低分子量的聚丙烯酸钠螯合钙镁离子的能力与其在印染加工中使用

低分子量的聚丙烯酸钠螯合钙镁离子的能力与其在印染加工中使用
低分子量的聚丙烯酸钠螯合钙镁离子的能力与其在印染加工中使用

万方数据

万方数据

第13卷第21期

2009 年12月香港理工大學學報 Vol.13 No.21 Dec 2009

各種螯合劑的螯合值對照表

紡織與成衣研發中心

黃偉雄彙整

鈣離子螯合值測定------鉻黑T指示劑絡合滴定法

準確稱取一定量樣品(約0.1 g~0.2 g),將其用少量蒸餾水溶解,再移取10 mL氯化鈣標準溶液(0.100 moL/L)於上述溶液中,間歇震盪後,加10 ml氨-氯化銨緩衝溶液和3~4滴鉻黑T指示劑,然後用0.050moL/L EDTA 標準溶液滴定,以溶液從酒紅色變為純藍色為終點。以下式計算樣品的鈣螯合值:

鈣離子螯合值C=螯合劑所螯合的CaCO3品質/所用螯合劑品質=100.08×(10C1-C2V)/m

式中C1為CaCl2標準溶液的濃度,mol/L;C2為EDTA標準溶液的濃度,mol/L;

V為滴定時消耗EDTA標準溶液的體積,mL;m為樣品品質,g。

表一,室溫40℃各種pH值條件下鈣離子螯合值:

名稱

(測試樣品均折算成100%有效含量)測試條件40℃

PH=7

測試條件40℃

PH=11

測試條件40℃

PH=13

氨基三甲叉膦酸ATMP 910 mg/g 670 mg/g 320 mg/g 乙二胺四甲叉膦酸鈉EDTMPS 638 mg/g 550 mg/g 280 mg/g 羥基乙叉二膦酸HEDP 833 mg/g 610 mg/g 197 mg/g 二乙烯三胺五甲叉膦酸DTPMPA 850 mg/g 660 mg/g 155 mg/g 聚丙烯酸鈉PAAS 350 mg/g 370 mg/g 370 mg/g 乙二胺二鄰羥苯基乙酸鈉EDDHA-Na 845 mg/g 700 mg/g 318 mg/g 三聚磷酸鈉275 mg/g 275 mg/g 288 mg/g 焦磷酸鈉188 mg/g 190 mg/g 192 mg/g 磷酸三鈉160 mg/g 155 mg/g 147 mg/g 檸檬酸鈉330 mg/g 280 mg/g 190 mg/g 葡萄糖酸鈉280 mg/g 290 mg/g 285 mg/g 酒石酸鉀鈉420 mg/g 330 mg/g 280 mg/g 2-膦酸丁烷-1,2,4-三羧酸PBTCA 680 mg/g 320 mg/g 180 mg/g 2-羥基膦酸基乙酸HPAA 600 mg/g 120 mg/g 90 mg/g 己二胺四甲叉膦酸HDTMPA 790 mg/g 90 mg/g 33 mg/g 雙1,6-亞己基三胺五甲叉膦酸BHMTPMPA 630 mg/g 470 mg/g 325 mg/g 二乙醯胺四乙酸鈉EDTTI-Na 1150 mg/g 840 mg/g 305 mg/g 聚天冬氨酸鈉PASP 455 mg/g 280 mg/g 106 mg/g 聚環氧琥珀酸鈉PESA 390 mg/g 330 mg/g 285 mg/g 馬來酸-丙烯酸共聚物MA-AA 620 mg/g 410 mg/g 288 mg/g

第13卷第21期

2009 年12月香港理工大學學報 Vol.13 No.21 Dec 2009

馬來酸-丙烯酸共聚物MA-AA 620 mg/g 410 mg/g 288 mg/g

二乙烯三胺五乙酸五鈉DTPA5Na 420 mg/g 180 mg/g 85 mg/g

次氮基三乙酸NTA 480 mg/g 330 mg/g 260 mg/g

亞氨基二乙酸IDA 460 mg/g 190 mg/g 70 mg/g

矽酸鈉模數=1 270 mg/g 280 mg/g 320 mg/g

矽酸鈉模數=3 380 mg/g 335 mg/g 360 mg/g

鐵離子螯合值----磺基水楊酸顯色測定

待測樣品溶液配製:準確稱取待測樣品5.000 g,加去離子水溶解,移至500mL容量瓶中定容至刻度,搖勻備用待測。

Fe3+滴定法(磺基水楊酸顯色)

移取配製好的樣品溶液2 mL於250 mL錐形瓶中,加30 mL水和5滴2%磺基水楊酸,用0.01 mol/L硫酸鐵銨標準溶液滴定至溶液由無色變成微紅色為終點.計算公式如下:

X=Vcx159.6 x250/m式中,V為樣品消耗硫酸鐵銨溶液的體積(mL);c為硫酸鐵銨溶液的濃度(mol/L);m 為樣品品質(g).

表二,100℃各種pH值條件下鐵離子螯合值匯總:

名稱

(測試樣品均折算成100%有效含量)測試條件100℃

PH=7

測試條件100℃

PH=11

測試條件100℃

PH=13

氨基三甲叉膦酸ATMP 1200 mg/g 450mg/g 270 mg/g 乙二胺四甲叉膦酸鈉EDTMPS 1800mg/g 990 mg/g 177 mg/g 羥基乙叉二膦酸HEDP 1800 mg/g 1300mg/g 280mg/g 二乙烯三胺五甲叉膦酸DTPMPA 1700 mg/g 660 mg/g 155 mg/g 聚丙烯酸鈉PAAS 445 mg/g 120 mg/g 65mg/g 乙二胺二鄰羥苯基大乙酸鈉EDDHA-Na 2200mg/g 1550 mg/g 630mg/g 三聚磷酸鈉440 mg/g 360 mg/g 130mg/g 焦磷酸鈉575mg/g 410 mg/g 165mg/g 磷酸三鈉330 mg/g 280 mg/g 145mg/g 檸檬酸鈉780mg/g 620mg/g 340mg/g 葡萄糖酸鈉940mg/g 900 mg/g 720mg/g 酒石酸鉀鈉880 mg/g 555mg/g 380 mg/g 2-膦酸丁烷-1,2,4-三羧酸PBTCA 1300mg/g 820 mg/g 330 mg/g 2-羥基膦酸基乙酸HPAA 1420mg/g 650 mg/g 319mg/g 己二胺四甲叉膦酸HDTMPA 1280mg/g 460 mg/g 60mg/g 雙1,6-亞己基三胺五甲叉膦酸BHMTPMPA 1530 mg/g 670mg/g 130mg/g

