任一个n阶实对称矩阵与对角阵相似证明

任一个n阶实对称矩阵与对角阵相似证明
任一个n阶实对称矩阵与对角阵相似证明

定理3 对于任一个n 阶实对称矩阵A , 都存在正交矩阵

Q ,

使得

??????

?

?

?='=-n AQ Q AQ Q λλλ

2

11, 其中n λλλ,,,21 是A 的n 个特征值。

证 对n 用数学归纳法。 当n=1, 结论显然成立。

假设当1-=k n 时结论成立, 下面证明对k 阶实对称矩阵A 也成立。设1λ是A 的一个特征值,1α是属于1λ的实单位特征向量,则:

111αλα=A

,

根据第三章Schmit 正交化过程可知,必能找到1-k 个k 维实单位向量k ααα,,,32 (未必是特征向量), 使k ααα,,,21 为两两正交的单位向量组, 令1Q =(k ααα,,,21 ), 则1Q 为正交矩阵, 且

),,,(21211111

1k k A AQ Q AQ Q αααααα ??????? ??'''='=-=),,,(2121

k k A A A αααααα ??????

? ??'''

=???

???

?

??'''''''''k k k k

k k A A A A A A A A A αααααααααααααααααα

212

2212

12111

因为

???==='='='k

i i A i i i ,,3,20

1

)(1

11111 λ

ααλαλααα

0)(1

1111='='=''='j j j j A A A ααλαααααα (k j ,,3,2 =)

?????

?

??''''=k k k k A A A A B αααααααα 22221 所以,

???

? ?

?='=-11

1111

10

0B AQ Q AQ Q λ 因为1B 是k-1阶实对称矩阵, 所以由归纳法假设,存在k-1阶正交矩阵S , 使得

???

?

?

??='=-k S B S S B S λλ 2111。

???

?

??=S Q 0012 显然,

2Q 为正交矩阵,

211

2

211

1

2

211

11

20000)(Q B Q Q B Q Q AQ Q Q ???

? ?

?'=???? ??=---λλ =???? ??????

??????

??'S B S 0010000111

λ=???? ??'S B S 110

0λ=??????

?

?

?k λλλ

2

1。 令21Q Q Q =, 因为21,Q Q 为正交矩阵, 故Q 为正交矩阵, 且

),,,(211k diag AQ Q AQ Q λλλ ='=-

由归纳法, 定理成立。返课件xdch5-3.ppt - 8

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

线性代数关于等价、相似、合同的对比

定义2.5.3如果一个矩阵A经过有限次的初等变换变成矩阵B,则称A与B等价,记为A~B。 等价具有反身性即对任意矩阵A,有A与A等价; 对称性若A与B等价,则B与A等价 传递性若A与B等价,B与C等价,则A与C等价。 2.5.5用矩阵的初等变换求解矩阵方程 最常见的方程有以下两类: (1)设A是n阶可逆矩阵,B是n×m矩阵,求出矩阵X满足AX=B 原理:AX=B时 (2)设A是n阶可逆矩阵,B是m×n矩阵,求出矩阵X满足XA=B。 解:由方程XA=B XAA-1=B A-1解为x= B A-1 要注意的是,矩阵方程XA=B的解为x= B A-1,而不可以写成x= A-1B。 因为X满足XA=B X T满足A T X T=B T从而有X T=(A T)-1 B T=(BA-1)T 所以,可以先用上述方法求解A T X T=B T,再把所得结果X T转置即得所需的X=BA-1。 定义3.3.2(向量组的等价)如果向量组R能由向量组S线性表出,反之,向量组S也能由向量组R线性表出,则称向量组R与S等价。 向量组之间的等价关系有下列基本性质:设A,B,C为三个同维向量组,则有 定义5.2.1 设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵p使得B=p-1AP。则称A 和B是相似的,记为A~B。

