交通信号控制

交通信号控制
交通信号控制

交通信号控制(Traffic Signal Control,TSC)是依据路网交通流数据,对交通信号进行初始化配时和控制,同时根据实时交通流状况,实时调整配时方案,实现交通控制的优化。交通控制从被控区域的最小延误时间出发,获得最佳的配时方案,是系统化最优的思想。为获得整个路口交通效益的最大,可采用两种方法:一是采用数学模型对交叉口各个方向的车辆到达作准确的预测,根据运筹学和最优化理论确定各个方向的绿灯时间;二是采用智能控制的方法对交叉口进行控制。由于城市交通系统具有随机性、模糊性、不确定性等特点,很难对其建立数学模型。计算机的出现和广泛应用促成了人工智能研究热潮的掀起,针对传统交通控制系统的固有缺陷和局限性,许多学者把人工智能的实用技术相继推出并应用到交通控制领域。

1 交通控制领域中人工智能研究方法

1.1 基础研究方法

交通控制领域中人工智能基础研究方法有模糊控制、遗传算法、神经网络,另外还有蚁群算法、粒子群优化算法等。

模糊系统模糊逻辑是一种处理不确定性、非线性等问题的有力工具,特别适用于表示模糊及定性知识,与人类思维的某些特征相一致,故嵌入到推理技术中具有良好效果。模糊控制能有效处理模糊信息,但是产生的规则比较粗糙,没有自学习能力。

遗传算法遗传学通过运用仿生原理实现了在解空间的快速搜索,广泛用于解决大规模组合优化问题。在解决实时交通控制系统中的模型及计算问题时,可以通过遗传算法进行全局搜索和确定公共周期,也可以利用遗传算法来解决面控系统中各交叉路口信号控制方案的最优协作问题,有效避免可能由此引起的交通方案组合爆炸后果。

神经网络人工神经网络擅长于解决非线性数学模型问题,并具有自适应、自组织和学习功能,广泛应用于模式识别、数据分析与处理等方面,其显著特点是具有学习功能。

1.2 城市交通网路区域协调

区域协调是指在交通中心的宏观调控作用下,根据不同的交通流量,最大限度地发挥路口之间互补的优势,均衡每个路口的交通流量,从而提高道路的通行能力。他要求路口之间(即包括城市道路与快速路、城市道路与城市道路)的良好协作,然而路口之间是相互影响、相互作用的,因此为实现区域协调必然会引起路口之间出现一定程度的冲突。如何解决这些冲突是一个亟需解决的重要问题。路网协调控制可以采用上述人工智能的基础研究方法,近年来Agent技术开始应用于交通控制领域。

基于Multi-Agent的城市交通网络智能决策系统研究通过应用Agent技术,实现了交通网络系统理论方法,专家的知识经验和计算机之间的相互结合。系统的知识存储于各个Agent中,以便于知识的利用与获联,该系统具有良好的可扩展性。

基于Agent的智能交通控制系统建模的首要任务是将交通控制系统的各功能模块转化成有独立功能的Agent,并根据各个Agent所完成的功能不同,分别建立各个Agent的功能结构,然后让这些Agent之间进行交互和协调,共同完成系统任务。

智能交通控制系统递阶控制结构各层的功能如下:

组织层控制系统的最高层,由智能交通控制系统决策Agent构成,具有最高的决策权力,对整个系统的交通运行状况进行评估,根据各方面的汇总信息,进行推理、规划和决策,实现所有区域控制系统间的协作,以追求总体控制效果最优,完成交通控制系统的管理。

协调层控制系统的中间层,由区域协调Agent构成,负责本区域内各路口的监测维护工作,对所控制区域的某几个路口进行强行模式设置,以及负责对区域内紧急事件的处理工作,各区域协调Agent之间还可根据需要进行信息的交流及合作。

