拉伸应力松弛金属检测的试验方法

拉伸应力松弛金属检测的试验方法
拉伸应力松弛金属检测的试验方法

森博检测服务中心

拉伸应力松弛金属检测的试验方法

按照国家规定,其部分所引用的标准如下:

GB/T228.1 金属材料拉伸试验第一部分:室温试验方法

GB/T2039 金属材料单轴拉伸蠕变试验方法

GB/T10623 金属材料力学性能试验术语

GB/T12160 单轴试验用引伸计的标定

GB/T16825.1 静力单轴试验机的检验第一部分:拉力和压力试验机测力系统的检验与校准

下面,我们来简单看一下室温弹性模量的测定

为了保证伸长测量的正确操作,应测定室温弹性模量。弹性模量的测量值应在弹性模量预期值的±10%范围内。弹性模量预期值通常是通过拉伸试验确定的,使用的引伸计的性能与应力松弛试验使用的引伸计具有同等性能。

试样应加热至试验规定温度(T)。调整试验炉加热控制系统使温度分布符合表一要求。试样,夹持装置和引伸计在试验开始前都应达到热平衡。

试样应在加载前至少保温1h,除非产品标准另有规定。试样加载前的保温时间不得超过24h。升温过程中,任何时间试样温度不得超过规定温度(T)上偏差。

试验力应施加在试样的轴线上。尽量减少试样上的弯曲和扭转。初始总应变和对应的初始应力的测定精度至少为±1%加载可以采用应变控制也可以采用里控制。应变或力的增加应平稳,无冲击,初始总应变的施加过程应在10min内完成,记录加载时间。在加载过程中,采用自动记录装置或通过递增的方式施加试验力并记录每个力的增量对应的伸长量来获得应力-应变或力-位移图。应绘制和评估高温应力=应变图,保证伸长测量的正确。

字整个试验过程中,总应变值应保持基本恒定。根据控制方式的不同,总应变的控制不同。对于采用力控制加载的方式,总应变值应控制在初始总应变的测量值的±1%的范围内;对于采用应变控制加载的方式,通过逐渐减少应力使总应变值应控制为总应变的规定值。对于人工进行力调整的方式,实际上只是采用力的逐减方式使测量应变返回到总应变ε;对于伺服控制总应变来讲,力的调整是通过递减或递增的方式进行的,应变波动范围大约控制在±1%以内。

实验一---金属材料的拉伸实验

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 (a) (b) 图1-1 试件的截面形式 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试:

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA PL L ?= ? 若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。 ε ???=???= 1 )(000A P A L PL E 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E 测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢): 图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率较小,它并不反映真实的载荷—变形关系;载荷加大后,滑动消失,材料的拉伸 进入弹性阶段。 σ 1-2b 典型的低碳钢拉伸图 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B’-C 段),与最高载荷B’对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度σs : σs = A P SL 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E 点)Rm 后,试样的某一局部开始出现颈缩,而且发展很快,载荷也随之下降,迅速到达F 点后,试样断裂。材料的强度极限σb 为:

金属材料拉伸试验标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸 编制: 审核:________________________ 批准:生效日期:

受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日 制/修订记录

1.0 本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。 2.0范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 3.0规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1GB/T 2975钢及钢产品力学性能试验取样位置和试样制备 3.2GB/T 8170数值修约规则与极限数值的表示和判定 3.3GB/T 10623金属材料力学性能试验术语 4.0术语和定义 4.1试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 4.2标距gauge length 用于测量试样尺寸变化部分的长度。 4.3原始标距original gauge length 在施加试验力之前的标距长度。 4.4断后标距final gauge length after fracture 试样断裂后的标距长度。 4.5平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 4.6断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S0-S u)与原始横截面积(S0)之比的百分率。 S o-S u Z0=S- S-X100% S0 5.0符号和说明 与试样相关的符号及说明如下:

铜及铜合金弯曲应力松弛试验方法

《铜及铜合金弯曲应力松弛试验方法》 国家标准送审稿编制说明 一、任务来源 根据国标委综合[2017]128号及全国有色金属标准化技术委员会下发的有色标委[2018]2号《关于转发2018年第一批有色金属国家标准制(修)订项目计划》文件,《铜及铜合金弯曲应力松弛试验方法》国家标准(计划号:20173798-T-610),由宁波兴业盛泰集团有限公司、宁波兴业鑫泰新型电子材料有限公司、安徽鑫科铜业有限公司、凯美龙精密铜板带(河南)有限公司、山西春雷铜材有限责任公司、江西金品铜业科技有限公司、中色(宁夏)东方集团有限公司、国家铜铝冶炼及加工产品质量监督检验中心(山东)负责起草,项目于2019年完成。 二、工作简况 1立项目的 随着电子元器件向着微型化、薄型化、高密度和高度集成化发展,电子元器件在长时间使用中产生的热效应不断增加,部分元器件还可能在更高的温度下长时间使用,为了保持端子连接器弹片的嵌合力,这就要求材料具有优良的抗应力松弛性能。国内接插件市场占有率比较高,但均以中低端市场为主,而高端的汽车连接器、精密接插件及大规模集成电路等产品则长期依赖进口。造成这种现象的原因主要有两个方面,一方面是我国对于高弹铜基合金的基础研究起步较晚,且我国铜合金制备加工能力与发达国家相比还有一定差距,工艺条件、装备水平等方面都有待进一步提高;另一方面是随着客户对铜基弹性材料性能的要求不断提高,许多客户对材料提出了具有抗应力松弛特性的隐性需求,而国内应力松弛试验方法标准少,限制了我国对高端连接器及精密接插件等材料进行更深层次的研发工作。 国外对应力松弛试验方法已制定相应的标准,主要有美国ASTM E328“材料和结构的应力松弛试验标准推荐方法”、日本伸铜协会技术标准JCBA-T309-2004 薄板条弯曲应力松弛缓和试验方法等。报据以上国外标准可以看出,评价材料松弛性能的主要方法两种,一种是拉伸应力松弛,另外是弯曲应力松弛。而目前国内仅有GB/T 10120-2013“金属材料拉伸应力松弛试验方法”,缺少相应的弯曲应力松弛试验方法,且此标准中对测试样的要求较高、试验周期长、效率低,对设备的要求比较高,且绝大多数铜基弹性材料的下游企业,并未配备检测机器和具有检测能力。目前各种弹性接插件的工作环境,更与弯曲应力松弛试验条件相接近,采用弯曲应力松弛试验方法,更能代表实际材料的工作条件,更可满足多元条件下的应力松弛试验要求;另外,由于各企业也只是独立地进行应力松弛试相关的简单的试验性工作,试验方法五花八门,但由于缺乏统一评价标准,致使更多企业未对其进行展开系统地、深层次的研究,限制着其高端方面的使用。因此,制定铜及铜合金弯曲应力松弛试验方法就显得十分重要,对规范弯曲应力松弛试验,统一数据评价标准,有利于我国中高端连接器、集成电路用材料的研发,具有良好的现实意义。为满足国内外市场对铜及铜合金应力松弛性能的需求,更有效的确保产品质量,因此制定本标准。

金属材料-拉伸试验-标准试样类型及尺寸

金属材料-拉伸试验-标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸

编制: 审核: 批准: 生效日期: 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日 制/修订记录

1.0 目的 本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。 2.0 范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 3.0 规范性应用文件

下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1 GB/T 2975 钢及钢产品 力学性能试验取样位置和试样制备 3.2 GB/T 8170 数值修约规则与极限数值的表示和判定 3.3 GB/T 10623 金属材料 力学性能试验术语 4.0 术语和定义 4.1 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 4.2 标距gauge length 用于测量试样尺寸变化部分的长度。 4.3 原始标距original gauge length 在施加试验力之前的标距长度。 4.4 断后标距final gauge length after fracture 试样断裂后的标距长度。 4.5 平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 4.6 断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。 U S -S =100%Z X S 5.0 符号和说明 与试样相关的符号及说明如下:

铜及铜合金弯曲应力松弛试验方法国家标准讨论稿编制说明

《铜及铜合金弯曲应力松弛试验方法》国家标准讨论稿编制说明 一、工作简况 1立项目的 随着电子元器件向着微型化、薄型化、高密度和高度集成化发展,电子元器件在长时间使用中产生的热效应不断增加,部分元器件还可能在更高的温度下长时间使用,为了保持端子连接器弹片的嵌合力,这就要求材料具有优良的抗应力松弛性能。国内接插件市场占有率比较高,但均以中低端市场为主,而高端的汽车连接器、精密接插件及大规模集成电路等产品则长期依赖进口。造成这种现象的原因主要有两个方面,一方面是我国对于高弹铜基合金的基础研究起步较晚,且我国铜合金制备加工能力与发达国家相比还有一定差距,工艺条件、装备水平等方面都有待进一步提高;另一方面是随着客户对铜基弹性材料性能的要求不断提高,许多客户对材料提出了具有抗应力松弛特性的隐性需求,而国内应力松弛试验方法标准少,限制了我国对高端连接器及精密接插件等材料进行更深层次的研发工作。 国外对应力松弛试验方法已制定相应的标准,主要有美国ASTM E328“材料和结构的应力松弛试验标准推荐方法”、日本伸铜协会技术标准JCBA-T309-2004 薄板条弯曲应力松弛缓和试验方法等。报据以上国外标准可以看出,评价材料松弛性能的主要方法两种,一种是拉伸应力松弛,另外是弯曲应力松弛。而目前国内仅有GB/T 10120-2013“金属材料拉伸应力松弛试验方法”,缺少相应的弯曲应力松弛试验方法,且此标准中对测试样的要求较高、试验周期长、效率低,对设备的要求比较高,且绝大多数铜基弹性材料的下游企业,并未配备检测机器和具有检测能力。目前各种弹性接插件的工作环境,更与弯曲应力松弛试验条件相接近,采用弯曲应力松弛试验方法,更能代表实际材料的工作条件,更可满足多元条件下的应力松弛试验要求;另外,由于各企业也只是独立地进行应力松弛试相关的简单的试验性工作,试验方法五花八门,但由于缺乏统一评价标准,致使更多企业未对其进行展开系统地、深层次的研究,限制着其高端方面的使用。因此,制定铜及铜合金弯曲应力松弛试验方法就显得十分重要,对规范弯曲应力松弛试验,统一数据评价标准,有利于我国中高端连接器、集成电路用材料的研发,具有良好的现实意义。为满足国内外市场对铜及铜合金应力松弛性能的需求,更有效的确保产品质量,因此制定本标准。 2任务来源 全国有色金属标准化技术委员会在广泛征求意见的基础上下发了有色标委[2018]2号《关于转发2018年第一批有色金属国家标准制(修)订项目计划》文件,正式下达了《铜及铜合金弯曲应力松弛试验方法》国家标准(计划号:20173798-T-610)的起草任务。宁波兴业盛泰集团有限公司为负责起草单位。 3项目编制组单位简况 3.1编制组成员单位 本标准由宁波兴业盛泰集团有限公司、宁波兴业鑫泰新型电子材料有限公司、安徽鑫科铜业有限公司、北京有色金属研究总院、中铝华中铜业有限公司、山西春雷铜材有限责任公司、江西金品铜业科技有限公司、中色(宁夏)东方集团有限公司、国家铜冶炼及加工产品质量监督检验中心(山东)、凯美龙精密铜带(河南)有限公司、西北有色金属研究院等共同起草,以上编制组成员单位均是《铜及铜合金弯曲应力松弛试验方法》的应用单位。

材料力学期末考试选择填空参考题.docx

一点的应力状态 一、判断 1、"单元体最大剪应力作用面上必无正应力” 答案此说法错误 答疑在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为o /2。 2、”单向应力状态有一个主平面,二向应力状态有两个主平面” 答案此说法错误 答疑无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零。 3、"受拉构件内B点的正应力为o =P/A” q B 、------------- -- ---------------- 答案此说法错误 答疑受拉构件内的B点在a =0度的方位上的正应力为a =P/A. 4、'‘弯曲变形时梁中最大正应力所在的点处于单向应力状态。” 答案此说法正确 答疑最大正应力位于横截面的最上端和最下端,在此处剪应力为零。 5、过一点的任意两平面上的剪应力一定数值相等,方向相反” 答案此说法错误 答疑过一点的两相互垂直的平面上的剪应力一定成对出现,大小相等,方向同时指向共同棱边或同时远离共同棱边 6、“梁产生纯弯曲时,过梁内任意一点的任意截面上的剪应力均等于零” 答案此说法错误 答疑梁产生纯弯曲时,横截面上各点在a =0的方位上剪应力为零,过梁内任意一点的任意截面上的剪应力不一定为零。11、“从横力弯曲的梁上任意一点取出的单元体均处于二向应力状态" 答案此说法错误 答疑从横力弯曲的梁的横截面上距离中性轴最远的最上边缘和最下边缘的点取出的单元体为单向应力状态。 12、“受扭圆轴除轴心外,轴内各点均处于纯剪切应力状态” 答案此说法正确 答疑在受扭圆轴内任意取出一点的单元体如图所示,均为纯剪切应力状态。 选择一点的应力状态(共2页) 1、在单元体中可以认为:。 A:单元体的三维尺寸必须为无穷小;B:单元体必须是平行六面体。 C:单元体只能是正方体。D:单元体必须有一对横截面 答案 正确选择:A 答疑单元体代表一个点,体积为无穷小。 2、滚珠轴承中,滚珠与外圆接触点为应力状态。