当两个n阶方阵A和B之间存在等式B=P-1AP时,我们就说A经过相似变换变成了B。 同阶方阵之间的相似关系有以下三条性质: (1)反身性 A~A,这说明任意一个方阵都与自己相似。 事实上,有矩阵等式 (2)对称性若A~B则B~A,这说明A和B相似与B和A相似是一致的。 事实上,有 (3)传递性若A~B,B~C则A~CP,这说明当A和B相似,B和C相似时,A和C一定相似。 事实上,由B=P-1AP,C=Q-1BQ即可推出C=Q-1P-1APQ=(PQ)-1A(PQ) 定理5.2.1 相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式。需注意的是A与B不一定有相同的特征向量。 定理5.2.2n阶方阵A与对角阵P-1AP =相似的充分必要条件是A有n个线性无关的特征向量。 两个重要结论:(1)任意一个无重特征值的方阵一定相似于对角矩阵;(2)对角元两两互异的三解矩阵一定相似于对角矩阵;(3)若A中任一k的特征根对应有k个线性无关特征向量,则A一定与对角阵∧相似. 定义5.3.4 如果一个同维向量组不含零向量,且其中任意两个向量都正交(两两正交),则称该向量组为正交向量组。 定义5.3.5 若是 R n中的一个正交向量组,且其中每个向量都是单位向量,则称这个向量组为标准正交向量组。(正交单位向量组) 定理5.3.1 正交向量组必线性无关。 必有向量组正交,且是标准正交组。(正交单位向量组) 定义5.3.5 如果n阶实方阵A满足,则称A为正交矩阵。 定义5.4.1 设A,B都是n阶方阵,若存在正交阵P使得,则称A与B正交相似。定理5.4.3 (对称矩阵基本定理)对于任意一个n阶实对称矩阵A,一定存在n阶正交矩 阵P,使得对角矩阵中的n个对角元就是A 的n个特征值。反之,凡是正交相似于对角矩阵的实方阵一定是对称矩阵。 定理5.4.4 两个有相同特征值的同阶对称矩阵一定是正交相似矩阵 定义6.1.3 设A,B都是n阶方阵,若存在可逆阵P使得。则称A与B合同。

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 200509113 李娟娟 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ= ,12(,,,)m B βββ= 1、若向量组(12,,,m βββ )是向量组(12,,,n λλλ )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ )?(12,,,m βββ )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =?? r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

合同与相似概念区别

代数中“合同”与“相似”概念的区别辨析 在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同——'B C A C =,相似——-1B C AC =),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理: 因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了=“”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下 让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n 维空间的一组基,一个n 阶矩阵之间建立起了一对一的关系,关系如图 而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系1B X AX -=,X 为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义 下面我们再来看看“合同”概念。《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即'B C A C =。而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容: 双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。为了研究着这种特殊的映射在空间下的性质,我们有引进了双线性函数的“度量矩阵”,并以此矩阵来研究双线性函数的有关性质。于是双线性函数与空间的一组基、一个n 阶矩阵也建立起了一种一一对应的关系,如图 1'n A n T T AT T AT -=对于任意一个级实对称矩阵,都存在一个级正交矩阵,使得 → 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上线性变换空间的一组基一个矩阵线性变换→ 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上双线性函数空间的一组基一个矩阵双线性函数

