用逆铣加工方式的比较多。数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。 数控铣削主要特点 (1)生产率高 (2)可选用不同的铣削方式 (3)断续切削 (4)半封闭切削 数控铣削主要加工对象 (1)平面类零件 页脚内容2

典型零件的机械加工工艺的分析

型零件的机械加工工艺分析 本章要点 本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下: 1.介绍机械加工工艺规程制订的原则与步骤。 2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。 本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。 §4.1 机械加工工艺规程的制订原则与步骤§4.1.1机械加工工艺规程的制订原则 机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题: 1.技术上的先进性 在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。 2.经济上的合理性 在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。 3.有良好的劳动条件 在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。 由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。 §4.1.2 制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。 2.对零件进行工艺分析 在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括: (1)分析零件的作用及零件图上的技术要求。 (2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等; (3)分析零件的材质、热处理及机械加工的工艺性。 3.确定毛坯

螺纹的铣削加工程序编制

螺纹的铣削加工程序编制 摘要:传统的螺纹加工方法主要为采用普通车床或数控车床车削螺纹、采用丝锥、板牙手工攻螺纹及套螺纹,但在产品结构和加工精度受限制的情况下,螺纹 加工不能采用上述方法时,利用数控系统中圆弧插补指令G02/G03和宏程序来完 成数控加工程序的编制并在加工中心上实现铣螺纹加工。 关键词:G02/G03;宏程序;铣螺纹 中图分类号:TP271+.2 文献标识码:A 文章编号:1006-4311(2010)11-0116-02 0 引言 螺纹铣削是数控系统发展以来螺纹加工的一种新工艺,。它与传统螺纹加工方 式相比,在加工精度、加工效率方面具有极大优势,且加工时不受螺纹结构和螺 纹旋向的限制,一把螺纹铣刀可加工多种不同旋向的内、外螺纹。 1 圆弧插补指令G02/G03 格式 G17G02G03XRJ G18G02G03XRK G19G02G03YRK G02/G03:顺圆/逆圆。在圆弧坐标平面内,从未被指定坐标轴(G17平面:Z 轴;G18平面:Y轴;G19平面:X轴)的正方向往负方向观察,顺时针圆弧为 G02;而逆时针圆弧为G03。R:圆弧半径,当圆弧圆心角小于180°时,R为正值;当圆弧圆心角大于等于180°时R为负值;整圆不能用R指令,只能用I、J、K指令。I、J、K:适用于任意圆弧,分别表示圆弧圆心相对于圆弧起点在X、Y和Z 方向的位移量。 2 螺纹铣削的加工程序编写 2.1 单个螺距螺纹的铣削编程格式 G17G02X_Y_I_J_Z_F_ 2.2多个螺距螺纹的铣削编程 2.2.1 多个螺距螺纹一般性编程格式(B1、B2、Bn如图2所示)。 G17 G02 I_ J_ ZB1F_; G17 G02 I_ J_ ZB2F_; G17 G02 I_ J_ ZBnF_; 2.2.2 多个螺距螺纹参数化编程格式程序中#含义如图3。 3 螺纹铣削加工参数化编程实例 3.1加工前准备加工如图3所示内螺纹,毛坯初孔:Φ39;毛坯: 100mmX100mmX20mm尼龙块,底孔: Φ40.376;加工设备:HCK714D加工中心; 装夹方式:平口钳装夹;所用刀具:I13-单刃螺纹铣刀、回转半径13.5、I11-45° 倒角刀、T12 —镗刀。 3.2 加工步骤①倒45°角—T11号刀。②镗孔Φ40.376 —T12号刀。③铣螺纹—T13号刀(分三次加工:粗加工、半精加工、精加工)。单边加工余量= (42-40.376)/2=0.812。第一次加工余量为0.512,粗加工。第二次加工余量为 0.20,半精加工。第三次加工余量为0.10,精加工。 3.3 螺纹加工程序 3.3.1 主程序: 3.3.2 宏程序 4 结束语 以上我们分别介绍了运用G02/G03圆弧插补指令和运用宏程序两种方法编写