控制层控制系统的最底层,主要由路口Agent、路段Agent构成,此外,还包括交通灯Agent、车辆Agent等,是实现交通控制任务的主要承担者。

路口Agent具有关于本路口以及其所连接路段的信息,各个方向的交通流在此会聚,并形成车辆的分流、冲突等交通现象,交通的拥挤往往也主要发生在路口,因此,路口Agent非常重要,他可将本路口的交通信息实时通知给其相邻路口或区域控制中心,并能根据需要完成控制中心下达的控制工作。路段Agent用以实时统计各条路段的具体交通信息,通过传感器可了解车辆的数量和当前的运行位置以及路段当前的拥挤情况。

一个实际交通系统和各交通元素Agent之间的交互是非常频繁和复杂的,交通元素Agent的结构、功能以及他们之间的交互关系,需要根据系统的具体要求进行详细的分析和设计。

2 交通控制系统的仿真工具

为了判别人工智能方法的合理性、有效性,需要仿真软件来进行验证。目前有两类验证方法,一种是通过Matlab、C语言编制仿真程序,另一种是通过专用的交通仿真工具进行验证。交通仿真软件使用灵活、能够更加直观地模拟交通控制现场。现介绍北京工业大学智能交通中心采用的微观交通仿真软件PARAMICS,该仿真软件功能强大、使用方便灵活。

PARAMICS(PARAllel MICroscopic Simulator)意为并行微观仿真软件。PARAMICS 源于欧洲共同体Drive-I计划下属的IMAURO项目,以及爱丁堡并行计算中心和英国交通部合作的LINK-TIO项目。在这两个项目研究成果的基础上,Quadstone公司于1993年和1994年与英国工商部合作完成了PARAMICS向商业化软件的初步转型。PARAMICS为交通工程师和研究人员提供了一个崭新的计算工具来理解、模拟和分析实际的道路交通状况。PARAMICS具有实时动态的三维可视化用户界面,对单一车辆进行微观处理的能力,多用户并行计算支持,以及功能强大的应用程序接口。PARAMICS 能够适应各种规模的路网,从单节点到全国规模的路网,能支持100万个节点,400万个路段,32 000个区域。

PARAMICS由5个主要工具模块组成,分别是Modeller,Processor,Analyser,Programmer。和Monitor,其中Modeller是整个系统的核心,以下是各部分的简介。

(1) Modeller提供建立交通路网、三维交通仿真和统计数据输出等3大功能。所有这些功能均支持直观的图形用户界面。Modeller的功能涵盖了实际交通路网的各个方面,包括:混合的城市路网和高速路路网、先进的交通信号控制、环形交叉口、左行和右行道路、公共交通、停车场、事故以及重型车和高容量车车道。Modeller既可以精确模拟单个车辆在复杂、拥挤的交通路网中的运行,又能对整体交通状况进行宏观把握。

(2)Processor允许研究者用批处理的方式进行仿真计算,并得到统计数据输出。Processor提供图形用户界面以设定仿真参数、选择输出数据和改变车辆特征。由于用批处理的方式进行仿真计算不显示仿真过程车辆的位置和路网,因此大大加快了仿真的速度。

(3) Analyser用于显示由Modeller或Processor的仿真过程的统计结果。他采用灵活易用的图形用户界面将仿真过程中的各种结果进行可视化的输出,例如车辆行驶路线、路段交通流量、最大车队长度、交通密度、速度和延迟、以及服务水平参数等。除了可视化输出,Analyser也提供直接的数字输出或将数据存为文本文件以备进一步的应用。

(4)Programmer为研究者提供了基于C++的应用程序接口(API)。应用程序接口使PARAMICS具备更强的可移植性和扩充性。例如,PARAMICS实际上基于英国的驾驶规则和车辆特性,当用于其他国家和地区时,需要研究者编制适当的API程序使之适应当地需要。研究者也可以利用API扩充PARAMICS的功能,通过加入API程序模块以设计和测试特殊的交通控制和管理策略。

(5)Monitor是利用Programmer开发的API模块,他可以跟踪计算仿真的交通路网中所有车辆尾气排放的数量,并在交通仿真过程中进行可视化的显示。

PARAMICS提供了ITS基础上的微观交通仿真功能,利用仿真的交通信号、匝道控制、可变速度控制标志和可变信息板(VMS)等仿真设备,可以实现对仿真车辆的智能化交通