对称矩阵的性质

对称矩阵的基本性质 在学习中我们发现,对称矩阵中的特殊类型如:对角阵,实对称矩阵以及反对称矩阵经常出现,以下首先介绍一些基本概念. 1 对称矩阵的定义 定义1 设矩阵()ij s n A a ?=,记()T ji n s A a ?=为矩阵的转置.若矩阵A 满足条件T A A =,则称A 为对称矩阵.由定义知: 1. 对称矩阵一定是方阵. 2. 位于主对角线对称位置上的元素必对应相等.即ij ji a a =,对任意i 、j 都成 立.对称矩阵一定形如111211222212n n n n nn a a a a a a a a a ?? ? ? ? ??? . 定义2 形式为12000000l a a a ?? ? ? ? ?? ? 的矩阵,其中i a 是数(1,2,,)i l = ,通常称为对角矩阵. 定义3 若对称矩阵A 的每一个元素都是实数,则称A 为实对称矩阵. 定义4 若矩阵A 满足T A A =-,则称A 为反对称矩阵.由定义知: 1. 反对称矩阵一定是方阵. 2. 反对称矩阵的元素满足ij ji a a =-,当i j =时,ii ii a a =-,对角线上的元素 都为零.反对称矩阵一定形如12112212000n n n n a a a a a a ?? ?- ? ? ?--?? . 下面就对称矩阵的一些基本性质展开讨论. 2 对称矩阵的基本性质 性质1 同阶对称矩阵的和、差、数乘还是对称矩阵. 性质2 设A 为n 阶方阵,则T A A +,T AA ,T A A 是对称矩阵.

性质3设A为n阶对称矩阵(反对称矩阵),若A可逆,则1 A-是对称矩阵(反对陈矩阵). ?矩阵都可表为一对称矩阵与一反对称矩阵之和. 性质4任一n n 性质5设A为对称矩阵,X与A是同阶矩阵,则T X AX是对称矩阵. 性质6设A、B都是n阶对称矩阵,证明:AB也对称当且仅当A、B可交换. 1

矩阵可对角化的条件.

第二节矩阵可对角化的条件 定义1 如果矩阵能与对角矩阵相似,则称可对角化。 例1设,则有:,即。从而 可对角化。 定理1 阶矩阵可对角化的充分必要条件是有个线性无关的特征向量。 证明:必要性如果可对角化,则存在可逆矩阵,使得 将按列分块得,从而有

因此有,所以是的属于特征值的特征向量,又由可逆,知线性无关,故有个线性无关的特征向量。 充分性设是的个线性无关的特征向量,它们对应的特征值依次为 ,则有。令,则是一个可逆矩阵且有: 因此有,即,也就是矩阵可对角化。 注若,则,对按列分块得 ,于是有 ,即 ,从而。可见,对角矩阵的元素就是矩阵的特征值,可逆矩阵就是由的线性无关的特征向量所构成的,并且特征向量的顺序依赖于对角矩阵。 定理2 矩阵的属于不同特征值的特征向量是线性无关的。

证明:设是的个互不相同的特征值,是的属于特征值的特征向量,现对作数学归纳法证明线性无关。 当时,由于特征向量不为零,因此定理成立。 假设的个互不相同的特征值对应的个特征向量是线性无关的。设 是的个互不相同的特征值,是的属于特征值的特征向量。又设 (1) 成立。则有,又将(1)式两边同乘得: 从而有,由归纳假设得 ,再由两两互不相同可得 ,将其代入(1)式得,因此有,从而 线性无关。 推论1 若阶矩阵有个互不相同的特征值,则可对角化,且 。 定理3 设是阶矩阵的个互异特征值,对应于的线性无关的特征 向量为,则由所有这些特征向量(共个)构成的向量组是线性无关的。

证明:设,记, ,则有,且或是的属于特征值的特征向量。若存在某个,,则由属于不同特征值的特征向量线性无关知 ,矛盾。因此有,,又由已知得 ,,因此向量组 线性无关。 定理4设是阶矩阵的一个重特征值,对应于的特征向量线性无关的最大个数为,则,即齐次线性方程组的基础解系所含向量个数不超过特征值的重数。 证明:用反证法。由于是的属于特征值的特征向量当且仅当是齐次线性方程组的非零解,因此对应于的特征向量线性无关的最大个数与齐次线性方程组的基础解系所含向量个数相等。设是齐次线性方程组的一个基础解系,且假设,则有。现将扩充为一个维线性无关向量组,其中 未必是的特征向量,但有是一个维向量,从而 可由向量组线性表示,即: 因而有:

矩阵等价相似合同的关系

矩阵等价相似合同的关系 等价指的是两个矩阵的秩一样。 合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样。 相似是指两个矩阵特征值一样。 相似必等价,合同必等价。 1.等价矩阵:同型矩阵A,B的秩相等,那么A,B等价,即是随意两个秩相等的同型矩阵通过初等变换都可以相互转化相等与另一个。 2.相似矩阵的定义是:存在可逆矩阵P,使得P--1AP=B,则称B是A的相似矩阵。 原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE| 所以|B-aE|=|P--1||A-aE||P|,所以|B-aE|=|P--1AP-aP--1EP|,即|B-aE|=|P--1AP-aE|所以B=P--1AP 3.合同矩阵定义:若存在可逆矩阵C,使得C T AC=B,即A与B合同。对于合同矩阵要从二次型说起,二次型为:f=X T AX。可通过X=CY变换,即把X=CY带入, 于是f=(CY)T A(CY)=Y T[C T AC]Y,其中令C T AC=B,即A与B合同。 首先相似不一定合同,合同也不一定相似,但是如果相似或者合同则必然等价,而等价却不能反推出相似或者合同,原因是前者只能是对方阵,而后者则只需要同型。相似合同和等价都具有反身性。对称性和传递性,合同和相似能推出等价是因为他们的秩相等。 而对于矩阵A只有当他是实对称矩阵时,存在C T AC=C--1AC,即这个时候矩阵合同和相似可以等价,这个时候C是正交矩阵,然而当C 不是正交矩阵时,则只能满足其中一个条件,或者说如果P--1AP=B,即A与B相似,但如果P不是正交矩阵,则不能称A与B合同,如果P T AP=B,即A与B合同,但是PP T≠I,则一样不能推出相似。 相似必合同,合同必等价。 等价就是矩阵拥有相同的r。 矩阵合同,C T AC=B,矩阵乘以可逆矩阵他的r不变,r(B)=r(C T AC)=r(AC)=r(A),等价。同理两矩阵相似一定等价。矩阵相似一定合同,因为两矩阵相似,有相同的特征多项式和特征根,就一定有相同的r,惯性系数一定相同,可以化成相同的标准形,矩阵合同的充要条件是有相同的r和规范形(A、B都有其对应的对角形矩阵,结合定义即可推出),标准形相等规范形一定相等,所以相似一定合同。

任一个n阶实对称矩阵与对角阵相似证明

定理3 对于任一个n 阶实对称矩阵A , 都存在正交矩阵 Q , 使得 ?????? ? ? ?='=-n AQ Q AQ Q λλλ 2 11, 其中n λλλ,,,21 是A 的n 个特征值。 证 对n 用数学归纳法。 当n=1, 结论显然成立。 假设当1-=k n 时结论成立, 下面证明对k 阶实对称矩阵A 也成立。设1λ是A 的一个特征值,1α是属于1λ的实单位特征向量,则: 111αλα=A , 根据第三章Schmit 正交化过程可知,必能找到1-k 个k 维实单位向量k ααα,,,32 (未必是特征向量), 使k ααα,,,21 为两两正交的单位向量组, 令1Q =(k ααα,,,21 ), 则1Q 为正交矩阵, 且 ),,,(21211111 1k k A AQ Q AQ Q αααααα ??????? ??'''='=-=),,,(2121 k k A A A αααααα ?????? ? ??''' =??? ??? ? ??'''''''''k k k k k k A A A A A A A A A αααααααααααααααααα 212 2212 12111 因为