铣削加工原理

一、銑削原理 以銑刀的旋轉運動和工件的進給運動相配合進行的切削加工方法稱為銑削 主運動:將金屬材料切削下來的運動叫主運動 進給運動:逐步地把金屬層投入切削的運動稱為進給運動 二、順銑和逆銑 1.順銑 銑刀的旋轉方向與工件的進給方向相同時,稱為順銑 A.順銑的優點: A-1.順銑時,切削力向下,有壓緊工件的作用,對於不易夾緊的及細長工件較為合適 A-2.順銑時刀刃切入容易,對已加工面的擠壓磨擦較小,故刀刃磨損較慢,加工出的工件表面粗糙度較好 A-3.順銑對消耗在進給運動方面的功率較小,切削時較輕松 B.順銑的缺點: B-1.順銑時,刀刃從工件表面切入,因此當工件表面有硬皮或雜質時,刀刃容易磨損的損壞 B-2.順銑時,因銑刀的作用力方向與工件進給方向相同,所以會拉動工作台,當絲杆間隙較大時,工作台被拉動後,由於每齒進 給易突然增大,會造成刀齒折斷,甚至工件夾具機台損壞的後 果,所以在絲杆間隙大而且切削阻力較大時,嚴禁用順銑進行 工作. 2.逆銑 銑刀的旋轉方向與工件的進給方向反時的銑削方式稱為逆銑 A.逆銑的優點 A-1.逆銑時(由於刀刃阻力不是以工件的外表切放),故對表面有硬皮的毛坯件進行切削時,對刀刃的損壞影響較小 A-2.逆銑時,切削阻力與工件進給方向相反,銑削中不會改變絲杆間隙方向,銑削平穩,可進行重切削

B.逆銑的缺點 B-1.逆銑時,垂直作用力向上,容易導致工件被拉起(臥銑由這突出) B-2.逆銑時,由於刀刃開始切入時要滑移一小段距離,故刀刃易磨損,并使已加工面受到冷擠壓和磨擦,影響工件的表面粗糙度 B-3.逆銑時消耗在進給運動方面的功率較大 綜合上述,在一般情況下,均應采用逆銑,由於順銑也有較多優點,故在精切削或機台絲杆間隙小時可采用順銑 3.對稱銑削 工件處在銑刀中間時的銑削稱為對稱銑削刀齒的前半部分為逆銑,後半部分為順銑,故工件和作台容易產動,此外對窄長的工件容易造成變形和彎曲,只有在工件寬度接近銑刀直徑時采用 三、切削用量(銑削) 1.進給量( F ) 工件在銑削時,相對銑刀的進給速度叫進給量 A.每齒進給量( S齒毫米/每尺)MM/2 在銑刀轉過一個刀齒的時間內,工件沿進給方向所移動的距離 B.每分鐘進給量(S毫米/分鐘)mm/min 在一分鐘的時間內,工件沿進給方向所移動的距離 一般在銑床或說明書上記載數值均為每分鐘進給量 C.進給量的計算公式﹕F=S齒*T*N T=銑刀刀刃數N=主軸轉數(rpm) 2.切削速度 銑刀刀刃上最大直徑處,在一分鐘內所走過的距離,代號V=m/min,在銑床上是以銑床主軸轉速來調整切削速度,但是對銑刀使用等因素的影,是以切削進度來考慮的,因此,大多數情況下是在選擇合理的切削速度後,再根據切削速度,銑刀直徑來計算轉速轉速(轉/分)=100*切削速度(米/分)/3.14*銑刀直徑(毫米) (n=1000*Q/3.14*D) 3.切削寬度