诱导。另外,通过API函数还可以实现特殊的控制策略,对于研究新的控制和诱导方法带来了便利。

3 未来智能交通系统的功能及组成

智能交通系统(Intelligent Transportation System,ITS)是将先进的信息技术、数据通讯传输技术、电子传感技术、电子控制技术及计算机处理技术等有效的集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。

智能交通系统的运作方式:将采集到的各种道路交通及各种服务信息,经过交通管理控制中心集中处理后传送到公路运输系统的各个用户(包括驾驶者、居民、警察局、停车场、运输公司、医院、救险排障等部门),出行者可以进行实时的交通方式和交通路线的选择;交通管理部门可以自动进行交通疏导、控制和事故处理;运输部门可以随时掌握所属车辆的动态情况,进行合理调度。

ITS系统主要由卫星地面站、卫星通信系统、汽车自动驾驶系统、公路电子信息系统组成。ITS研究的前沿和热门方向为车辆定位与交通导航系统、信息系统、信号协调控制系统、及自动化公路系统等。

4 结语

智能交通系统对于我国交通运输领域是一场跨世纪的技术革命,目前,国内已经涌现出一批ITS的科技成果和产品,有些已经得到了广泛的应用。随着研究的深入和成果的推广,ITS将给我们的社会带来经济效益与社会效益。

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

道路交通信号灯图解

道路交通信号灯使用说明书 第一节概述 道路交通信号灯是为了加强道路交通管理 , 减少交通事故 , 提高道路使用效率 , 从而改善交通状况的一种重要工具. 道路交通LED信号灯具有以下特点: ● 符合中华人民国GB14887标准中的技术指标; ● 拥有多项国家专利; ?高亮度 : 采用 LED 组装的灯芯色彩亮丽 ; ?低功耗 : 只有白炽灯的四分之一,仅 25VA ; ?长寿命 : 可达 50000 小时以上 ; ?调光控制 : 根据环境变化自动调节亮度 ; ?限流控制 : 自动校正负载电流 ; ?亮度均衡 : 设有平衡电流电路加上专门设计的光学部件,发光特别均匀;?严格老化 : 产品经长时间通电老化 , 性能更加稳定。 ● 防护等级大于 IP53 。 第二节性能指标 1 .光学性能 1.1 光强分布 符合 GB14887 的要求 1.2 色度坐标 符合 GB14887 的相关要求,包括颜色视觉功能有缺陷的观察者所要达到的关规定 2 .电气性能 2.1 工作电压AC220 ± 15% V 50 ± 2Hz 2.2 额定功率单灯 <15 W 2.3 绝缘电阻 >10M? 2.4 介电强度耐压 144 VAC 2.5 燃点寿命正常条件使用下可达 50000h

3. 物理、机械性能 3.1 抗风压符合 GB14887 的相关要求 3.2 抗振动符合 GB14887 的相关要求 3.3 防护等级大于 IP53 4. 适应环境 4.1 信号灯工作环境温度为 -40oС~50oС, 可耐 -40oС 和+80oС 的高低温测试 4.2 温度为25oС 时 , 空气相对湿度不大于 95% 第三节结构尺寸 1 .道路交通信号灯总装图示: L 型支架安装 组合种类 a b c d e f h w ф 300 二灯600 1270 70 985 70 195 370* 130 三灯600 1620 70 1335 70 195 370 130 四灯600 1970 70 1685 70 195 370 130 五灯600 2320 70 2035 70 195 370 130 ф 300 二灯600 1445 70 1160 70 195 370 130

智能交通信号灯控制系统设计

智能交通信号灯控制系 统设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,南北左右转,东西直行,与东西左右转四个主要状态,及黄灯过渡的辅助状态。主控制器采用89C51单片机。单片机的P0口和P2口分别用于控制南北和东西的通行灯。 本文的创新之处在于采用了双机容错技术,很大程度上增强了系统的可靠性。容错技术以冗余为实质,针对错误频次较高的功能模块进行备份或者决策机制处理。但当无法查知运行系统最易出错的功能,或者系统对整体运行的可靠性要求很高时,双机容错技术则是不二选择。 双机容错从本质上讲,可以认为备置了两台结构与功能相同的控制机,一台正常工作,一台备用待命。传统的双机容错的示意图如图1所示,中U1和U2单元的软硬件结构完全相同。如有必要,在设计各单元时,通过采用自诊断技术、软件陷阱或Watch dog等系统自行恢复措施可使单元可靠性达到最大限度的提高。其关键部位为检测转换(切换)电路。 图 1 传统双机容硬件错示意图