???==='='='k i i A i i i ,,3,20 1 )(1 11111 λ ααλαλααα 0)(1 1111='='=''='j j j j A A A ααλαααααα (k j ,,3,2 =) 记 ????? ? ??''''=k k k k A A A A B αααααααα 22221 所以, ??? ? ? ?='=-11 1111 10 0B AQ Q AQ Q λ 因为1B 是k-1阶实对称矩阵, 所以由归纳法假设,存在k-1阶正交矩阵S , 使得 ??? ? ? ??='=-k S B S S B S λλ 2111。 令 ??? ? ??=S Q 0012 显然, 2Q 为正交矩阵, 且 211 2 211 1 2 211 11 20000)(Q B Q Q B Q Q AQ Q Q ??? ? ? ?'=???? ??=---λλ =???? ?????? ?????? ??'S B S 0010000111 λ=???? ??'S B S 110 0λ=?????? ? ? ?k λλλ 2 1。 令21Q Q Q =, 因为21,Q Q 为正交矩阵, 故Q 为正交矩阵, 且 ),,,(211k diag AQ Q AQ Q λλλ ='=- 由归纳法, 定理成立。返课件xdch5-3.ppt - 8

对称矩阵的性质及应用

对称矩阵的性质及应用 班级:数学1403班学号:20142681 姓名:张庭奥 内容摘要:本文主要描述对称矩阵的定义,研究对称矩阵的性质及应用.包括对称矩阵的基本性质,对称矩阵的对角化,对称矩阵的正定性以及对称矩阵在二次型,线性变换和欧式空间问题中的应用等。 关键词:对称矩阵;对角化;正定性;应用 1.导言 矩阵是高等数学中一个极其重要的应用广泛的概念,如线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程,二次型的正定性与它的矩阵的正定性相对应,甚至有些性质完全不同的表面上完全没有联系的问题,归结成矩阵问题后却是相同的。这就使矩阵成为代数特别是线性代数的一个主要研究对象。作为矩阵的一种特殊类型,对称矩阵有很多特殊性质,是研究二次型,线性空间和线性变换问题的有利工具,对称矩阵的对角化,正定性的判别等是高等数学中的重难点。本文就此浅谈一下对称矩阵的各种性质和应用。 2.具体内容部分 2.1对称矩阵的基本性质

在学习中我们发现,对称矩阵中的特殊类型如:对角阵,实对称矩阵以及反对称矩阵经常出现,以下首先介绍一些基本概念。 2.1.1 对称矩阵的定义 定义1 设矩阵()ij s n A a ?=,记()T ji n s A a ?=为矩阵的转置.若矩阵A 满足条件 T A A =,则称A 为对称矩阵.由定义知: (1)对称矩阵一定是方阵 (2)位于主对角线对称位置上的元素必对应相等。即ij ji a a =,对任意i 、j 都 成立。对称矩阵一定形如1112112 22212n n n n nn a a a a a a a a a ?? ? ? ? ? ?? 定义2 形式为1200000 l a a a ?? ? ? ? ??? 的矩阵,其中i a 是数(1,2,,)i l = ,通常称为对角矩阵 定义3 若对称矩阵A 的每一个元素都是实数,则称A 为实对称矩阵。 定义4 若矩阵A 满足T A A =-,则称A 为反对称矩阵。由定义知: (1)反对称矩阵一定是方阵。 (2)反对称矩阵的元素满足ij ji a a =-,当i j =时,ii ii a a =-,对角线上的元素 都为零。反对称矩阵一定形如12112 212000n n n n a a a a a a ?? ? - ? ? ? --?? 。 下面就对称矩阵的一些基本性质展开讨论。 2.1.2 对称矩阵的基本性质及简单证明 性质1 同阶对称矩阵的和、差、数乘还是对称矩阵。