高速铣削加工效率的一般计算与分析

高速铣削加工效率的一般计算与分析(转) 随着高速切削技术的发展,高速铣削工艺的应用日益广泛,越来越受到制造企业和科研工作者的关注。信息产业部某研究所自1999年7月从瑞士MIKRON公司购进第一台HSM-700型高速立式铣削中心后,2001年10月又购进三台HSM-700型高速铣床用于生产。笔者通过对这批先进高速铣床的加工效率进行深入、细致的调查研究,对比了不同铣床的加工效率,推导了高速铣削加工效率的计算公式。 1.加工效率的计算 按照传统切削理论,切削加工效率Zw(cm3/min)可通过下列公式计算: Zw=v×f×ap (1) 式中:v——切削速度,f——进给量,ap——切削深度 根据分析与研究,我们认为式(1)不适用于高速铣削加工效率的计算,原因主要有两点: ①高速铣床的主轴转速相当高(如HSM-700型高速铣床最高转速达42000r/min,加工平面时转速也在35000r/min以上),如此高的转速使刀具并非每一转都在切削金属; ②在实际加工中,设定的转速和进给量只是最大转速和最大进给量,实际的刀具转速和进给量时刻都在变化(HSM-700机床的自测功能可以显示整个切削过程中的变化情况),切削过程中的实际转速和进给量总是从较低值迅速达到较高值又很快降到较低值,如此反复变化,这是铣削过程的客观反映,而不像车削过程中可以保持转速和进给量恒定不变。 因此,我们提出用单位时间内的金属去除量Z(cm3/min)表示加工效率,即: Z=W/t (2) 式中:W——切削过程总的金属去除量(cm3),t——切削时间(min)(>0) 式(2)更符合高速铣削的实际情况,用式(2)很容易实现对高速铣削加工效率的计算,同时也便于不同铣床加工效率的比较。例如,原来在普通铣床上加工某零件,为了缩短生产周期,一部分零件现采用高速铣床加工。这样,可通过该零件的加工来比较两种加工设备的加工效率。

内螺纹铣削加工

1 引言 传统的螺纹加工方法主要为采用螺纹车刀车削螺纹或采用丝锥、板牙手工攻丝及套扣。随着数控加工技术的发展,尤其是三轴联动数控加工系统的出现,使更先进的螺纹加工方式———螺纹的数控铣削得以实现。螺纹铣削加工与传统螺纹加工方式相比,在加工精度、加工效率方面具有极大优势,且加工时不受螺纹结构和螺纹旋向的限制,如一把螺纹铣刀可加工多种不同旋向的内、外螺纹。对于不允许有过渡扣或退刀槽结构的螺纹,采用传统的车削方法或丝锥、板牙很难加工,但采用数控铣削却十分容易实现。此外,螺纹铣刀的耐用度是丝锥的十多倍甚至数十倍,而且在数控铣削螺纹过程中,对螺纹直径尺寸的调整极为方便,这是采用丝锥、板牙难以做到的。由于螺纹铣削加工的诸多优势,目前发达国家的大批量螺纹生产已较广泛地采用了铣削工艺。 2 螺纹铣削加工实例 图1所示为M6标准内螺纹的铣削加工实例。工件材料:铝合金;刀具:硬质合金螺纹钻铣刀;螺纹深度:10mm;铣刀转速:2,000r/min;切削速度:314m/min;钻削进给量:0. 25mm/min;铣削进给量:0.06mm/齿;加工时间:每孔1.8s。 图1所示加工工位流程为:①位,螺纹钻铣刀快速运行至工件安全平面;②位,螺纹钻铣刀

