二元函数的连续、偏导数、可微之间的关系

二元函数的连续、偏导数、可微之间的关系
二元函数的连续、偏导数、可微之间的关系

目录

摘要 (1)

关键词 (1)

Abstract (1)

Key words (1)

引言 (1)

1二元函数连续、偏导数、可微三个概念的定义 (1)

2二元函数连续、偏导数、可微三个概念之间的关系 (2)

2.1二元函数连续与偏导数存在之间的关系 (2)

2.2二元函数连续与可微之间的关系 (3)

2.3二元函数可微与偏导数存在之间的关系 (3)

2.4二元函数可微与偏导数连续之间的关系 (4)

二元函数连续、偏导数、可微的关系图 (6)

参考文献 (7)

致谢 (8)

本科生毕业论文

2

二元函数的连续、偏导数、可微之间的关系

摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.

关键词 二元函数 连续 偏导数 可微

The Relationship among Continuation, Partial Derivatives and

Differentiability in Binary Function

Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability

引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.

1 二元函数连续、偏导数、可微三个概念的定义

定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈,

就有0)||()(f P f P ε<-,则称f 关于集合

D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内

有定义,则当极限00000000(,))(,)

(,lim

lim x x x f x y f x y f x x y x x

?→?→+-=????存在时,则称这个极限

为函数f 在点00,)(y x 关于x 的偏导数,记作0

(,)

|x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,

对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

本科生毕业论文

3

0000)(,)(,()A z f x x y y f x y x B y ορ++=?=??-?+?+,其中A 、B 是仅与点0P 有关的

常数,()ορρ=是较ρ高阶的无穷小量,则称函数f 在点0P 处可微.

2 二元函数连续、偏导数、可微三个概念之间的关系

2.1 二元函数连续与偏导数存在之间的关系

例[1]

122

,(,)(0,0)(,)0,(,)(0,0)xy

x y x y

f x y x y ?≠?+=??=?

在(0,0)偏导数存在但不连续. 证明 因为 0

0(,0)(0,0)00

(0,0)lim

lim 0x x x f x f f x x

→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在(0,0)偏导数存在. 因为22

0,0lim

x y xy

x y →→+ 极限不存在,所以 (,)f x y 在(0,0)不连续.

例2

[2](,)f x y =在(0,0)点连续,但不存在偏导数. 证明 因为

0,0

0,lim (,)lim

0(0,0)x y x y f x y f →→→→===,

所以

(,)f x y =在(0,0)点连续,

因为

00(,0)(0,0)(0,0)lim lim

x x x f x f f x x →→-== ,该极限不存在, 同理 (0,0)y f 也不存在.

所以

(,)f x y =在点(0,0)连续,但不存在偏导数.

此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 2.2 二元函数连续与可微之间的关系

定理1[3] 若(,)z f x y =在点(,)x y 可微,则(,)z f x y =在点(,)x y 一定连续. 证明 (,)z f x y =在点(,)x y 可微,

0000)(,)(,()A z f x x y y f x y x B y ορ++=?=??-?+?+ (1)

本科生毕业论文

4

所以 当0,0x y ?→?→时,有0z ?→,即 (,)z f x y =在该点连续.

例3[4]

证明(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==?

在(0,0)点连续,

但在(0,0)点不可微.

证明 令cos ,sin x r y r θθ==,则(,)00x y r →?→. 因为

2cos sin |||cos sin |0(0)r r r r r θθ

θθ==≤→→, 所以(,)f x y 在(0,0)点连续.

按偏导数定义0

0(,0)(0,0)0

(0,0)lim lim 0x x x f x f f x

x ?→?→?-===??, 同理 (0,0)0y f = .

若(,)f x y 在点(0,0)可微,则

(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ?-=+?+?--?-?=

应是ρ=. 因为22

0lim

lim

z dz

x y

x y ρρρ

→→?-??=?+? 该极限不存在,所以(,)f x y 在点(0,0)不可微.

此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.

2.3 二元函数可微与偏导数存在之间的关系

定理2[5] 若二元函数f 在其定义域内一点00,)(y x 处可微,则f 在该点关于每个自变量的偏导数都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.