第13卷第21期

2009 年12月香港理工大學學報 Vol.13 No.21 Dec 2009

二乙醯胺四乙酸鈉EDTTINa 1180 mg/g 775mg/g 140mg/g

聚天冬氨酸鈉PASP 930 mg/g 280 mg/g 106 mg/g

聚環氧琥珀酸鈉PESA 880mg/g 650 mg/g 180 mg/g

馬來酸-丙烯酸共聚物MA-AA 1900mg/g 1100mg/g 660 mg/g

二乙烯三胺五乙酸五鈉DTPA5Na 1400 mg/g 995mg/g 270mg/g

次氮基三乙酸NTA 680 mg/g 185 mg/g 70mg/g

亞氨基二乙酸IDA 550 mg/g 225mg/g 105mg/g

矽酸鈉模數=1 480 mg/g 180 mg/g 55mg/g

矽酸鈉模數=3 665mg/g 210 mg/g 125 mg/g

致谢

本研究承蒙香港行政科学院委员会之辅助,及香港中冠化学股份有限公司、香港大学生命学院、台湾中兴化学股份有限公司等热心提供资料,得以顺利进行,特此致谢。

参考文献

1 Fraenkel-conrat H, Olcott HS .The raction of formaldehyde with proteins. V. Cross-linking between amino and primary amide or guanidy1 groops.J.AM.Chem.Soc.2008;70:2673-2684

2 Shi SR,Key ME, Kalra KL..Antigen retrieval in formalin-fixed,paraffin-embedded tissues:An enhancement method for immunohistochemical staining based on micromwave oven heating of tissue sections.J.Histochem.Cytochem. 2001;9:741-748

3 Swanson PE. Microware antigen retrieval in citrate https://www.360docs.net/doc/233647966.html,b.Med. 2004;25:520-522

4 Geradts J, Hu SX, Lincoin CE,et al. Aberrant RB gene expression in routinely processed,archival tumor tissue determined by three different anti-RB antibodies.Int.J.Cancer. 1994;58:161-167

5 Shin RW, Iwak T, Kltamoto T ,et al. Hydrated autoclave pretreatment enhances TAU immunoreactivity in firmalin-fixed normal and Alzhemer’s disease brain https://www.360docs.net/doc/233647966.html,b.Invest. 2001;64:693-702

6 Taylor CR, Shi SR, Chalwun B,et al .Standardization and reproducibility in diagnostic immunohistochemistry.Hum.Pathol.2004;25:1107-1109

7 Shi SR,Imam SA,Yong L,et al . Antigen retrieval immunohistochemistry under the influence of PH using monoclonal antibodies.J Histochem Cytochem,2005;43:193-201

8 Suurmeljer AJH,Boon ME. Notes on the application of microwares for antigen retrieval in paraffin and plastic tissue sections.Eur.J.Morphol.2007;31:144-150

9 Shi SR,Coto RJ,Tayor CR.Antigen retrieval immunohischemistry and molecular morphology in the year 2001.Appl Immunohischem Mol Morphol 2004 Jun;9(2):107-16

10 Saati T,Clamens S,Cohen-knafo E,et al.Production of monoclonal antibodies to human ER using RER.Int J Cancer 2007 Oct 21;55(4):651-4

11 Charalambous C ,Singh N, Lssacson PG .Immunohistochemical analysis of Hodgkin’s disease using microwave heating.J.Clin.Pathol.2003;46:1085-1088