钻削至孔深尺寸;③位,螺纹钻铣刀快速提升到螺纹深度尺寸;④位,螺纹钻铣刀以圆弧切入螺纹起始点;⑤位,螺纹钻铣刀绕螺纹轴线作X、Y方向插补运动,同时作平行于轴线的+Z方向运动,即每绕螺纹轴线运行360°,沿+Z方向上升一个螺距,三轴联动运行轨迹为一螺旋线;⑥位,螺纹钻铣刀以圆弧从起始点(也是结束点)退刀;⑦位,螺纹钻铣刀快速退至工件安全平面,准备加工下一孔。该加工过程包括了钻孔、倒角、内螺纹铣削和螺纹清根槽铣削,采用一把刀具一次完成,加工效率极高。 3 螺纹铣刀主要类型 在螺纹铣削加工中,三轴联动数控机床和螺纹铣削刀具是必备的两要素。以下介绍几种常见的螺纹铣刀类型: (1) 圆柱螺纹铣刀 圆柱螺纹铣刀的外形很像是圆柱立铣刀与螺纹丝锥的结合体(见图2上,图2下为锥管螺纹铣刀),但它的螺纹切削刃与丝锥不同,刀具上无螺旋升程,加工中的螺旋升程靠机床运动实现。由于这种特殊结构,使该刀具既可加工右旋螺纹,也可加工左旋螺纹,但不适用于较大螺距螺纹的加工。 常用的圆柱螺纹铣刀可分为粗牙螺纹和细牙螺纹两种。出于对加工效率和耐用度的考虑,螺纹铣刀大都采用硬质合金材料制造,并可涂覆各种涂层以适应特殊材料的加工需要。圆柱螺纹铣刀适用于钢、铸铁和有色金属材料的中小直径螺纹铣削,切削平稳,耐用度高。缺点是

螺纹的铣削加工详解

随着时代的进步,数控行业在我国大中型机械加工业用得越来越广泛,一些大型零件 随着时代的进步,数控行业在我国大中型机械加工业用得越来越广泛,一些大型零件的螺纹加工,传统的螺纹车削和丝锥、板牙已无法满足生产的需要。而在数控铣床或加工中心得到广泛应用的今天,采用三轴联动机床进行螺纹加工,改变了螺纹的加工工艺方法,取得了良好的效果。一、螺旋铣削内孔 1.加工范围 孔径较大的盲孔或通孔,由于麻花钻加工太慢或不能加工,往往选择螺旋铣削的方式。而且由于该方式选择的刀具不带底刃,所以更适合小切深、高转速及大进给的加工情况。 2.加工特点 螺旋铣削加工孔是建立在螺旋式下刀方法基础上的加工方法,螺旋铣孔时有一个特点:每螺旋铣削一周,刀具的Z轴方向移动一个下刀高度。 3.螺纹铣刀的选择 选择16mm 的三刃转位铣刀,刀具转速S=3000r/min,进给量F=2500mm/min。 4.说明 这种方法在螺旋铣削内孔上很有特色,其程序编写的实质就是将一个下刀高度作为螺旋线高度编成一个子程序,通过循环调用该螺旋线子程序,完成整个孔的铣削加工。该方法加工孔不受铣刀规格等因素影响,所以在数控铣床和加工中心上应用比较理想。 5.应用实例及程序编写 如图1所示的零件图中,要加工螺纹M36×1.5mm的底孔通孔。首先,计算螺纹 M36×1.5mm的底孔直径为:公称直径-1.0825×P(螺距)=36-1.0825×1.5=33.75mm。确认该零件的加工毛坯为80mm ×80mm ×30mm的45钢,选定刀具为16mm三刃转位铣刀,刀具转