相似,合同,正交

相似,合同与等价 1 等价的意思就是秩相等 PA=B 说明行向量组秩相等 AP=B 是列。当A为方阵时候 PAQ=B 秩相等 2正交就是说里面的行(列)全部正交 3相似说明AB 等秩,行列式一样,特征值一样但是特征向量不同,相似能推出合同 实数对称矩阵一定能有N个正定的特征向量(其他矩阵只能推出线性无关)一定有对角矩阵与其对应。 A行列式=0 说明有秩为0 4A合同B (等秩)就是说正负惯性指数一样,其他的都可能不同就是说A秩是正数个数和B一样负的个数也一样, 0 非负非正。 也可以数二次型的平方的系数正负的数量是一样的,用这2种方法解题目。求秩,求二次型系数 5正定(等秩)说明实对称矩阵的特征值全部大于0 ,主子式也大于0 ,相互间的行列式符号一样,对角线上的数全为正 6对于实对称矩阵,相似一定合同,但是合同不一定相似。 考察合同关键看正负惯性指数。所以只要判断出两个秩相等的实对称矩阵的特征值符号就行了。 7矩阵的三种关系: 1等价:s*n矩阵A,B等价<=>存在可逆的s阶P和n阶Q使得B=PAQ. 2合同:A,B,均为数域P上的n阶方阵,若存在数域P上的n阶可逆矩阵P使得PAP=B。3相似:A,B,均为数域P上的n阶方阵,若存在数域P上的n阶可逆矩阵P使得P-1AP=B。(若P正交,则为正交相似矩阵) 4三种关系的联系:a,相似矩阵一定是等价矩阵,反之不然。 b,A,B,均为数域P上的n阶方阵,若存在数域P上的n阶可逆矩阵P,Q,使得PAQ=B,且PQ=E,则A与B相似。 c,正交矩阵必为合同矩阵,正交合同矩阵比为相似矩阵;相似阵,合同阵必为等价阵,反之不然;相似阵为正交相似,合同阵为正交合同,此时相思和合同一致。 d,相似与合同矩阵之等价TH: 1、A与B都是n阶实对称矩阵,且有相同的特征根,则A与B既 相似又合同。(实对称矩阵可以正交对角化) 2、n阶矩阵A与B中只有一个正交矩阵,则AB与BA相似且合同。 3、A与B相似且合同,C与D相似且合同,则(A O/OC)与(BO/OD) 既相似又合同。

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同 型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

等价、相似、合同的关系

矩阵等价、相似与合同的区别与联系 等价、相似与合同是矩阵的三大变换.应了解其定义,关系及有关性険. 1)定义及相互之间的关系 设川,舟是曲X并矩璋.若花 S阶可逆矩阵卩和用阶可逆矩阵0,使得PAQ=B t则称£与j?等价,记为A=B■设〃是科谕方阵,若存在用阶可龙矩阵尸,使^P-i AP = Bf则称Z 与苏祸似,记为A -肌若存在闯阶可湮矩阵P使猱戸AP= E贝U称』与舟合同-记为4R ;若存总艸阶正交矩阵0 使得Q l AQ= Q^AQ= B则称M与E正交相f以.由定文可知其关系*如下图所示* 2)性质 (1)等价、相似与合同都具有反身性、对称性及传递性,即 A - At At A a A (反身性); 若A", A~ R,则丹=』,E- A A{对称性); 若』卷R, 若A", K?C则貝?C;若, B^C则/ = C(传递性)? (2) A = E O A 与耳司型>且rank A = rank S?若rank 4 = F *则(£A= r,称旨者为矩阵』的等价标准形 O O ⑶rank A= rank B ? det A - det B J A与E的释3E 澄7冃司“ 注听给閔都是必要条件,即由rank A= rank B?或det A = dctB ,或J4 与必的特征值相同不能筆知』?J!.但若/与J?都可对兔址,旦特花值相同,则4- J?.

(3)用正交相似变换可将/化简成 Q J AQ=Q-l AQ^ 对实对称矩阵/的这三种变换,一个比一个特殊,一个比一个限毛:更多,各有其优诀点?总的来说则为:限制越少则化简后的形式越简单,但变换后丢掉原矩阵的性质就越多.如(1)的形式量简单.但变换后只保留了秩不变:(2)的形式虽然比(1)稍复杂.叵变换后保留秩不变,对称性不变,正、负惯性指数不变;(3)的形式又更复杂一点,但变换后保留秩不变,对称性不变,正、负惯性指数不变,特征值不变.