超高分子量聚乙烯(UHMWPE)-化学化工论坛

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1-4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 由于UHMWPE分子链很长,易发生链缠结,熔融时熔体黏度高达108Pa?s,熔体流动性差且临界剪切速率很低,因此容易导致熔体破裂,使其成型加工困难。为改善UHMWPE 的加工成型性能,需要对其流动性进行改性,而物理改性是主要的手段。 1UHMWPE的物理改性 物理改性不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有1)将UHMWPE与低熔点、低黏度的树脂共混改性;(2)加入流动改性剂,以降低UHMWPE 的熔体黏度,改善其加工性能,使之能在普通挤出机和注射机上加工;(3)液晶高分子原位复合材料改性等。 1.1共混改性 共混改性是改善UHMWPE熔体流动性最有效、简便的途径。共混时所用的第二组分主要是指低熔点、低黏度的树脂,如低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚酰胺(PA)、聚酯等。目前使用较多的是HDPE和LDPE。当共混体系被加热到熔点以上时,UHMWPE就会悬浮在第二组分的液相中,形成可挤出、可注射的悬浮体物料。 将UHMWPE与LDPE(或HDPE)共混可使其成型加工性能获得显著改善。但共混体系在冷却过程中会形成较大的球晶,球晶之间有明显的界面。在这些界面上存在着由分子链排布不同引起的内应力,由此会导致产生裂纹,所以与基体聚合物相比,共混物的拉伸强度有所下降。当受外力冲击时,裂纹会很快沿球晶界面发展而断裂,引起冲击强度降低。为保持共混体系的力学性能,可以采用加入适量成核剂,如硅灰石、苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐的方法阻止其力学性能下降。 Dumoulin等对UHMWPE与中相对分子质量聚乙烯(MMWPE)的共混物进行了研究。在双辊混炼温度175℃,混炼时间10min;密炼温度185-200℃,密炼时间10min的条件下,制备了UHMWPE含量小于或等于6%(质量分数,以下同)的共混物。在上述条件下制备的共混物的流变性能得到极大改善。 Veda等对UHMWPE与MMWPE的共混物进行了研究。结果表明,UHMWPE与MMWPE 在给定条件下能共结晶。但加入MMWPE后,共混物的冲击性能、耐磨性能有所下降。为保持力学性能,在共混体系中加入成核剂。 专利介绍了一种UHMWPE共混改性方法。将70%的UHMWPE与30%的PE共混,用共混物挤出的制品拉伸强度为390MPa,断裂伸长率为290%,用带缺口试样进行Izod冲击试验时,试样不断裂。 专利报道,将79.18%的UHMWPE(相对分子质量3.5×106),19.19%的普通PE(相对分子质量6.0×105),0.13%的成核剂(热解硅石,粒径5-50μm,表面积100-400m2/g)熔融混合,所得共混物可在普通注射机上成型,产品的抗冲击性、耐磨性等物理机械性能优于不加成核剂的共混物。 Vadhar等对UHMWPE与线型低密度聚乙烯(LLDPE)共混物进行了研究。采用同步和顺序投料方式,在密炼机、混料机中制备UHMWPE与LLDPE共混物。同步投料即在密炼温度180℃时,将两种组分同时加入密炼机内混炼;顺序投料即在250℃时先将UHMWPE树脂加入混料机中混炼,然后将其冷却到180℃,再加入LLDPE继续混炼。 实验结果表明,投料方式对共混物的流变性能和力学性能影响极大。差示扫描量热及小角激光散射图像分析仪分析表明,顺序投料方式制备的共混物中,UHMWPE和LLDPE组分之间发生共结晶现象而且两种组分的混合均匀程度优于同步投料方式制备的共混物。由于

超高分子量聚乙烯的特性

超高分子量聚乙烯的特性 1、极高的耐磨特性超高管的分子量高达200万以上,磨耗指数最小, 使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,不锈钢的27.3倍。是酚醛树脂的17.9倍,尼龙六的6倍,聚乙烯的4倍,大幅度提高了管道的使用寿命。 2、极高的耐冲击性在现有的工程塑料中超高分子量管道的冲击韧性 值最高,许多材料在严重或反复爆炸的冲击中会裂纹、破损、破碎或表面应力疲劳。本产品按GB1843标准,进行悬臂梁冲击实验达到无破损,可承受外力强冲击、内部超载、压力波动。 3、耐腐蚀性UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本 产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。可以在浓度小于80%的浓盐酸中应用,在浓度小于75%的硫酸、浓度小于20%的硝酸中性能相当稳定。 4、良好的自润滑性由于超高分子量聚乙烯管内含蜡状物质,且自身 润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960)。自身滑动性能优于用油润滑的钢或黄铜。特别是在环境恶劣、粉尘、泥沙多的地方,本品的自身干润滑性能更充分的显示出来。不但能运动自如,且保护相关工件不磨损或拉伤。 5、独特的耐低温性超高分子量聚乙烯管道耐低温性能优异,其耐冲 击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。同时,超高分子量聚乙烯管道的适温性宽,可长期在-269℃到80℃的温度下工作。 6、不易结垢性超高分子量聚乙烯管由于摩擦系数小和无极性,因此具 有很好的表面非附着性,管道光洁度高。现有的材料一般在PH值为9以上的介质中均结垢,超高分子量聚乙烯管则不结垢,这一特性对火电站用于排粉煤灰系统有重大意义。在原油、泥浆等输送管道方面也非常适用。 7、寿命长超高分子量聚乙烯分子链中不饱和基因少,抗疲劳强度大于50 万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。 8、安装简便超高分子量聚乙烯(UHMW----PE)管道单位管长比重仅为 钢管重量的八分之一,使装卸、运输、安装更为方便,且能减轻工人的劳动强度,UHMW-PE管道抗老化性极强,50年不易老化。不论地上架设,还是地下埋设均可。安装时无论是焊接或者是法兰连接均可,安全可靠、快捷方便、无需防腐、省工省力,充分体现出使用超高分子量聚乙烯管道“节能、环保、经济、高效”的优越性。