速S=3000r/min,进给量F=2500mm/min。圆弧导入点为A(图2),在0A段建立刀补,圆弧导 出点为B,在0B段取消刀补。参考程序编写如下(本文涉及到的参考程序均在FANUC系 统中验证使用)。主程序如下。%(程序开始符) O0001;(主程序名) T1;(刀 具为16mm的立铣刀) G80G40G69 ;(取消固定循环、刀具半径补偿和旋转指令) G90G54G00X0Y0M03S3000;(程序初始化) G43Z50.0 H01;(1 号刀具长度补偿) Z5.0;(快速移动点定位) G01Z0F50;(工进到) G41D01G01X-6.875Y10.0;(D01=8.0,在 0A 段建立刀补) G03X-16.875Y0R10;(圆弧导入 R10) M98P100L16;(调用子程 序 O100,调用次数 16 次) G90G03X-6.875Y-10R10.0;(光整轮廓一周) G40G01X0Y0;(取消刀补) G0Z50.0;(退出) M05;(主轴停止) M30;(程序结束并 返回程序头) %(程序结束符) 子程序如下。%(程序开始符) O100;(子程序) G91G03I16.875Z-2.0F2500;(运用增量坐标值编写,每运行一周刀具在Z轴方向向下移动2mm) M99;(返回主程序) %(程序结束符) 通过螺旋式下刀的方法加工内孔,同时也可以 按照这种编程思路加工圆柱类工件。 二、单刃螺纹铣刀加工螺纹 1.加工范围同一把螺纹铣刀既可以铣削左旋螺纹 又可以铣削右旋螺纹,既可以铣削内旋螺纹又可以铣削外螺纹,同时不受螺距和螺纹规格的 影响。 2.加工特点单刃螺纹铣刀,加工是建立在螺旋式下刀方法基础上的加工方式。铣螺纹的原理为:螺纹铣刀每铣一周,刀具在Z轴方向上运动一个导程(单线时为一个螺距)。3.螺纹铣刀的选择选择16mm的单刃螺纹铣刀,刀具转速S=1800r/min,进给量 F=300mm/min。 4.说明这种方法在螺纹铣削上很有特色,其程序编写的实质就是将 一个导程的螺旋线编成一个子程序,通过反复调用该螺旋线子程序进行加工,即可完成整个 螺纹的铣削加工。利用该方法加工螺纹不受铣刀螺距和螺纹规格等参数的影响,所以在数控 铣床和加工中心上应用广泛。 5.应用实例及程序编写继续加工图1所示工件的螺纹 M36×1.5mm螺纹,如图3所示,圆弧的导入点为A,在0A段建立刀补,圆弧导出点为B, 在0B段取消刀补。根据思路编写的加工螺纹程序如下。主程序如下。%(程序开始符) O0002;(主程序名) T2;(2号刀具为16mm的螺纹铣刀) G80G40G69;(取消

切削加工常用计算公式(完整资料).doc

【最新整理,下载后即可编辑】 附录3:切削加工常用计算公式 1. 车削加工 切削速度Vc (m/min) 1000 n D Vc ?π?= 主轴转速n (r/min) D 1000Vc n ?π?= 金属切除率Q (cm 3/min) Q = Vc ×a p ×f 净功率P (KW) 3p 1060Kc f a V c P ????= 每次纵走刀时间t (min) n f l t w ?= 以上公式中符号说明

D — 工件直径 (mm) ap — 背吃刀量(切削深度) (mm) f — 每转进给量 (mm/r ) lw — 工件长度 (mm) 2. 铣削加工 铣削速度Vc (m/min) 1000 n D Vc ?π?= 主轴转速n (r/min) D 1000Vc n ?π?= 每齿进给量fz (mm) z n Vf fz ?= 工作台进给速度Vf (mm/min) z n fz Vf ??= 金属去除率Q (cm 3/min) 1000Vf ae ap Q ??= 净功率P (KW) 610 60Kc Vf ae ap P ????=

扭矩M (Nm) n 1030P M 3 ?π??= 以上公式中符号说明 D — 实际切削深度处的铣刀直径 (mm ) Z — 铣刀齿数 ap — 轴向切深 (mm) ae — 径向切深 (mm) 3. 钻削加工 切削速度Vc (m/min) 1000 n d Vc ?π?= 主轴转速n (r/min) d 1000Vc n ?π?= 每转进给量f (mm/r) n Vf f = 进给速度Vf (mm/min) n f Vf ?= 金属切除率Q (cm 3/min)

典型零件加工工艺

箱体类零件加工工艺 箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图1所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。 图1 某车床主轴箱体简图