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

金属拉伸试验试样

lo小于25mm,为保证测量精度,亦可采用。 但在特殊情况下,根据产品标准或双方协议要求采用lo=4do或8do的试样时,亦应遵照执行。此时,对矩形试样,lo应分别等于根号Fo或根号Fo,对于脆性材料,亦可采用lo=。或根号Fo的试样。 定标距试样系原始标距lo与原始横截面积Fo或直径间do间无所述比例关系。其标距lo和平行长度l,应按有关标准或双方协议规定执行。 拉伸试样的分类 棒材试样 对棒材(包括方和六方形等),一般采用圆形试样,其平行部分直径通常为3~25mm。而各部分尺寸之允许偏差及表面加工粗糙度符合图1的和表2的规定。对钢、铜材通常采用do=10mm,lo=5do的比例试样,但有时为了考核产品的整体性能,也可取制do>25mm或尽可能大的圆形试样进行试验。通常铝材尺寸偏小,试样可按有关标准或

双方协议规定执行。对软金属,经双方同意,可采用较低表面粗糙度,但对高强材料,则要求高的加工表面粗糙度,直至抛光。 试样分为带头不带头的两种,仲裁试验时应采用前者,后者一般用于不宜或不经机加工而整拉的棒材。 板材试样 对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为~25mm),采用10、、15、20、25和30mm六种比例试样,尽可能采用lo=而的短比例试样。试样厚度一般应为原轧制厚度,但在特殊情况下也允许多号用四面机加工的试样。通常试样宽度与厚度之比不大于421或821,其试样按表10规定散制,对铝钱材则一般可采用较小宽度。对厚度小于的薄板(带),亦可采用定标距试样。试样各部分允许机加工偏

差及侧边加工粗糙度应符合图2和表3的规定,对四面机加工的矩形试样,其机加工偏差应用于圆形试样,如表2所示。 根据有关标准要求,对厚钢板亦可取制垂直轧制面(Z向)的拉伸试样,此时应按钢板厚度及表2的规定,采用带头圆形试样为宜。必要时,可焊钢板于两端,以利夹持。对中、薄高强度板材,亦可采用头部带销孔的试样,以免其在拉伸过程中的卷曲现象。矩形试样分为带头和不带头的两种,带头试样两头部轴线与平行部分轴线间的偏差不得大于。仲裁试验时应采用带头试样。 管材试样

金属材料拉伸试验标准试样类型及尺寸

金属材料-拉伸试验-标准试样类型及尺寸

————————————————————————————————作者: ————————————————————————————————日期:

金属材料拉伸试验标准试样类型及尺寸 编制: 审核: 批准: 生效日期:

受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日 制/修订记录 序号更改原因更改内容简述更改日期版本号备注1 新增程序2016-9-27 A.0

1.0 目的 本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。 2.0 范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 3.0 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1 G B/T 2975 钢及钢产品 力学性能试验取样位置和试样制备 3.2 GB /T 8170 数值修约规则与极限数值的表示和判定 3.3 GB/T 10623 金属材料 力学性能试验术语 4.0 术语和定义 4.1 试件/试样test p iec e/s pecime n 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 4.2 标距g auge leng th 用于测量试样尺寸变化部分的长度。 4.3 原始标距ori gin al gau ge length 在施加试验力之前的标距长度。 4.4 断后标距final gau ge len gth a fter f racture 试样断裂后的标距长度。 4.5 平行长度parall el l eng th 试样两头部或加持部分(不带头试样)之间平行部分的长度。 4.6 断面收缩率per ce ntage redu ctio n of a rea 断裂后试样横截面积的最大缩减量(S 0-S u)与原始横截面积(S0)之比的百分率。 0U 00 S -S = 100%Z X S 5.0 符号和说明