证明 因为 (,)z f x y =在点(,)x y 可微,则

0000)(,)(,()A z f x x y y f x y x B y ορ++=?=??-?+?+.

本科生毕业论文

5

若令上式中0y ?= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+??-=?+?, 所以 00000

0(,)(,)(||)

lim lim x x A x

f x x y f x y x A x ο?→?→=?+?-?+=?. 即

A z x =??.类似可证

B z

y

=??. 例4[6]

设222

2222,0(,)0,0x y x y x y f x y x y ?+≠?+=??+=?

,则(,)f x y 在点(0,0)偏导数存在,但在该点

不可微.

解 事实上(1)0

(,0)(0,0)

(0,0)lim

0x x f x f f x

→-==,

(0,)(0,0)

(0,0)lim

0y y f y f f y

→-==,

故 (,)f x y 在点(0,0)偏导数存在. (2)因为

20

0,lim

lim

x y f df

ρρ

→?→?→?-=

此时若令y k x ?=?

,则

23

0,0,lim lim

x y x y ?→?→?→?→=

此极限显然不存在,所以0

lim

f df

ρρ

→?-不存在,

所以 (,)f x y 在点(0,0)不可微.

此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别. 2.4 函数可微与偏导数连续之间的关系

定理3[7] 若二元函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且x f 与y

f 在点00(,)x y 处连续,则函数f 在点00(,)x y 处可微.

证明 我们把全增量0000,)(,)(y f x y z f x x y ++-?=??

00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-????

本科生毕业论文

6

在第一个括号里,它是函数0,)(y f x y +?关于x 的偏增量;在第二个括号里,则是函数

0(,)f x y 关于y 的偏增量.

对它们分别应用一元函数的拉格朗日中值定理,

得 010002,),(()x y y y z f x x y x f x y y θθ++++?=????? 12,10θθ<< (2) 由于x f 与y f 在点00(,)x y 处连续,

因此有 01000,)(,)(x x y x y f x x y f θα++=+??, (3)

00200,(,)()y y y x y f x y f θβ++?= , (4)

其中 当0,0x y ?→?→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,

则得0000(,)(,)x y x y x y z f x f y x y αβ=+???+?+?. 所以 函数f 在点00(,)x y 处可微.

例5

[8]

22

()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ?+≠?=??=?

在(0,0)处可微,但(,)x f x y 与(,)y f x y 均在(0,0)处不连续. 解

因为220,0

lim (0(0,0)x y x y f →→+==,

所以 (,)f x y 在(0,0)处连续

.

00(,0)(0,0)

(0,0)lim 0x x x f x f f x

→→-===,

同理 (0,0)0y f =.

当220x y +≠

时,0,0

lim 2x x y f x →→=极限不存在,

故(,)x f x y 在点(0,0)不连续. 同理可证(,)y f x y 在(0,0)处不连续.

本科生毕业论文

7

lim

0f df

ρρρ

→→?-==,

所以(,)f x y 在(0,0)处可微.

此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.

定理4[9] 若(,)f x y 在0()U P 内(,)x f x y 存在,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在

0P 存在,证明:f 在0P 可微.

证明 0000(,)(,)f f x x y y f x y ?=+?+?-

00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+?+?-+?++?- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,

有0000010(,)(,)(,)x f x x y y f x y y f x x y y x

θ+?+?-+?=+?+??

1

1

(,)(0)x

f x y x x αα=?+?→,

因为 0000000

(,)(,)

lim

(,)y y f x y y f x y f x y y

?→+?-=?,

所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+?-=?+?→ , 又因 1212|

|||||0x y

ααααρ

?+?≤+→,所以 f 在点0P 可微. 注 此定理中(,)x f x y 与(,)y f x y 互换,结论仍然成立. 二元函数连续、偏导数、可微的关系如图

二元函数连续

二元函数偏导数存在

二元函数可微

二元函数偏导数连续

本科生毕业论文

参考文献

[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,2003.6:97

[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,2004.9:116

[3]朱正佑,数学分析[M].上海:上海大学出版社,2001.7:188

[4]黄玉民,李成章,数学分析[M].北京:科学出版社,1995.5:61-62

[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110

[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报2005.10,19(5):35

[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,2004.10:142-143

[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,2009.3:151

[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148

致谢

感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.