箱体类零件的结构特点和技术要求分析 图3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。 1.平面的精度要求箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。 2.孔系的技术要求箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。 3.孔与平面间的位置精度箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。 4.表面粗糙度重要孔和主要表面的粗糙度会影响连接面的配合性质或接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。 箱体类零件的材料及毛坯 箱体零件的材料常用铸铁,这是因为铸铁容易成形,切削性能好,价格低,且吸振性和耐磨性较好。根据需要可选用HT150~350,常用HT200。在单件小批量生产情况下,为缩短生产周期,可采用钢板焊接结构。某些大负荷的箱体有时采用铸钢件。在特定条件下,可采用铝镁合金或其它铝合金材料。 铸铁毛坯在单件小批生产时,一般采用木模手工造型,毛坯精度较低,余量大;在大批量生产时,通常采用金属模机器造型,毛坯精度较高,加工余量可适当减小。单件小批生产直径大于50mm的孔,成批生产大于30mm的孔,一般都铸出预孔,以减少加工余量。铝合金箱体常用压铸制造,毛坯精度很高,余量很小,一些表面不必经切削加即可使用。 箱体类零件的加工工艺过程 箱体零件的主要加工表面是孔系和装配基准面。如何保证这些表面的加工精度和表面粗糙度,孔系之间及孔与装配基准面之间的距离尺寸精度和相互位置精度,是箱体零件加工的主要工艺问题。 箱体零件的典型加工路线为:平面加工-孔系加工-次要面(紧固孔等)加工。 图1车床主轴箱体零件,其生产类型为中小批生产;材料为HT200;毛坯为铸件。该箱体的加工工艺路线如表1。 表1车床主轴箱体零件的加工工艺过程

螺纹铣削

图1所示为M6标准内螺纹的铣削加工实例。工件材料:铝合金;刀具:硬质合金螺纹钻铣刀;螺纹深度:10mm;铣刀转速:2,000r/mi n;切削速度:314m/min;钻削进给量:0.25mm/min;铣削进给量:0.06mm/齿;加工时间:每孔1.8s。图1所示加工工位流程为:①位,螺纹钻铣刀快速运行至工件安全平面;②位,螺纹钻铣刀钻削至孔深尺寸;③位,螺纹钻铣刀快速提升到螺纹深度尺寸;④位,螺纹钻铣刀以圆弧切入螺纹起始点; ⑤位,螺纹钻铣刀绕螺纹轴线作X、Y方向插补运动,同时作平行于轴线的+Z方向运动,即每绕螺纹轴线运行360°,沿+Z方向上升一个螺距,三轴联动运行轨迹为一螺旋线;⑥位,螺纹钻铣刀以圆弧从起始点(也是结束点)退刀;⑦位,螺纹钻铣刀快速退至工件安全平面,准备加工下一孔。该加工过程包括了钻孔、倒角、内螺纹铣削和螺纹清根槽铣削,采用一把刀具一次完成,加工效率极高。 3 螺纹铣刀主要类型 在螺纹铣削加工中,三轴联动数控机床和螺纹铣削刀具是必备的两要素。以下介绍几种常见的螺纹铣刀类型: (1) 圆柱螺纹铣刀 圆柱螺纹铣刀的外形很像是圆柱立铣刀与螺纹丝锥的结合体(见图2上,图2下为锥管螺纹铣刀),但它的螺纹切削刃与丝锥不同,刀具上无螺旋升程,加工中的螺旋升程靠机床运动实现。由于这种特殊结构,使该刀具既可加工右旋螺纹,也可加工左旋螺纹,但不适用于较大螺距螺纹的加工。

常用的圆柱螺纹铣刀可分为粗牙螺纹和细牙螺纹两种。出于对加工效率和耐用度的考虑,螺纹铣刀大都采用硬质合金材料制造,并可涂覆各种涂层以适应特殊材料的加工需要。圆柱螺纹铣刀适用于钢、铸铁和有色金属材料的中小直径螺纹铣削,切削平稳,耐用度高。缺点是刀具制造成本较高,结构复杂,价格昂贵。 (2) 机夹螺纹铣刀及刀片 机夹螺纹铣刀适用于较大直径(如D>25mm)的螺纹加工。其特点是刀片易于制造,价格较低,有的螺纹刀片可双面切削,但抗冲击性能较整体螺纹铣刀稍差。因此,该刀具常推荐用于加工铝合金材料。图3 所示为两种机夹螺纹铣刀及刀片。图3a为机夹单刃螺纹铣刀及三角双面刀片,图 3b为机夹双刃螺纹铣刀及矩形双面刀片。 (3) 组合式多工位专用螺纹镗铣刀 组合式多工位专用螺纹镗铣刀的特点是一刀多刃,一次完成多工位加工,可节省换刀等辅助时间,显著提高生产率。图4所示为组合式多工位专用螺纹镗铣刀加工实例。工件需加工内螺纹、倒角和平台d4。若采用单工位自动换刀方式加工,单件加工用时约30s。而采用组合式多工位专用螺纹镗铣刀加工,单件加工用时仅约5s。 4 螺纹铣削轨迹 螺纹铣削运动轨迹为一螺旋线,可通过数控机床的三轴联动来实现。图5为左旋和右旋外螺纹的