对称矩阵

摘要......................................................................................................... 错误!未定义书签。关键词......................................................................................................... 错误!未定义书签。Abstract..................................................................................................... 错误!未定义书签。Keywords ................................................................................................. 错误!未定义书签。前言.............................................................................................................. 错误!未定义书签。 1.对称矩阵的基本性质..................................................................... 错误!未定义书签。 1.1对称矩阵的定义........................................................................ 错误!未定义书签。 1.2对称矩阵的基本性质及简单证明……………………………………………错误!未定义书签。 2.对称矩阵的对角化.......................................................................... 错误!未定义书签。 2.1对称矩阵可对角化的相关理论证明 .............................. 错误!未定义书签。 2.2对称矩阵对角化的具体方法及应用举例................... 错误!未定义书签。 3.对称矩阵的正定性.......................................................................... 错误!未定义书签。 3.1正定矩阵的定义 ........................................................................ 错误!未定义书签。 3.2对称矩阵正定性的判别......................................................... 错误!未定义书签。 4.应用举例 ............................................................................................... 错误!未定义书签。总结.............................................................................................................. 错误!未定义书签。参考文献 ................................................................................................... 错误!未定义书签。 对称矩阵的性质及应用

矩阵的等价,相似 合同的关系及应用

目录 摘要 (1) 1引言 (2) 2矩阵间的三种关系 (2) 2.1 矩阵的等价关系 (2) 2.2 矩阵的合同关系 (3) 2.3. 矩阵的相似关系 (3) 3 矩阵的等价、合同和相似之间的联系与区别 (4) 3.1矩阵的相似与等价之间的关系与区别 (4) 3.2 矩阵的合同与等价之间的关系与区别 (5) 3.2 矩阵的合同与等价之间的关系与区别 (5) 4矩阵的等价、合同和相似的应用 (6) 4.1矩阵等价的应用 (7) 4.2矩阵相似的应用 (9) 4.3矩阵合同的应用 (9) 4.4三种关系在概率统计中的应用 (10) 5结论 (12) 结束语 (12) 参考文献 (13)

摘 要: 本文主要了解矩阵的三种的关系的性质、联系、区别及应用,总结它们之间的结论和定理并应用到各个相应的领域。并且详细说明了三者的相同点和不同点。 关键字: 矩阵的等价关系及应用,矩阵的相似关系及应用,矩阵的合同关系及应用 1.引言 高等代数中我们讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.那么为了更好的掌握它们,我们不仅要了解它们的定义、性质还要了解它们间的异同点,总结它们的规律,并且要了解它们在各个领域的应用,我们需要更好的知道在什么条件下等价、合同、相似是可以相互转化的,加什么条件才可以相互转化,如果不能相互转化,那么你能找到相应的特例吗?另外,三种矩阵的应用你知道它具体应用到什么领域吗?是如何应用的? 2.矩阵的三种关系 2.1矩阵的等价关系 定义2.1.1 : 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使得B PAQ = 矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使B PAQ =. 2.1.2矩阵等价的性质: (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ?. (3)传递性:若A B ?,B C ?,则A C ?. (4)A 等价于B 的充要条件是秩(A )=秩(B ) (5)设A 为m ×n 矩阵,秩(A )=r ,则A 等价于???? ??00 0r E ,即存在m 级可逆矩阵P ,n 级可逆矩阵Q , 使 ???? ??=00 0r E PAQ . (6)(Schur 定理) 任何n 级复方阵A 必相似于上三角形矩阵,即A 相似于????? ? ?n λλ0 *1 其中n λλ,,1 为矩阵A 的特征值. 定理2.2.1: 若A 为m n ?矩阵,并且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),