金属材料拉伸试验标准试样类型及尺寸

金属材料拉伸试验标准试 样类型及尺寸 The pony was revised in January 2021

金属材料拉伸试验标准试样类型及尺寸 编制: 审核: 批准:

生效日期: 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日 制/修订记录

目的 本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。 范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2975 钢及钢产品力学性能试验取样位置和试样制备 GB/T 8170 数值修约规则与极限数值的表示和判定 GB/T 10623 金属材料力学性能试验术语 术语和定义 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。

标距gauge length 用于测量试样尺寸变化部分的长度。 原始标距original gauge length 在施加试验力之前的标距长度。 断后标距final gauge length after fracture 试样断裂后的标距长度。 平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。 0U 00 S -S = 100%Z X S 符号和说明 与试样相关的符号及说明如下: 表1 符合和说明

ASTM E8M-09 中文版 金属材料拉伸试验方法

金属材料拉伸试验的标准试验方法 1 范围 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 除非另有规定,室温应定为10—38℃。 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2 参考文件 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法

E6 力学性能试验方法相关术语 E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL [%])——在试样出现缩颈、断裂或者二者都出现之前, U 所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)

JIS-Z-2241:2011金属材料拉伸试验方法

目次 1 适用范围....................................................................................... .................................... . 1 2 规范性引用文件................................................................................................................ .... 1 3术语和定义............................................................................................................................... 1 4 符号和说明 (2) 5原理........................................................................................................................ ............. . (8) 6 试样 (18) 6.1形状及尺寸..................................................................................................... .. (18) 6.2试样种类............................................................................................... ......... . (18) 6.3试样加工..................................................................................................... .. (19) 7 原始横截面积的测定 (21) 8 原始标距的标记 (21) 9 试验设备的准确度 (22) 9.1试验机 (22) 9.2延伸计 (22) 10 试验条件 (22) 10.1试验零点的设定 (22) 10.2试样夹持方法 (22) 10.3试验速度 (23) 11 上屈服强度的测定 (24) 12 下屈服强度的测定 (25) 13 规定塑性延伸强度的测定 (25) 14 规定总延伸强度的测定 (25) 15 规定残余延伸强度的验证和测定 (25) 16 屈服点延伸率的测定 (26) 17 最大力塑性延伸率的测定 (26) 18 最大力总延伸率的测定 (26) 19 断裂总延伸率的测定 (26) 20 断后伸长率的测定 (27) 21 断面收缩率的测定 (28) 22试验报告 (28) 23测量不确定度 (29) 23.1一般 (29) 23.2试验条件 (29) 23.3试验结果 (29) 附录A(参考附录)计算机控制拉伸试验机使用的建议 (30) 附录B(规范性附录)厚度0.1mm~<3mm 薄板和薄带使用的试样类型 (31) 附录C(规范性附录)直径或厚度小于4mm 线材、棒材和型材使用的试样类型 (34) 附录D(规范性附录)厚度等于或大于3mm 板材和扁材以及直径或厚度等于或大于4mm 线材、棒材和型材使用的试样类型 (35) 附录E (规范性附录)管材使用的试样类型 (43) 附录F(参考附录)考虑试验机柔度估计的横梁分离速率 (46)

材料力学精选练习题答案

材料力学精选练习题答案 一、是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 1.内力只能是力。 1.若物体各点均无位移,则该物体必定无变形。 1.截面法是分析应力的基本方法。二、选择题 1.构件的强度是指,刚度是指,稳定性是指。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.根据均匀性假设,可认为构件的在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.下列结论中正确的是 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.× 1.√ 1.× 1.C,A,B 1.C 1.C 轴向拉压 一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆

CD的横截面面积为A,质量密度为?,试问下列结论中哪一个是正确的? q??gA; 杆内最大轴力FNmax?ql;杆内各横截面上的轴力FN? ?gAl 2 ; 杆内各横截面上的轴力FN?0。 2. 低碳钢试样拉伸时,横截面上的应力公式??FNA适用于以下哪一种情况? 只适用于?≤?p;只适用于?≤?e; 3. 在A和B 和点B的距离保持不变,绳索的许用拉应力为[? ]取何值时,绳索的用料最省? 0; 0; 5; 0。 4. 桁架如图示,载荷F可在横梁DE为A,许用应力均为[?]。求载荷F 的许用值。以下四种答案中哪一种是正确的? [?]A2[?]A ;; 32 [?]A; [?]A。 5. 一种是正确的? 外径和壁厚都增大;

金属材料 室温拉伸试验方法 GB

金属材料室温拉伸试验方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB 中华人民共和国国家标准 GB/T228-2002 eqv ISO 6892:1998 金属材料室温拉伸试验方法 Metallic materials——Tensile testing at ambient temperature 发布 GB/T228-2002 目次 前言Ⅲ ISO前言Ⅳ 1 范围1 2 引用标准1 3 原理1 4 定义1 5 符号和说明5 6 试样6 7 原始横截面积(So)的测定7 8 原始标距(Lo)标记7 9 试验设备的准确度7 10 试验要求8 11 断后伸长率(A)和断裂总伸长率(At)的测定8 12 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定9 13 屈服点延伸率(Ae)的测定9 14 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定10 15 规定非比例延伸强度(Rp)的测定10 16 规定总延伸强度(Rt)的测定11 17 规定残余延伸强度(Rr)的验证方法11 18 抗拉强度(Rm)的测定11 19 断面收缩率(Z)的测定12 20 性能测定结果数值的修约14 21 性能测定结果的准确度14

22 试验结果处理15 23 试验报告15 附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16 附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于 4mm线材、棒材和型材使用的试样型17 附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试 样类型20 附录D(标准的附录)管材使用的试样类型21 附录E(提示的附录)断后伸长率规定值低于5%的测定方法24 附录F(提示的附录)移位方法测定断后伸长率24 附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25 附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26 附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。2)举例27 附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28 附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31 附录L(提示的附录)新旧标准性能名称和符号对照34 GB/T228-2002 前言 本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。在主要技术内容上与ISO6892:1998相同,但部分技术内容较为详细和具体,编写结构不完全对应。补充性能测定结果数值的修约要求和试验结果处理。增加试样类型。删去附录F(提示的附录)计算矩形横截面试样原始标距用计算图尺;删去附录L(提示的附录)参考文献目录。增加附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(RP);增加附录L(提示的附录)新旧标准性能名称和符号对照。 本标准合作并修订原国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。对原标准在以下方面的技术内容进行了较大修改和补充: ——引用标准; ——定义和符号; ——试样; ——试验要求; ——性能测定方法; ——性能测定结果数值修约; ——性能测定结果准确度阐述。 自本标准实施之日起,代替GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。 本标准的附录A∽D都是标准的附录。 本标准的附录E∽L都是提示的附录。 本标准由原国家冶金工业局提出。 本标准由全国钢标准化技术委员会归口。

预应力钢材拉伸应力松弛实验作业指导书

预应力钢绞线应力松弛性能试验作业指导书 一目的 明确预应力钢绞线松弛试验程序、操作流程、工艺要点以及控制标准,检测预应力钢绞线应力松弛性能,指导检测员按规程正确操作,保证检测结果科学、准确。 二适用范围 本作业指导书适用于钢绞线松弛性能任务。 三预应力钢绞线选用 a、预应力钢绞线符合1×7-15.2-1860-GB/T5224-2003的要求。供应商提供每批钢绞线的实际弹性模量值,质量保证单。 b、每批钢绞线附有出厂合格证,由同一批号、同一强度等级的钢绞线组成。实验前,外观检查合格后,再按GB/T228-2002的要求做钢绞线应力松弛性能试验和最大应力试验,合格后方可使用。 c、钢绞线的力学性能 ①见钢绞线尺寸及力学性能指标表。 表4-1 钢绞线尺寸及力学性能指标表 钢绞线结构钢绞线公 称直径mm 抗拉强 度MPa 整根钢绞 线的最大 力KN 规定非比 例延伸力 KN 最大力 总伸长 率% 应力松弛性能 初始负荷相 当于公称最 大力的百分 数(%) 1000h后应力松 弛率,(%) 不大于 1×7 标 准 型 15.20 不小于 1860 260 234 3.5 80 4.5 注:①规定非比例延伸力值不小于整根钢绞线公称最大力的90%。 ②每一交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa。