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

城市道路交通信号控制方式适用规范

城市道路交通信号控制方式适用规范1范围 本标准规定了不同信号控制方式的适用基本原则、多相位控制方式设计原则以及采用不同控制方式的技术-经济评价方法。 本标准适用于城市道路交通信号控制方式的设计和建设。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GA/T 509-2004城市交通信号控制系统术语 3术语和定义 GA/T 509-2004中确立的术语和定义适用于本标准。 4单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式适用基本原则单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式均应根据交通需求和道路条件选定,并需进行技术-经济评价。 在选用某种控制方式时,宜采用计算机仿真技术进行分析比较和配时方案的优化。 4.1单点多时段定时控制方式适用原则 单点多时段定时控制方式是最基本、最经济的控制方式。 当交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式。 4.2单点感应控制方式适用原则

4.2.1当单点控制的交叉口交通状况变化比较频繁且没有规律时,宜采用单点感应控制。 4.2.2单点感应控制一般在交叉口进口车道设置检测器或在人行横道线前设置行人按钮,信号配时参数可随检测到的信息而改变。 4.2.3单点感应控制分为半感应控制和全感应控制。 在支路流量比较小的信号控制交叉口或路段的人行横道处,可采用半感应控制。在支路上设置检测器或在人行横道处设置行人按钮,根据是否有交通需求而确定是否运行该相位,并根据交通需求情况确定相应相位时间。 在各进口流量相近,且变化较为频繁的信号控制交叉口宜采用全感应控制方式。若单个路口信号机有能力根据检测的实时交通状况进行配时优化,也可实现单点优化控制。 4.3线协调控制方式适用原则 4.3.1当需要在单点控制的基础上扩大控制范围,对若干连续交叉口形成的线路上进行协调控制以提高整体通行效率时,可采用线协调控制方式。 4.3.2采用此种控制方式时,针对若干连续交叉口设计一种相互协调的配时方案,通过时钟同步,各交叉口的信号机按预设方案协调运行。 4.3.3线协调控制方式应考虑相邻交叉口的距离。通常若路口间距离大于800 m以上时,会降低路口间的协调效果。 4.3.4线协调控制通常采用无电缆线协调控制方式。 交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式,但不能适应随机性较强的交通。 采用此种控制方式,宜进行事前交通调查,根据调查结果设定控制参数,并应根据交通变化情况适时调整控制参数,以取得较好的控制效果。 无电缆线协调控制方式若适当设置检测器,应用感应控制,可根据交通需求调整绿信比,提高控制效果。 4.4区域协调控制方式适用原则

交通信号灯控制器

太原理工大学现代科技学院数字电子技术基础课程设计 设计名称交通信号灯控制器 专业班级自动化12-1 学号 姓名 指导教师张文爱

交通信号灯控制器 一、设计要求: 通过采用数字电路对交通灯控制电路的设计,提出使交通灯控制电路用数字信号自动控制十字路口两组红、黄、绿交通灯的状态转换的方法,指挥各种车辆和行人安全通行,实现十字路口交通管理的自动化。因此,在本次课程设计里,将以传统的设计方法为基础来实现设计交通控制信号灯。 1.设计一个交通信号灯控制器,由一条主干道和一条支干道汇合成十字路口,在每个入口处设置红、绿、黄三色信号灯,红灯亮禁止通行,绿灯亮允许通行,黄灯亮则给行驶中的车辆有时间停在禁行线外。 2.用红、绿、黄发光二极管作信号灯,用传感器或逻辑开关作检测车辆是否到来的信号。 3.主干道处于常允许通行的状态,支干道有车来时才允许通行。主干道亮绿灯时,支干道亮红灯;支干道亮绿灯时,主干道亮红灯。 4.主、支干道均有车时,两者交替允许通行,主干道每次放行45秒,支干道每次放行25秒,设立45秒、25秒计时、显示电路。 5.在每次由绿灯亮到红灯亮的转换过程中,要亮5秒黄灯作为过渡,使行驶中的车辆有时间停到禁行线外,设立5秒计时、显示电路。 二.设计方案: 1,设计思想及方案论证: 本设计要求设计一个主干道绿灯45秒、支干道绿灯25秒的交通灯控制系统,每次由绿灯变为红灯时应有5秒黄灯亮作为过渡,分别用红、黄、绿三色发光二极管表示信号灯,并用数码管显示倒计时。因此,本设计需