典型零件机械加工工艺设计与实施期末测试答案

典型零件机械加工工艺设计与实施 期末测试参考答案 一、填空题(每空1分,共30分): 1、铸件、锻件、焊接件、冲压件 2、粗基准、精基准 3、基准先行、先主后次、先粗后精、先面后孔 4、通规、止规 5、成形法、展成法 6、直齿、斜齿圆柱齿轮、蜗轮 7、弟y齿、珩齿、磨齿 8 500 9、盘形插齿刀、碗形直齿插齿刀、锥柄插齿刀 10、平行孔系、同轴孔系、交叉孔系。

11 找正法、镗模法、坐标法、

、选择题(每小题5分,共10 分)

工床身时,导轨面的实际切除量要尽可能地小而均匀,故应选导轨面作粗基准加工床身底面,然后再以加工过的床身底面作精基准加工导轨面,此时从导轨面上去除的加工余量可较小而均匀。 3、试述单刃镗刀镗削具有以下特点。 答:单刃镗刀镗削具有以下特点 镗削的适应性强。 镗削可有效地校正原孔的位置误差。 镗削的生产率低。因为镗削需用较小的切深和进给量进行多次走刀以减小刀杆的弯曲变形,且在镗床和铣床上镗孔需调整镗刀在刀杆上的径向位置,故操作复杂、费时。 镗削广泛应用于单件小批生产中各类零件的孔加工。 4、铣削加工可完成哪些工作?铣削加工有何特点? 答:1)铣削应用范围:铣床是机械加工主要设备之一,在铣床上用铣刀对工件进行加工的方法称为铣削。它可用来加工平面、台阶、斜面、沟槽、成形表面、齿轮和切断等。如图5—11所示为铣床加工应用示例。 2)铣削特点: (1)生产率高铣削时铣刀连续转动,并且允许较高的铣削速度,因此具有较高的生产率(2)断续切削铣削时每个刀齿都在断续切削,尤其是端铣,铣削力波动大,故振动是不可

高速铣削时刀齿还要经受周期性的冷、热冲击,容易出现裂纹和崩刃,使刀具耐用度下 降。 (3)多刀多刃切削 铣刀的刀齿多,切削刃的总长度大,有利于提高刀具耐用度和生产 率,优点不少。但也存在下述两个方面的问题:一是刀齿容易出现径向跳动,这将造成 刀齿负荷不等,磨损不均匀,影响已加工表面质量;二是刀齿的容屑空间必须足够,否 则会损坏刀齿 五、分析与计算题(每小题9分,共18分) 1、解:(1)电动机(1450r/min — 40, 26, 33 - 325 58 72 65 -—[聖—M3-主轴],[M2 61 —17-主轴] 81 (2) 3X 2 = 6 (3) n min = 1450X 100 X 26 X 17 =33.81344mm 325 72 81 2、 解:先画出尺寸链。 确定圭寸闭环:A0=0.1?0.4mm 命⑴ 90 °严 增环:A2= 0 mm 0.03 ES 减环:A1=A3=6 0.01mm 、 A 4EI m n 1 然后用极值法公式:A 0 A , A j i 1 j m 1