通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.

最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.

8

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

导数公式的证明(最全版)

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) For personal use only in study and research; not for commercial use f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx For personal use only in study and research; not for commercial use =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)]

=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) For personal use only in study and research; not for commercial use 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

二元函数中值定理的简单应用

目录 一、引言 (1) 二、主要定理的证明、应用 (1) 2.1二元函数中值定理的第一种形式 (1) 2.11定理及推论的证明 (1) 2.12定理及推论的应用 (2) 2.2二元函数中值定理的第二种形式 (5) 2.21定理及推论的证明 (5) 2.22定理及推论的应用 (5) 2.3二元函数中值定理的不等式形式 (6) 2.31定理及推论的证明 (6) 2.32定理及推论的应用 (8) 三、结论 (9) 四、参考文献 (9) 五、致谢 (9)

数学科学学院本科学年论文二元函数中值定理的简单应用 二元函数中值定理的简单应用 内容摘要 给出了二元函数中值定理的三种不同形式:含一个参变量型、含两个参变量型和不等式型.在每一种形式下我们都给出主要定理的证明,充分了解定理的生成以及内容.此外,在就给出的定理的各种形式以及他们的推论加以推广、运用,得到许多在多元函数中得到广泛运用的重要定理. 关键词:二元函数中值定理

一、引言 我们知道,一元函数的中值定理是数学分析中的一个重要定理,他深刻的揭示了函数在某些区间上的增量与函数在该区间内某点处的导数及区间的长度之间的关系,是利用导数研究函数性质的基础,本文将中值定理推广到二元函数(多元函数的代表),并利用最基本的公式、定理证明一些重要的结论和定理. 二、主要定理的证明、应用 2.1二元函数中值定理的第一种形式 2.11定理及推论的证明 定理 1 若二元函数(,)f x y 在点000(,)p x y 的邻域G 存在两个偏导数,则 G y y x x ∈?+?+?),(00,全改变量 0000,(),(y x f y y x x f z -?+?+=?) y y y x f x y y x x f y x ??++??+?+=),('),('200010θθ 其中.10,1021<<<<θθ 证明: 显然,若点G y y x x ∈?+?+),(00,则点)(0,0y y x ?+与G y x x ∈?+),(00,且连接两点 ),(00y y x x ?+?+与),(00y y x ?+或),(00y y x x ?+?+与),(00y x x ?+的线段也属于 G ,如图1,为此,将全改变量z ?改写为如下形式:

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中 数学组 王建华 设计思路 这节课就是在学完导数与积分之后,学生从大量的实例中对原函数与导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律与对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣与成就感。教师实际上就是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的就是研究相互关联的事物的一般思路与方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1、 从经验观察发现,猜想得命题p,q 、 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2、 学生自然会想到这个命题的逆命题就是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3、 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还就是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4、已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1、加强学生对导函数与原函数相生相伴的关系的理解; 2、增强学生对函数对称性的理解与抽象概括表达能力; 3体验研究事物的角度,一个新定理就是怎样诞生的,怎样才就是全面地认识了一个事物。4、培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,您能根据原函数的图像画出导函数的示意图不? 一. 探究由原函数的奇偶性能否推出导函数的奇偶性。 问题1 已知函数()y f x =的图像,请尝试画出其导函数的图像示意图。 3()f x x = 2'()3y f x x ==