要一个脉冲产生模块、信号灯模块、倒计时模块、数码显示模块和主控模块。脉冲产生电路用以驱动倒计时电路,置数电路将交通灯亮时间预置到计数电路和寄存器中,信号灯模块对信号灯的各种状态进行循环控制,倒计时模块以基准时间秒为单位做倒计时,数码显示模块显示倒计时的时间,主控模块对电路种的各个模块进行级联控制。 交通信号灯控制电路,交通灯采用发光二极管,显示时间则采用自带译码器的数码管显示。系统需要每秒减数,所以可以采用数字电路箱产生秒脉冲(数字电路实验箱中已给出),经由一个脉冲驱动电路后产生信号灯需要的三种脉冲,即45s,25s,5s,传递给控制器,由控制器发出状态。译码器接受状态后译码,输出控制信号灯和数码管显示的状态。 2,设计方案的工作原理: 1.倒计时电路(定时电路) 倒计时器由两位4位十进制可逆同步计数器(双时钟)74LS192、一个非门和一或门构成。其组成如图所示,其中74LS192是上升沿触发,CPU

交通信号控制理论基础

第六章交通信号控制理论基础 经过调查统计发现,将城市道路相互连接起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。一般而言,交叉口的通行能力要低于路段的通行能力,因此如何利用交通信号控制保障交叉口的交通安全和充分发挥交叉口的通行效率引起了人们的高度关注。 交通信号控制是指利用交通信号灯,对道路上运行的车辆和行人进行指挥。交通信号控制也可以描述为:以交通信号控制模型为基础,通过合理控制路口信号灯的灯色变化,以达到减少交通拥挤与堵塞、保证城市道路通畅和避免发生交通事故等目的。其中,交通信号控制模型是描述交通性能指标(延误时间、停车次数等)随交通信号控制参数(信号周期、绿信比和信号相位差),交通环境(车道饱和流量等),交通流状况(交通流量、车队离散性等)等因素变化的数学关系式,它是交通信号控制理论的研究对象,也是交通工程学科赖以生存和发展的基础。 本章主要针对建立交通信号控制模型所涉及到的基本概念、基本理论与基本方法,对交通信号控制的理论基础进行较为全面深入的阐述。 6.1交通信号控制的基本概念 城市道路平面交叉口是道路的集结点、交通流的疏散点,是实施交通信号控制的主要场所。根据交叉口的分岔数平面交叉口可以分为三岔交叉口、四岔交叉口与多岔交叉口;根据交叉口的形状平面交叉口可以分为T型交叉口、Y型交叉口、十字型交叉口、X型交叉口、错位交叉口、以及环形交叉口等。 6.1.1交通信号与交通信号灯 交通信号是指在道路上向车辆和行人发出通行或停止的具有法律效力的灯色信息,主要分为指挥灯信号、车道灯信号和人行横道灯信号。交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置。世界各国对交通信号灯各种灯色的含义都有明确规定,其规定基本相同。我国对交通信号灯的具体规定简述如下:对于指挥灯信号: 1、绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨碍直行的车辆和被放行的行人通行; 2、黄灯亮时,不准车辆、行人通行,但已越过停止线的车辆和已进入人行横道的行人,可以继续通行;