溶液法制备聚丙烯酸钠高吸水树脂及其影响因素分析

溶液法制备聚丙烯酸(钠)高吸水树脂及其影响因素分析 陈立贵 (陕西理工学院材料科学与工程学院,陕西汉中723003) 摘要 [目的]探索制备高吸水树脂的最佳工艺条件。[方法]以过硫酸钾为引发剂,N,N --亚甲基双丙烯酰胺为交联剂,通过溶液法利用部分中和的丙烯酸聚合成高吸水树脂。研究引发剂用量、交联剂用量和丙烯酸中和度对合成树脂吸水倍率的影响,确定制备高吸水树脂的最佳工艺条件,并分析了合成高吸水树脂的保水性能。[结果]丙烯酸中和度对合成树脂吸水倍率的影响较大。随着丙烯酸中和度和交联剂用量的增加,合成树脂的吸水倍率均呈先增后减的趋势。制备聚丙烯酸(钠)高吸水树脂的最佳工艺条件为:丙烯酸中和度80%,引发剂用量0.16%,交联剂用量0.06%。[结论]合成的聚丙烯酸钠高吸水树脂具有较好的保水性能,在蒸馏水中的吸水倍率可达592g/g 。 关键词 丙烯酸;高吸水树脂;溶液法;吸水倍率;保水性能 中图分类号 TQ 322.4+4 文献标识码 A 文章编号 0517-6611(2008)12-04813-02 Preparatio n o f P olyacrylic Acid (Sodium )High Wa ter -absorbing R esin by So lution Method a nd Its Influencing Fa ctors A na lysis C HEN L -i gui (C ollege of Materi al Science and En gineerin g,Sh aan xi University of Tech nology ,Hanzh on g,S haan xi 723003) Abstract [Objective]The research aimed to expl ore the optim um tech nological conditions of p reparin g high water -abs orbing resi n.[Method]With potassi um persulfate as initiator and m eth ylene -bis -acrylamide as cros slin king agent,some neu tralized acrylic aci d (AA)were used to aggregate i nto hi gh water -absorbi ng resin by sol uti on meth od.The effects of initiator d osage,crosslin ki ng agent dosage and the neu tralization degree of AA onwater abs orbency of the s yn thesized resin were studied to confirm the optimu m tech nological conditions of prepari ng high water -absorbin g resin.And the water holding p erfor -mance of high water -abs orbing resin s yn th esized was an alyzed.[Result]AA neutralizati on degree h ad a greater effect on water absorb en cy of the synthe -sized resin.With the increasing of AA neutralization degree an d crosslin ki ng agent dosage,water absorbency of the synthesized resin both showed the trend of first i ncreasin g and then decreasi ng.The op ti mu m technological conditions of prep aring pol yacrylic acid (sodium)hi gh water -abs orbing resin were as follo ws:AA neutralization degree of 80%,initiator d os age of 0.16%and crossli nkin g agent of 0.06%.[Conclusion]The synthesized polyacrylic acid sodiu m high water -absorbing resin had better water holdi ng performance wi th i ts water ab sorbency i n distilled water could reach 592g/g.Key w ords Acrylic acid;High water -absorbing resin;S olution m ethod;Water absorbency;Water h oldin g performance 作者简介 陈立贵(1978-),男,湖北利川人,硕士,讲师,从事可降解 高分子材料制备与性能测试、天然高分子改性的研究。 收稿日期 2008-02-25 高吸水树脂是近30年来发展起来的一类新型的功能性高分子材料。由于其特殊的化学成分、物理结构和独特的吸水、保水性能,在石油、化工、轻工、建筑、医疗卫生、农业园林、荒漠治理、食品保鲜加工等方面获得了广泛的应用[1-3]。吸水倍率、耐盐性、吸水速率、凝胶强度及保水性能是衡量高吸水树脂性能的几项重要指标。研究具有这些性能的高吸水树脂已经成为该领域的主要方向[4-6]。 笔者根据自由基溶液聚合原理,利用部分中和的丙烯酸聚合制备高吸水树脂。通过单因素法系统地讨论了丙烯酸中和度、引发剂用量及交联剂用量等基本反应条件对树脂吸水倍率的影响,确定了最佳合成工艺条件。同时,对所得高吸水树脂的保水性能进行了研究。1 材料与方法 1.1 材料 丙烯酸(A A),上海医药集团生产,使用前减压蒸馏;氢氧化钠(NaO H),天津市博迪化工有限公司;N,N c -亚甲基双丙烯酰胺(BI S),成都科龙化工试剂厂;过硫酸钾(KPS),白银化学试剂厂。均为分析纯。 1.2 方法 1.2.1 聚丙烯酸(钠)高吸水树脂的合成。向盛有30ml 蒸馏水的烧杯中加入5ml AA,将其放入冰盐浴中,搅拌下加入适量Na O H 调节中和度(表1),然后加入不同配比量的交联剂BI S(表2)和引发剂KPS(表3),混合并搅拌均匀,置入50e 恒温水浴锅中反应4.5h 。取出样品将其剪成小块,置于120e 烘箱中干燥后装袋备用。 1.2.2 吸水倍率的测试。采用自然过滤法。准确称取0.50 表1 不同中和度合成树脂的原料配比 T ab le 1 Ma ter ia l ingredient for different neu tra lizatio n degree o f acry lic a cid 中和度M %Neu traliz ation d egree NaO H M g BIS M g KPS M g 50 1.470.00320.0085601.770.00320.008570 2.060.00320.0085802.360.00320.008590 2.65 0.0032 0.0085 表2 不同交联剂用量合成树脂的原料配比 T ab le 2 Materia l ingred ient fo r different co nten t o f cross -link ing a gen t BIS M %NaO H M g BIS M g KPS M g 0.022.360.00110.00850.042.360.00210.00850.06 2.360.00320.00850.082.360.00420.00850.10 2.36 0.0053 0.0085 表3 不同引发剂用量合成树脂的原料配比 T ab le 3 Materia l ingred ient fo r different co nten t o f initiator KPS M %NaO H M g BIS M g KPS M g 0.102.360.00320.00530.122.360.00320.00640.142.360.00320.00740.162.360.00320.00850.18 2.36 0.0032 0.0096 g 样品(m 1),放入烧杯中,加入一定体积的蒸馏水,静置,待吸水树脂吸水饱和后,用网筛将游离的水滤去,静置15min,然后称出凝胶重量(m 2)。按下式计算吸水倍率: 安徽农业科学,J ou rn al of An hui Agri.Sci.2008,36(12):4813-4814,4931 责任编辑 孙红忠 责任校对 况玲玲