③钢绞线弹性模量为(195±10)GPa。 ④采用推算法确定1000h松弛率。 d、表面质量:钢绞线表面不得有油、润滑脂等物质,允许有轻微的浮锈,但不 得有目视可见的锈蚀麻坑,表面允许存在回火的颜色。 f、取样数量 序号检验项目取样数量取样部位检验方法要求 1 表面逐盘卷目视见表面质量要求 2 应力松弛性能不小于1根/ 每合同批 [注] 2.5m 在每 (任)盘 卷中任意 一端截取 按TB10120执行 注:合同批为一个订货合同的总量。在特殊情况下,松弛试验可以由工厂连续检验提供同一原料、同 一生产工艺的数据所代替。 四预应力试验设备及工具配置 试验设备、工具配置及性能指标 序号设备及工具名称型号单位数量性能指标要求 1 微机控制拉伸应力松弛 试验机 WSC-300 台 1 2 卷尺把 1 3 砂轮切割机台 1 五检测步骤 1、将钢绞线套上夹具,放在试验机上(试验温度20±2℃,试样置于此环境中足够时间,确保 达到温度平衡后施加初始力试验) 2、打开软件,依照委托信息设定好钢绞线直径和强度等信息。 3、启动试验(除非相关标准或协议另作规定,应在3—5分钟内均与施加全部初始应力) 4、达到100小时后,试验结束,记录推算的1000小时应力松弛率 5、打印试验记录,关闭计算机和电源 6、取出试验机上的钢绞线,填写仪器使用记录。

应力松弛试验机

应力松弛试验机 微机控制预应力松驰试验机 一、产品简介 WD-RE300型微机控制松弛试验机在设计过程中,吸收了德国、意大利等著名松弛试验机公司的设计理念和结构特点,并依据螺纹钢松弛试验、钢绞线松弛试验、PC钢棒松弛试验的相关国家标准研制而成的,专用于钢绞线、PC钢棒、镀锌钢丝及螺纹钢筋等材料的松弛试验。是专门针对制造、使用厂家而设计。该系列试验机主要用于螺纹钢筋、钢绞线、PC钢棒的松弛试验,可检测金属线材的单轴拉伸松弛强度等特性。可广泛用于质检部门、建筑施工单位、钢铰线和钢筋生产企业,是现代建筑力学试验的新型试验设备。满足 GB/T20065-2006《预应力混凝土用螺纹钢筋》,GB/T10120-1996《金属应力松弛试验方法》。技术参数 1.试验力 最大试验力:300kN 有效测量范围:2%~100%FS 示值相对误差:±1% 2.试验速度 调速范围:0.001-25mm/min 示值相对误差: ±0.5% 3.主机 试验机主机形式: 卧式结构 拉伸最大空间:1000-1200mm 同轴度:15%以内 4.试样规格 Φ11.10;Φ12.70;Φ15.24mm(公称直径) 5.保护功能: 超过最大试验力2%-5%时自动停机 6.主机尺寸(长*宽*高): 1800x710x1500mm 三、功能特点:

1.PC机实现了控制模式的闭环控制以及试验过程的程序控制,各种控制方式之间可无冲击切换。计算机自动完成试验过程的控制、数据采集、显示和保存(主要参数:试验力、松弛力、松弛率或对数松弛率),试验完成后可以对数据进行分析和处理,并打印输出用户要求的试验曲线及试验报告,可选择标准要求的各种试验曲线(可绘制剩余试验力或对数剩余力、松弛力或对数松弛力、松弛率或对数松弛率、温度等跟时间或对数时间的关系曲线)。 2. 计算机软件基于Windows98/Windows2000/Windows XP平台开发,界面美观,操作方便;试验力、变形显示采用组态仪表方式显示,十分醒目;内嵌数据库,便于数据历史追溯及联网要求;报表采用模板方式操作,用户只需简单培训即可掌握,整个软件封装性强,操作方便、功能全面;设有标准试验程序,按下快捷键,试验系统就可以按照标准要求在3-5分钟内将钢绞线加载公称最大力的70%或80%,保持1分钟内自动开始记录试验数据、到达设定时间后自动终止试验。试验曲线与理论拟合曲线的相关系数达到99%以上,因此计算机能以100小时以内的试验数据推算1000小时的试验结果,也可以进行1000小时的连续试验,缩短了实际实验时间。