典型零件的加工工艺分析案例

典型零件的加工工艺分析案例 实例. 以图A-54所示的平面槽形凸轮为例分析其数控铣削加工工艺。 图A-54 平面槽型凸轮简图 案例分析: 平面凸轮零件是数控铣削加工中常用的零件之一,基轮廓曲线组成不外乎直线—曲线、圆弧—圆弧、圆弧—非圆曲线及非圆曲线等几种。所用数控机床多为两轴以上联动的数控铣床,加工工艺过程也大同小异。 1. 零件图纸工艺分析 图样分析要紧分析凸轮轮廓形状、尺寸和技术要求、定位基准及毛坯等。 本例零件是一种平面槽行凸轮,其轮廓由圆弧HA、BC、DE、FG和直线AB、HG以及过渡圆弧CD、EF所组成,需要两轴联动的数控机床。材料为铸铁、切削加工性较好。 该零件在数控铣削加工前,工件是一个通过加工、含有两个基准孔直径为φ280mm、厚度为18mm的圆盘。圆盘底面A及φ35G7和φ12H7两孔可用作定位基准,无需另作工艺孔定位。 凸轮槽组成几何元素之前关系清晰,条件充分,编辑时所需基点坐标专门容易求得。 凸轮槽内外轮廓面对A面有垂直度要求,只要提升装夹度,使A面与铣刀轴线垂直,即可保证:φ35G7对A面的垂直度要求由前面的工序保证。 2. 确定装夹方案

一样大型凸轮可用等高垫块垫在工作台上,然后用压板螺栓在凸轮的孔上压紧。外轮廓平面盘形凸轮的垫板要小于凸轮的轮廓尺寸,不与铣刀发生干涉。对小型凸轮,一样用心轴定位,压紧即可。 按照图A-54所示凸轮的结构特点,采纳“一面两孔”定位,设计一“一面两销”专用夹具。用一块320mm×320mm×40mm的垫块,在垫块上分别精镗φ35mm及φ12mm两个定位销孔的中心连接线与机床的x轴平行,垫块的平面要保证与工作台面平行,并用百分表检查。 图A-55为本例凸轮零件的装夹方案示意图。采纳双螺母夹紧,提升装夹刚性,防止铣削时因螺母松动引起的振动。 图A-55凸轮装夹示意图 3. 确定进给路线 进给路线包括平面内进给和深度进给两部分路线。对平面内进给,对外凸轮廓从切线方向切入,对内凹轮廓从过渡圆弧切入。在两轴联动的数控铣床上,对铣削平面槽形凸轮,深度进给有两种方法:一种是xz(或yz)平面来回铣削逐步进刀到即定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到即定深度。 本例进刀点选在(150,0),刀具在y+15之间来回运动,逐步加深铣削深度,当达到即定深度后,刀具在xy平面内运动,铣削凸轮轮廓。为保证凸轮的工件表面有较好的表面质量,采纳顺铣方式,即从(150,0)开始,对外凸轮廓,按顺时针方向铣削,对内凸轮廓按逆时针方向铣削,图A -56所示为铣刀在水平面的切入进给路线。 图A-56 平面槽形凸轮的切入进给路线 4. 选择刀具及切削用量 铣刀材料和几何参数要紧按照零件材料切削加工性、工件表面几何形状和尺寸大小不一选择;切削用量则依据零件材料特点、刀具性能及加工

典型零件加工工艺(轴类、盘类、箱体类、齿轮类等)

实际中,零件的结构千差万别,但其基本几何构成不外是外圆、内孔、平面、螺纹、齿面、曲面等。很少有零件是由单一典型表面所构成,往往是由一些典型表面复合而成,其加工方法较单一典型表面加工复杂,是典型表面加工方法的综合应用。下面介绍轴类零件、箱体类和齿轮零件的典型加工工艺。 第一节轴类零件的加工 一轴类零件的分类、技术要求 轴是机械加工中常见的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等如图6-1,其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。 根据轴类零件的功用和工作条件,其技术要求主要在以下方面: ⑴尺寸精度轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。 ⑵几何形状精度主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。 ⑶相互位置精度包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。 ⑷表面粗糙度轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3.2μm。 ⑸其他热处理、倒角、倒棱及外观修饰等要求。 二、轴类零件的材料、毛坯及热处理 1.轴类零件的材料 ⑴轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 ⑵轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 2.轴类零件的热处理 锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。 调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。

相关文档
最新文档