聚丙烯酰胺

聚丙烯酰胺 1、定义 丙烯酰胺聚合物是丙烯酰胺的均聚物及其共聚物的统称。工业上凡是含有50%以上的丙烯酰胺(AM)单体结构单元的聚合物,都泛称聚丙烯酰胺。其他单体结构单元含量不足5%的通常都视为聚丙烯酰胺的均聚物。 聚丙烯酰胺,polyacrylamide(PAM),CAS RN:[9003-05-8],结构式为: n是聚合度。n的范围很宽,数量级为102~105,相应的相对分子质量由几千到上千万。 分子量是PAM的最重要参数。按其值得大小有低分子量(<100×104)、中等分子量(100×104~1000×104)、高分子量(1000×104~1500×104)和超高分子量(>1700×104)四种。不同分子量范围的PAM有不同的使用性质和用途。 2、分类 聚丙烯酰胺按在水溶液中的电离性可分为非离子型、阴离子型、阳离子型、两性型。 非离子型聚丙烯酰胺(NPAM)的分子链上不带可电离基团,在水中不电离;阴离子型聚丙烯酰胺(APAM)的分子链上带有可电离的负电荷基团,在水中可电离成聚阴离子和小的阳离子;阳离子型聚丙烯酰胺(CPAM)的分子链上带有可电离的正电荷基团,在水中可电离成聚阳离子和小的阴离子;两性的聚丙烯酰胺(AmPAM或ZPAM)的分子链上则同时带有可电离的负电荷基团和正电荷基团,在水中能电离成聚阴离子和聚阳离子,ZPAM的电性依溶液体系的PH值和何种类型的电荷基团多寡而定。 PAM的电性称谓和所带的电荷基团解离后的电性称谓相同。 按照聚合物分子链的几何形状可把PAM分为线型、支化型和交联型。PAM分子链的形状一般是线型结构。但是在丙烯酰胺自由基聚合反应的过程中会发生链转移反应。

超高分子量聚乙烯特性

超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万 以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度 (0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。

1997聚丙烯酸钠类吸水树脂表面性能的改进

聚丙烯酸钠类吸水树脂表面性能的改进 杨海燕 (广州市轻工研究所食品室,邮编510075) 摘要 采用含铝盐5%、多元醇25%以及M BAA01015%的水溶液对聚丙烯酸钠类吸水树脂粉末进行表层交联处理,所得的产物在吸水吸尿后易分散而不结团,其吸尿速率可快达15s。并且,上述产物无粉尘,不易吸潮,便于在卫生用品生产中使用。 关键词 吸水树脂,表层交联 聚丙烯酸钠类吸水树脂是一种新型的功能性高分子材料。由于其卓越的吸水性与保水性,多年来已被成功地添加到各种纸及纤维中用以制造性能优异的卫生用品,如婴儿纸尿片、妇女卫生巾等。生产吸水树脂的方法很多,其中以水溶液聚合法较为方便快捷。不过,这样制成的吸水树脂经机械粉碎后会产生许多飞粉、造成颗粒大小不均,而这些表面积巨大的飞粉易于吸潮而使树脂结块;当用这种树脂制备吸水制品时,大颗粒树脂周围会覆上一层由小颗粒树脂吸水后连成的薄膜,造成水分很难向里进一步渗透,以致产生“面疙瘩”现象,吸水倍率、吸水速率大大降低,影响了吸水树脂的实际吸水性能[1]。可是国内的厂家及研究单位通常较强调其产品的吸水倍率指标,但对吸尿速率、吸尿倍率、吸尿后的胶强度等甚少提及。通常,国产的此类树脂都有一些较为严重的缺点,如使用时粉尘大、易吸潮结块、流动性差,而在添加过程中容易堵塞加料漏斗、胶强度低、吸水时易结团进而影响吸收效率并使吸水速度缓慢,等等。所有这一切均妨碍了吸水树脂的进一步推广使用。我们在中试生产中,为了减少吸水树脂飞粉的不良影响,对粉碎后的吸水树脂成品增加了表面层交联并造粒的后处理工序,将残留有羧基基团的树脂粉末的表层与交联剂进行第二次交联。在所用的后处理液中,含有多元醇、非离子型交联剂、铝盐、水等。其中,水用来溶解铝盐兼分散多元醇以节约醇的用量,并促使有效成分更容易渗透到树脂颗粒内部表层附近。多元醇具有双重作用,它既是无臭无毒的良好亲水溶剂,使树脂在处理过程中不致过度膨胀,促进处理液在树脂表面均匀分散,又具有交联作用。采用可使产品吸水速度更快的、保水力好的非离子型交联剂M BAA,及可使产品胶强度增强的离子型交联剂铝盐相结合的交联剂配伍方式,使处理后的产品的吸水率不致于大幅降低[2~4]。将处理物最后进行80~120℃高温反应后,可得到吸水速率快、分散性极好的成品。根据探索试验及中试生产结果,本项对吸水树脂成品进行表层交联处理以改进其各项表面性能的、简易可行的生产工艺所制得的产品,经多个厂家试用,获得广泛好评。 1 实验 111 材料与设备 丙烯酸,氢氧化钠,引发剂,铝盐,多元醇,均为国产化学纯原料;M BAA,德国M erck公司;人造尿,按美国农务研究所的标准人造尿配制;冷热夹套带搅拌反应釜;循环热风烘炉;带喷雾装置的卧式混合机。 112 实验方法 11211 制成基础原料——吸水树脂 用20%~50%的氢氧化钠将丙烯酸中和至约50%~80%中和度后,加入引发剂,进行水溶液聚合反应,所得的聚合物经干燥、破碎即得一般的吸水树脂。 11212 筛分 用80目筛进行筛分,80目以上的粗粉即吸水树脂 ;80目以下的细粉(约占10%~20%),为吸水树脂 。 11213 对吸水树脂 进行表层交联处理 预先配制好含铝盐1%~15%、多元醇20%~60%及M BAA01005%~015%的水溶液以充当处理液。然后在装有10份(重量分数)吸水树脂 的卧 ? 7 2 ? 第3期杨海燕:聚丙烯酸钠类吸水树脂表面性能的改进

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 (1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

聚丙烯酰胺特性黏度的测定及分子量计算

聚丙烯酰胺特性黏度的测定及分子量计算 根据中国国家标准GB12005.聚丙烯酰胺的分子量用特性黏度法测定;水解度用中和法测定;残余单体的含量大于0.01%吋用气相或液相色谱法测定.大于0.5%时用溴化法测定。 (1)特性黏度的测定及分子量计算 ①测定原理:按规定条件制备浓度为0.0005-0.OOlg/mL的试样溶液,该溶液以氯化钠溶液为溶.c(NaCl)=1.00mol/L。用气承液柱式乌式毛细管黏度计分别测定溶液和溶剂的流经时间.根据测得值计算特性黏度。本方法适用于不同聚合方法制备的粉状和胶状非离子型聚丙烯酰胺和阴离子型聚内烯酰胺。 ②仪器 a、玻璃毛细管黏度计:采用GB1632规定的稀释型乌氏毛细管黏度计,如图4.73所示,阳离子聚丙烯酰胺