用导数的基本运算法则巧构造导函数的原函数

用导数的基本运算法则巧构造导函数的原函数 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 本文从一到高考试题出发,追根溯源,研究并揭示高考试题的本质. 1 高考真题 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞- B. (1,0)(1,)-+∞ C. (,1)(1,0)-∞-- D. (0,1)(1,)+∞ 解析:设()()f x F x x =,则2 ()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增.当(,1)x ∈-∞-时,()0F x <,()0f x >.当(0,1)x ∈时,()0F x <,()0f x >.所以()0f x >成立的x 取值范围(,1)(0,1)-∞-,即答案为A.. 上述题为2015年课标全国Ⅱ选择题第12题,创新有难度,丰富有内涵. 此其题表面看上,不知道如何入手,解决问题. 因为这是一道没有具体函数表达式的不等式试题,且不等式中含有()f x '和()f x ,更是难上加难. 从试题的解析可以看出,巧妙地构造出了函数()F x ,通过分析()F x 的单调性和奇偶性,解答问题. 解题突破口不易寻找,给人一种“旧时茅店社林边,路转溪桥忽见”的感觉. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 2 巧构导函数的原函数 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+.因为0x <时,()()0f x xf x '+<,所以'()0F x <,则 当0x <时,()F x 单调递减.又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时, ()F x 单调递减.又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f B. (0)(2)f f e < C. (1)(2)f D. 2(0)(4)f e f > 解析:设12()2()x F x e f x =,则1 112221'()2[()()][()2()]2 x x x F x e f x e f x e f x f x ''=+=+.因为()2()0f x f x '+>,所以'()0F x >,则()F x 在定义域上单调递增,所以(1)(0)F F >,则(1)f ,即答案为A. 例 3 已知()f x 为定义在(,)-∞+∞上的可导函数,且()()f x f x '<对于x R ∈恒成立且e 为自然对数的底,则( ) A. 2012(1)(0),(2012)(0)f e f f e f >?>? B. 2012(1)(0),(2012)(0)f e f f e f ? C. 2012(1)(0),(2012)(0)f e f f e f >?,(2012)(0)F F >即答案为A. 例4 定义在(0, )2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '>成立,则( ) ()()43π π B. (1)2()sin16f f π>()()64f ππ>()()63f ππ > 解析:因为(0,)2x π ∈,所以sin 0x >,cos 0>.由()()tan f x f x x '>,得()cos ()sin 0f x x f x x '->

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

几个常用函数的导数(老师版)

1.2.1 几个常用函数的导数 1.2.2 基本初等函数的导数公式及导数的运算法则(一) [学习目标] 1.能根据定义求函数y =c (c 为常数),y =x ,y =x 2,y =1 x ,y =x 的导数.2.能利用给出的基本初等函数 的导数公式求简单函数的导数. 知识点一 几个常用函数的导数 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1x f ′(x )=-1 x 2 f (x )=x f ′(x )=1 2x 思考 (1)函数f (x )=c ,f (x )=x ,f (x )=x 2的导数的几何意义和物理意义分别是什么? (2)函数f (x )=1 x 导数的几何意义是什么? 答案 (1)常数函数f (x )=c :导数为0,几何意义为函数在任意点处的切线垂直于y 轴,斜率为0;当y =c 表示路程关于时间的函数时,y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态. 一次函数f (x )=x :导数为1,几何意义为函数在任意点处的切线斜率为1,当y =x 表示路程与时间的函数,则y ′=1可以解释为某物体作瞬时速度为1的匀速运动;一般地,一次函数y =kx :导数y ′=k 的几何意义为函数在任意点处的切线斜率为k ,|k |越大,函数变化得越快. 二次函数f (x )=x 2:导数y ′=2x ,几何意义为函数y =x 2的图象上点(x ,y )处的切线斜率为2x ,当y =x 2表示路程关于时间的函数时,y ′=2x 表示在时刻x 的瞬时速度为2x . (2)反比例函数f (x )=1x :导数y ′=-1x 2,几何意义为函数y =1x 的图象上某点处切线的斜率为-1 x 2. 知识点二 基本初等函数的导数公式

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

原函数和导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a 对称,研究前面的四个命题还是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4. 已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3 体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,数的图像画出导函数的示意图吗? 你能根据原函探究由原函数的奇偶性能否推出导函数的奇偶性。

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

二元函数的连续、偏导数、可微之间的关系

摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 二元函数连续与偏导数存在之间的关系 (2) 二元函数连续与可微之间的关系 (3) 二元函数可微与偏导数存在之间的关系 (3) 二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8) 二元函数的连续、偏导数、可微之间的关系

摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,)|x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点 00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

函数与导数的关系

函数与导数的认识及复习 第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。 在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。 第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。 对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。 第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函

数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。 在用定义进行判断时,要注意自变量在定义域区间内的任意性。 第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。 第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<> 第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。 因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。 第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。 解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函

相关文档
最新文档