金属拉伸试验应该注意的几个问题

金属拉伸试验应该注意的几个问题 引伸计 如果需要做σ,就需要引伸计。一般结构钢机械性能试验不用引伸计。引伸计一般用于屈服强度台阶不明显的材料。不要引伸计的拉伸曲线,是把标距以外的变形等干扰都包含进曲线了。试验的可靠性或称准确性值得商榷。用引伸计才是最准确的。引申计的量程小,一般用在屈服和屈服之前使用,如在屈服后继续使用,会损坏引申计,引申计用来测量弹性模量,如用一般的差动编码器测量,计算结果会和真实的弹性模量差一个数量级,由标距造成的,引伸计在测量中精度高,但是量程小,所以一般试验机进行拉伸压缩试验都不用引伸计,除非测量弹性模量和要求很高的精度时,而一般试验,一般的差动编码器测位移精度足够,引申计是用来测量变形部分延伸率的,如果不用引伸计就不能得到应力-应变曲线,因为此时得到的应变把拉伸机齿轮空转及位移和非测试部分的位移都算上了。但是不用引伸计还是可以得到抗拉强度的,另外对于有屈服平台的材料也能得到屈服强度,但是对于没有屈服平台就是连续屈服的材料就没办法得到屈服强度了。关于引伸计除了通产所见的机械引伸计外,目前比较流行的是激光引伸计,测试时有激光打在样品上作为测量位移的标定。这样就能测试机械引伸计所无法测的叫做post-uniform elongation的参量,即试样发生颈缩后到断裂前的延伸率。这个参量在表征带孔件冲压时扩孔率时非常重要。 拉伸试验, 金属虽然说每一个试验机厂家对金属拉伸都很熟悉,但是真正完全能够把标准以及标准后面的理由吃透的厂家并不多,所以现在每一个试验机厂家在指导用户完成金属拉伸试验的时候一般是从他们自己设备的能力出发,以最简单的方式来完成试验,比如全部以横梁位移的速度来完成整个试验过程。金属拉伸试验还是有很多细节问题非常值得我们重视。 首先是拉伸速度的问题。在弹性变形阶段,金属的变形量很小而拉伸载荷迅速增大。这时候如果以横梁位移控制来做拉伸试验,那么速度太快会导致整个弹性段很快就被冲过去。以弹性模量为200Gpa的普通钢材为例,如果标距为50mm的材料,在弹性段内如以 10mm/min的速度进行拉伸试验,那么实际的应力速率为 200000N/mm2S-1×10mm/min× 1min/60S×1/50mm=666N/mm2S-1 一般的钢材屈服强度就小于600Mpa,所以只需要1秒钟就把试样拉到了屈服,这个速度显然太快。所以在弹性段,一般都选择采用应力速率控制或者负荷控制。塑性较好的材料试样过了弹性段以后,载荷增加不大,而变形增加很快,所以为了防止拉伸速度过快,一般采用应变控制或者横梁位移控制。所以在GB228-2002里面建议了,“在弹性范围和直至上屈服强度,试验机夹头的分离速率应尽可能保持恒定并在规定的应力速率的范围内(材料弹性模量E/(N/mm2)<150000,应力速率控制范围为2—20(N/mm2)?s-1、材料弹性模量E/(N/mm2)≥ 150000,应力速率控制范围为6—60(N/mm2)?s-1。若仅测定下屈服强度,在试样平行长度的屈服期间应变速率应在s~s之间。平行长度内的应变速率应尽可能保持恒定。在塑性范围和直至规定强度(规定非比例延伸强度、规定总延伸强度和规定残余延伸强度)应变速率不应超过s。”。这里面有一个很关键的问题,就是应力速度与应变速度的切换点的问题。最好是在弹性段结束的点进行应:力速度到应变速度的切换。在切换的过程中要保证没有冲击、没有掉力。这是拉力试验机的一个非常关键的技术。其次是引伸计的装夹、跟踪与取下来的时机。对于钢材的拉伸的试验,如果要求取最大力下的总伸

相关文档
最新文档