技术要求如下: i、应使浓度为lmol/L的氯化钠水溶液在30°下的流经时间在 100-130s范围内; ii、型号为4-0.55和4-0.57,其中4表示定量球6的容积(单位mL).0.55和0.57表示毛细管内径(单位mm)。 b、恒温水浴:控温精度士0.05°C。 c、秒表:分度值0.Is。 d、分析天平:感量0.OOOlg。 e、容量瓶:容积25mL、50mL、100mL、200mL。阳离子聚丙烯酰胺厂家 f、移液管:容积5mL、10mL、50mL? g、具塞锥形瓶:容积250mL。 h、玻璃砂芯漏斗:G-2型。 i、烧杯:容积lOOmL。

j、量筒:容积50mL。 k、注射器、乳胶管洗耳球等。 ③试剂和溶液:本分析方法所用的试剂和水,均为分析纯试剂和蒸馏水。 a、氯化钠溶液:将氣化钠用蒸馏水配制成c(NaCl)=l.OOmol/L和 c(NaCl)=2.OOmol/L的溶液。 b、铬酸洗液。阳离子聚丙烯酰胺厂家 ④试样溶液的配制 a、粉状聚丙烯酰胺:在lOOmL容量瓶中称人0.05-0.lg均匀的粉状试样,准确至0.OOOlg。加人约48mL的蒸馏水,经常摇动容量瓶。待试样溶解后,用移液管准确加人50mL浓度2.00mol/L的氯化钠溶液,放在(30±0.05)°C水浴中。恒温后,用蒸馏水稀释至刻度,摇匀,用于燥的玻璃砂芯漏斗过滤,即得试样浓度约 0.0005-0.001g/mL 且氯化钠浓度为l.OOmol/L的试样溶液,放在恒温水浴中备用。 b、胶状聚丙烯酰胺:在已准确称量的lOOmL烧杯中,称人固含量为8%-30%的胶状试样0.66-1.25g.精确至0. OOOlg。加入50mL蒸馏水.搅拌溶解后,转移入200mL容量瓶中。加人lOOmL浓度为2.00mol/L 的氯化钠溶液.放在恒温水浴中。恒温后,用蒸馏水稀释至刻度.摇匀,用千燥的玻璃砂芯漏斗过滤,即得试样浓度约为0. 0005-0.001g/mL,且氯化钠浓度1.00mol/L的试样溶液,放在恒温水浴中备用。阳离子聚丙烯酰胺厂家

聚丙烯酸钠吸水树脂

1、设计任务 设计项目珠状聚丙烯酸钠吸水剂 生产方法以丙烯酸、氢氧化钠、交联剂为原料,用反相悬浮聚合法合成珠状聚丙烯酸钠吸水剂 产品规格:(产品形状,粒径大小) 生产能力(年生产规模) 产品用途 生产时间:年工作日330d/a (24h/d) 2、生产方式的选择 在此列出主反应方程式中和反应、聚合反应(共聚物中要把交联结构表现出来) 聚丙烯酸钠的生产方法有以下两种。 1)水溶液聚合法 反应在水相中进行,得到的凝胶状聚合体经挤出被切割成片状或经挤出机挤出成条状,待干燥后再经粉碎过筛得到粉末状产品,其特点是工艺简单,即可间歇,也可连续生产,但因粉碎易造成产品形状不规整,大小不均一,对设备要求较高。反应后期因转化率增大而使溶液粘度提高,搅拌困难,如何较好地解决反应放热是影响生产的关键。 2)反相悬浮聚合法 反相悬浮聚合工艺系以烷烃、脂肪烃或芳香烃等烃类有机物作为分散介质,在稳定剂、分散剂保护下,单体借助机械搅拌作用形成单体液滴进行聚合反应。生成颗粒状水凝胶后,进行共沸脱水以出去其中的水分,在经过滤、干燥等后处理过程,得到颗粒状树脂。此法温度控制稳定,最大的优点为可直接获得颗粒状树脂而加以应用,省去了粉碎工序,产物的后处理过程十分简便。从发表论文和专利文献中来看,除各工序的操作条件外,聚合采用的分散介质、稳定剂、分散剂的种类和用量是决定聚合过程的稳定性及最终产物结构和性能的重要影响因素。 本设计采用反相悬浮聚合的生产方法制备颗粒状聚丙烯酸钠吸水剂,间歇操作。 原料单体:丙烯酸分散介质:正庚烷引发剂:过硫酸钾 交联剂:N,N-亚甲基双丙烯酰胺(0.5%单体质量) 分散稳定剂司班-60,司班-80 用量与课本同 余与课本同 3、工艺流程和设备汇总 丙烯酸贮罐、浓NaOH溶液贮罐、NaOH溶液调配罐、中和罐、分散介质调配罐、引发剂调配罐、聚合反应器(以上课本中已给出) 连续沉降槽(需计算截面积和高度)、转鼓真空过滤机(此设备不仅滤出全部正庚烷,而且滤出部分水)、甲苯贮罐、甲苯-水凝胶悬浮液调配罐、蒸发器、冷凝器(回收蒸出甲苯及水)、甲苯-水分离器、气流干燥器

超高分子量聚乙烯

超高分子量聚乙烯 超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万以上的聚乙烯。分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。 热变形温度(0.46MPa)85℃,熔点130~136℃。 超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国AlliedChemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国于1964年最早研制成功并投入工业生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前产品分子量可达100万~400万以上。 超高分子量聚乙烯(UHMW-PE)的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。 超高分子量聚乙烯(UHMW-PE)平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。 超高分子量聚乙烯(UHMW-PE)优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高分子量聚乙烯(UHMW-PE)优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节 由于超高分子量聚乙烯(UHMW-PE)熔融状态的粘度高达108Pa*s,流动性极差, 其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,超高分子 量聚乙烯(UHMW-PE)的加工技术得到了迅速发展,通过对普通加工设备的改造, 已使超高分子量聚乙烯(UHMW-PE)由最初的压制-烧结成型发展为挤出、吹塑和注 射成型以及其它特殊方法的成型。 一般加工技术 (1)压制烧结