矩阵的合同与相似及其等价条件汇总

矩阵的相似与合同及其等价条件研究 (数学与统计学院 09级数学与应用数学一班) 指导老师:王晶晶 引言 矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用[1-10],起着非常重要的作用,能够把要处理的问题简单化[9],本文对矩阵的等价,合同,相似进行了简单的介绍并对其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助. 1 矩阵的等价与相似及其合同的基本概念 1.1矩阵等价的定义[1] 定义 1.1 如果矩阵A 可以有矩阵B 经过有限次初等变换得到,称A 与B 是等价的. 由于要与矩阵的相似,合同进行比较,上述概念可以约束条件得到: 定义1.2 如果n 阶矩阵A 可以由n 阶矩阵B 进过有限次初等变换得到,则称A 与B 是等价的. 根据初等变换和初等矩阵的关系以及可逆矩阵的充分必要条件,可以用数学语言描述: 定义1.3 设矩阵A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 和Q ,使得B PAQ =,则称矩阵A 与B 等价,记作A ∽B . 1.2 矩阵相似的定义[2] 定义 1.4 设矩阵A ,B 为n 阶矩阵,如果存在一个是n 阶可逆矩阵P ,使得 B AP P =-1,则称矩阵A 与矩阵B 相似,记作A ~B . 1.2.1 n 阶矩阵的相似关系,具有下列性质[3]: 性质1.1 反身性,即任一n 阶矩阵A 与自身相似. 性质1.2 对称性,即如果A ~B ,则B ~A . 性质1.3 传递性,如果A ~B ,B ~C ,则A ~C . 性质1.4 P A k AP P k P A k A k P 221122111)(+=+--. (2 1,k k 是任意常数)

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质: 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系:

设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系 ①相似?等价:~A B ?A,B 同型且()()r A r B A B =?? ②合同?等价:,A B A B ?同型且()()r A r B A B =?? ③相似与合同之间一般情况不能递推,但有一下附加条件时可以 Ⅰ、若A,B 均为实对称矩阵,则有A,B 一定可以合同于对角矩阵当 ~A B 时, ||||E A E B λλ-=-?二次型()T f x X AX =与()T g x X BX =有相同的标准型,即二者有相同的正负惯性指数A B A B ??? 即有~A B A B A B ??? Ⅱ、存在一个正交矩阵P ,即T P P E =使得T P AP B =即A B 则有

一类特殊实对称矩阵的性质与应用

本科毕业论文(设计) 题目:一类特殊实对称矩阵的性质与应用 学生:学号: 学院:数学与统计学院专业:数学与应用数学 入学时间:2013年9月11日 指导教师:职称:讲师 完成日期:2017年3月2 日 一类特殊实对称矩阵的性质与应用

摘要:实对称矩阵是一类应用广泛的矩阵,很多科学问题的求解都离不开实对称矩阵,而在实对称矩阵中存在着一些特殊的的实对称矩阵,这些实对称矩阵具有一般矩阵同样具有的性质,同时因为自身具有的特殊性,因而在计算矩阵的行列式、逆、秩、迹等方面具有简便的运算.本文讨论了一类特殊的实对称矩阵——等差实对称矩阵的定义和性质,给出了等差实对称矩阵在化二次型的标准型,一般的n元函数求最大值最小值,对角化中正交矩阵的初等变换求法中的应用. 关键词:实对称矩阵;等差数列;二次型标准型;初等变换 Properties and applications of a class of special real symmetric matrices Abstract:The real symmetric matrix is a widely used matrix, solving a lot of scientific problems all cannot do without the real symmetric matrix, and some special of the real symmetric matrix in real symmetric matrix, real symmetric matrices with these propertiesof general matrix with the same, and because of its own specialties, with simple and convenient operation in the calculation of determinant, inverse matrix, rank, etc. and trace. This paper discusses the definition and properties of a special kind of real symmetric matrix arithmetic of real symmetric matrix, real symmetric matrix arithmetic in the standard type two type is given, the general function for the maximum minimum valueoforthogonal elementary transformation for the application of matrixdiagonalizationmethod. Key words:Real symmetric matrix; arithmetic progression; two standard type; elementary transformation 目录

相关文档
最新文档