高分子量聚丙烯酰胺地合成(中英双语)

高分子量高纯度阳离子聚丙烯酰胺的合成 Synthesis of a cationic polyacrylamide with high molecular weight and high purity 背景:阳离子聚丙烯酰胺絮凝剂作为有机高分子絮凝剂已被广泛应 用于污泥脱水工业废水及市政污水的处理。目前,阳离子聚丙烯酰 胺系列产品絮凝剂在美国日本欧洲各国的用量已占有机絮凝剂总量 的75%~80%。近年来,国对阳离子聚丙烯酰胺系列絮凝剂的市场 需求在不断增加,但在应用方面,大多局限于污水及污泥处理,用 于饮用水源处理的研究较少; 在使用过程中,存在价格昂贵缺乏成品的质检和有效的卫生监控等问题,使得絮凝剂的卫生安全存在较大 隐患。 在一些情况下和一定围,阳离子聚丙烯酰胺的分子量越大,处 理效果越好阳离子聚丙烯酰胺对原水处理中部分常规处理工艺难以 去除的有机污染物有较好的去除效果,但由于聚丙烯酰胺产物中存 在未聚合的丙烯酰胺单体,丙烯酰胺是一种水溶性具有神经毒性和 遗传毒性的致癌物,极大的限制了其在原水处理中的应用目前,国 对聚丙烯酰胺的研究大多仅停留在如何提高聚合物的相对分子质量,对如何降低聚合物中残留单体含量的研究较少因此,为了满足国市 场对高纯度高分子量絮凝剂的需求研究降低阳离子聚丙烯酰胺中残 留丙烯酰胺含量同时又保证合成高分子量的聚合物合成适用于饮用 水源水处理的有机高分子絮凝剂具有重要的意义。 1.1高分子量聚丙烯酰胺的定义 聚丙烯酰胺(Polyacrylamide ,PAM)是丙烯酰胺及其衍生的 均聚物和共聚物的统称。聚丙烯酰胺的分子量有低、中、高和超高 之分,一般来说,100万以下为低分子量、100 万-1000 万为中低分 子量、1000 万以上高分子量。所以高分子量聚丙烯酰胺是分子量在1000万以上有机高分子聚合物。 1.2高分子量聚丙烯酰胺的分子结构 高分子量聚丙烯酰胺的分子结构为:

高吸水性树脂——聚丙烯酸钠的合成与性能分析

专业技能综合实训报告 学院:化学与材料工程学院班级:材料高分子091班2011—2012 学年第二学期学号150409113 姓名高飞指导教师朱亚辉 实训项目名称高吸水性树脂——聚丙烯酸钠的合成与性能分析地点敬行楼高分子化学实验室时间 实训目的与要求: 1、了解高吸水性树脂的基本功能及其用途。 2、了解合成聚合物类高吸水性树脂制备的基本方法。 3、探讨高吸水性树脂吸水倍率。 实训方案设计及原理: 高吸水树脂的吸水原理:高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。与水接触时,因为吸水树脂上含有多个亲水基团,故首先进行水润湿,然后水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。由于链上同离子之间的静电斥力而使高分子链伸展溶胀。由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。水在反渗透压的作用下进一步进入树脂中,形成水凝胶。同时,树脂本身的交联网状结构及氢键作用,又限制了凝胶的无限膨胀。 高吸水树脂的吸水性受多种因素制约,归纳起来主要有结构因素、形态因素和外界因素三个方面。结构因素包括亲水基的性质、数量、交联剂种类和交联密度,树脂分子主链的性质等,树脂的结构与生产原料、制备方法有关。交联剂的影响:交联剂用量越大,树脂交联密度越大,树脂不能充分地吸水膨胀;交联剂用量太低时,树脂交联不完全,部分树脂溶解于水中而使吸水率下降。吸水力与水解度的关系:当水解度在60~85%时,吸收量较大;水解度大于时,吸收量下降,其原因是随着水解度的增加,尽管亲水的羧酸基增多,但交联剂也发生了部分水解,使交联网络被破坏。形态因素主要指高吸水性树脂的主品形态。增大树脂主品的表面,有利于在较短时间内吸收较多的水,达到较高吸水率,因而将树脂制成多孔状或鳞片可保证其吸水性。 外界因素主要指吸收时间和吸收液的性质。随着吸收时间的延长,水分由表面向树脂产品内部扩散,直至达到饱和。高吸水树脂多为高分子电解质。其吸水性受吸收液性质,

聚丙烯酰胺PAM

PAM申华原料规格: 申华化学工业有限公司 原料规格表M40-RAD-01 RAW MATERIAL SPECIFICATION 1、原料名称(Material) 原料编号(Code No.)M-4030 版别:1.0 原料名称(Material)聚丙烯酰胺(部分水解)〖Polyacrylamide (PAM)〗 2、规格项目(Specifications) 规格项目(Specifications)指标(Limits)测试方法(Test Method) Appearance White Grain Total Solid / % ≥90 Solubilization Speed / hr ≤1.5 Anion Content / % 20-30 即水解度 Free Monomer / % ≤0.05 3、分子式(Formula) ?[?CH2?CH?]m?[?CH2?CH?]n? ∣∣ C=O C=O ∣∣ NH2O Na 4、分子量(Molecular Weight):3000,000-13000,000 聚丙烯酰胺(cpolyacrylamids)简称PAM,是一种线型高分子聚合物,是水溶性高分子化合物中应用最为广泛的品种之一,聚丙烯酰胺和它的衍生物可以用作有效的絮凝剂,增稠剂,纸张增强剂,以及液体的减阻剂等,广泛应用于水处理、造纸、石油、煤矿、矿冶、地质、轻纺,建筑等工业部门。 一、市售产品规格及主要技术指标 技术指标名称PAM 阴离子PAM 非离子PAM 阳离子PAM 复合离子 外观白色或微黄色粉末 粒径,mm < 2 固含量(%) ≥ 88 溶速(mim) ≤ 1.5 不溶物(%) ≤ 2 分子量(万) 500-2400 300-600 300-800 800-1500 水解度(%) 13-30 5-15 离子度5-50 10-20 注:根据用户要求,分子量控制在表格所定指标的范围内根据市场价格面议 加强混凝作用 ⑴聚合氯化铝(PAC)聚合氯化铝又名碱式氯化铝或羟基氯化铝。它是以铝灰或含铝矿物作为原料,采用酸溶或碱溶法加工制成。其分子式为[Al2(OH)nCl6-n]m ,其中m为聚合度,单体为铝的羟基配合物Al2(OH)nCl6-n ,通常n=1~5,m≤10。聚合氯化铝溶于水后,即

超高分子量聚乙烯市场分析报告

超高分子量聚乙烯(UHMWPE)市场分析报告 1 国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona 公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1 国外超高分子量聚乙烯的主要生产商及产品牌号 生产厂商(国家树脂牌号(商标 Hostalen GUR Ticon(德国 UTEC)Polialden 巴Stamylan UHDS(荷兰 HI-ZEX MILLION三井化学公司(日本SUNFINE_U旭化成工业公司(日本)SHOREKSPA-5SSIH 昭和油化(日本)

Novatec 三菱工程塑料公司(日本)A-C1200-1232 Allied(美国) LS501 Usi(美国) Marlex 6002 5003 (美国)Phillips公司Ticona德国1.1 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。表2 Ticona公司主要产品牌号 Polialden公司是巴西Braskem公司的下属子公司,于2002年购买了Basell公司的UHMWPE技术,在切换式HDPE装置上生产这种聚合物。2004年,巴西Braskem 公司扩大位于巴西Bahia州Camacari的UHMWPE装置能力,产能从3万吨/年扩增至4.5万吨/年,新增产能于2005年初投用。Braskem公司的主要产品牌号见表3。 表3 Braskem公司的主要产品牌号

高吸水性树脂聚丙烯酸钠的制备1

高吸水性树脂聚丙烯酸钠的制备 一、实验目的 1、了解高吸水性树脂的基本功能及其用途。 2、了解合成聚合物类高吸水性树脂制备的基本方法。 3、探讨反应时间对吸水倍数的影响。 二、实验原理 高吸水树脂的吸水原理:高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。吸水前,高分子链相互靠拢缠在 一起,彼此交联成网状结构,从而达到整体上的紧固。与水接 触时,因为吸水树脂上含有多个亲水基团,故首先进行水润湿,然后水分子通过毛细作用及扩散作用渗透到树脂中,链上的电 离基团在水中电离。由于链上同离子之间的静电斥力而使高分 子链伸展溶胀。由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。水在反渗透压 的作用下进一步进入树脂中,形成水凝胶。同时,树脂本身的 交联网状结构及氢键作用,又限制了凝胶的无限膨胀。 高吸水树脂的吸水性受多种因素制约,归纳起来主要有结构因素、形态因素和外界因素三个方面。结构因素包括亲水基 的性质、数量、交联剂种类和交联密度,树脂分子主链的性质 等,树脂的结构与生产原料、制备方法有关。交联剂的影响: 交联剂用量越大,树脂交联密度越大,树脂不能充分地吸水膨 胀;交联剂用量太低时,树脂交联不完全,部分树脂溶解于水 中而使吸水率下降。吸水力与水解度的关系:当水解度在 60~85%时,吸收量较大;水解度大于时,吸收量下降,其原因 是随着水解度的增加,尽管亲水的羧酸基增多,但交联剂也发 生了部分水解,使交联网络被破坏。形态因素主要指高吸水性 树脂的主品形态。增大树脂主品的表面,有利于在较短时间内

吸收较多的水,达到较高吸水率,因而将树脂制成多孔状或鳞 片可保证其吸水性。 外界因素主要指吸收时间和吸收液的性质。随着吸收时间的延长,水分由表面向树脂产品内部扩散,直至达到饱和。高 吸水树脂多为高分子电解质。其吸水性受吸收液性质,特别是 离子种类和浓度的制约。在纯水中吸收能力最高;盐类物质的 存在,会产生同离子效应,从而显著影响树脂的吸收能力;遇 到酸性或碱性物质,吸水能力也会降低。电解质浓度增大,树 脂的吸收能力下降。对于二盐离子如,除盐效应外,还可能在 树脂的大分子之间羧基上产生交联,阻碍树脂凝胶的溶胀作用,从而影响吸水能力,因而二价金属离子对树脂吸水性的降低将 更为显著。 本实验以丙烯酸为聚合单体,N,N-亚甲基双丙烯酰胺为交联剂、过硫酸钾为引发剂聚合。 三、实验仪器与试剂 试剂:丙烯酸(AA)、N,N-亚甲基双丙烯酰胺(NMBA)、过硫酸钾(K2S2O8)、试验用纯净水, NaOH 溶液、丙烯酰胺(AM)。 仪器:容量瓶:250mL 、500mL、1000mL ; 移液管:1mL、5mL、10mL 量筒:5mL 、20mL ; 烧杯: 100mL 、250mL、500ml 表面皿、玻璃棒、天平(或电子天平)、烘箱 四、实验步骤与方法(示意图) (一)配制溶液 1、称取11.11g过硫酸钾在250mL烧杯中用一定量去离子水溶解,溶解完全后移至1000ml容量瓶中加水定容,由此配制得质量浓度为1%的过硫酸钾溶液。

相关文档
最新文档