交通信号灯控制详细操作说明

交通信号灯控制详细操作说明 一、操作面板示意图: 二、修改程序的基本步骤: 按“加”或“减” 按“功能1” 按“加”或“减” 按“功能1” 按“加”或“减” 按“功能1” 按“加”或“减” 按“功能1” 步骤1、按住“显示程序”键,听毕 “啼”音后进入程序修改操作; 步骤2、显示[-0 0·7 00] 步骤3、显示[- 0 02·02 设定第一段程序开始运行的时间,按数字下 面相对应的“减”或“加”来调整时分。 显示内容说明:当前显示的是“-0 0.7 00” “-0”的含义指的是当前设定的是第一段程 序。“07 00”的含义是指时间,在以下三个 步骤中设定的程序将在凌晨7点钟开始运 行。用“·”的位置指示当操作步骤的进度, 在以下几个步骤中“·”点的位置往后移。 设定干线与支线左转弯绿灯时间,按加减来 调整干线或支线左转弯绿灯时间,注意:调 整为02.02则控制器工作于两相位模式。 步骤4、显示[- 0 2 5 2·5] 设定参数,一般不需修改,如需修改按数字 下面相对应的按键。第一位”2”代表黄灯过渡 到红灯时红灯持续时间为2秒,第二位”2” 代表绿灯过渡到黄灯时黄灯持续时间为2 秒,第三位”5”代表绿闪次数5次,第四位数 是右转弯绿灯的运行模式。 步骤5、显示[- 0 2 2 5 8·] 设定干线与支线直线绿灯时间,左边的两位 数是干线的,右边的两位数是支线的,按数 字相对应的“减”或“加”来调整绿灯时间。

三、修改多时段程序的步骤: 在基本步骤6中按下“功能1”,根据你的需要重复“修改程序的基本步骤”2-5;设定时钟的应从早上到晚上,共有十个时段可以设定。 四、修改程序中的特定数字: 1、设定左转时间[ 0 2·0 2 ]是转入二相位的特定数字 2、设定直行时间[ 0 3·0 3 ]是转入黄闪的特定数字; 3、设定时钟时间[ 2·3 5 9 ]是退出修改的特定数字; 五、手动: 在正常工作状态下按“功能2”键即进入手动工作状态,按相应键即对干线左转、支线左转、干线直行、支线直行的手动控制,再按“功能2”键返回正常工作状态。 六、恢复出厂设置及24小时连续工作设置: 如遇到不明原因的控制器故障请恢复出厂设置复位,按住“功能2”键再开电源,听毕“啼”音后即恢复出厂设置。 自动1初始化出厂设置如下:(四相位设置:直线先行)

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

交通信号灯控系统技术文件(集中控制型)

交通信号灯控系统技术文件(集中控制型) 1.交通信号管理系统方案 1.1概述 交通是城市的主要功能之一。城市交通是城市经济和社会发展的动脉,而城市交通设施是城市基础设施的重要组成部分。一个城市的交通的服务水平反映了一个城市的现代化水平。 随着我国经济的高速发展,城市化速度加快,人口和车辆数量剧增,由此引起交通拥挤阻塞、交通事故频发、交通环境恶化,交通问题成为令人困扰的严重问题。如何改善城市交通状况?直接办法就是修路扩路。但任何一个城市,可供修建道路的空间都有限,且需巨额资金。因此,在现有硬件设施的条件下,提高交通控制和管理水平,合理使用交通设施,充分发挥其能力,并采用软设施来改善城市的交通状况。 欧美、日本及澳大利亚等,对交通控制系统的研究给予高度重视,投入了大量人力物力。从1994年起,智能交通(ITS)这一术语得到全世界的广泛承认,它研究的一个重要方面就是智能交通控制与管理。其中英国的SCOOTS系统和澳大利亚的SCATS 系统都是较成功的区域交通控制系统,在世界几十个大城市中运用。由于我国为混合交通,自行车较多,行人交通安全意识淡薄,交通控制设备落后,一些实例已经证明:简单引进SCOOTS和SCATS 系统并不适合我国国情。 京安城市交通信号管理系统是基于城市中的主干道的线控而开发出来的,它把整个城市路口作为一个有机的整体来看待,车流通过路口时可以全部是遇上绿灯,根本不用停车,车速可以大大加快;在一定程度上使机动车不会冲红灯:因为当红灯时,司机可以看到下面相邻的路口也是红灯,过了本路口,还是红灯;当绿灯时,主干道的车多,车速快,车流连续,另方向的车难以穿过其中,所以也取消了冲红灯的念头。人通过交叉路口的安全性也有很大提高:主干道是红灯时,减少了从上游路口过来的车辆,人流通过路口时再也不用与机动车抢道了;主干道是绿灯时,人流慑于机动车的连续快速行驶,不会强行通过路口。这样,使繁忙拥挤的城市交通变得有规律,人车各行其道,既保障了交通安全又规范了道路的管理,为城市的发展奠定了坚实的基础。 1.2交通信号控制系统结构 系统采用两级分布式控制结构,由控制中心计算机、交通信号控制机、通信设备、路口交通设备等组成,如下图所示:

交通信号灯及控制系统设备安装与施工详解

交通信号灯及控制系统设备安装与施工详解 交通信号系统包括机箱、灯杆、SCATS检测线圈、电缆与电线、取电电源、防雷与接地、管井与管道等设施设备,下面介绍各个部分的材料、安装要求和施工工序。 机箱 1.信号机箱无特殊情况时一般安装在路口的西南角。 2.信号机箱的安装应考虑设置在人行横道上视野宽阔、不妨碍行人及车辆通行、能观察到交叉口的交通状况和信号灯的变化状况、并能容易驳接电源的地点。 3.信号机箱的基础位置与人行横道的路缘距离应在50~100cm,与路缘平行,基础高于地面20cm,平面尺寸应和信号机箱底座尺寸一致,地面以下的水泥钢筋基础至少70cm 深。 4.在有可能积水的地面安装信号机箱时,应适当增加基础高度,防止信号机被积水淹没。 5.信号机箱安装完毕后,应将机箱底部的接线孔用填充物密封,防止潮气侵蚀。 6.信号机箱安装时,保护接地线、避雷器接地线的接地施工应符合GB50169《电气装置安装工程接地装置施工及验收规范》的规定;接地完毕,测量信号机箱接地电阻小于4Ω。 灯杆 灯杆制作 1.信号灯杆所属的立柱、法兰盘、地脚螺栓、螺母、垫片、加强筋等金属构件及悬臂、支撑臂、拉杆、抱箍座、夹板等附件的防腐性能应符合GB/T18226《高速公路交通工程钢构件防腐技术条件》的规定。 2.信号灯杆应采用圆形或多棱形经热镀锌处理的钢管制造。 3.信号灯杆安装前须经过防锈处理,底层喷涂富锌防锈底漆,外层喷涂银灰色瓷漆。 4.机动车立柱式灯杆距路面约350mm 处留有拉线孔和拉线孔门,人行道和非机动立柱式灯杆距路面约300mm 处留有拉线孔和拉线孔门。 5.立柱式灯杆拉线孔门应设有防盗措施,孔内设置接地端子座,以便接驳地线。 6.立柱式灯杆顶部安装灯具处应留有出线孔,并配备橡胶护套、电缆线回水弯挂钩,灯杆顶部应安装塑料或经防腐处理的内套式金属防水管帽。 7.悬臂式灯杆悬臂杆与支撑杆使用圆形或多棱形的变截面型材制作,悬臂与灯杆连接端宜焊接固定法兰盘,悬臂下应留有进线孔和出线孔。 8.悬臂式灯杆拉杆宜使用圆钢制作,一端配有可调距离的螺旋扣,直径和长度根据悬臂长度确定。 9.信号灯杆杆体底部应焊接固定法兰盘,法兰盘与杆体之间应均匀焊接加强筋。 灯杆安装 1.悬臂式灯杆支撑臂使用抱箍、抱箍座与灯杆连接固定;拉杆与灯杆、拉杆与悬臂、支撑臂与悬臂可使用夹板连接固定;安装时使用的固定螺栓、螺母、垫圈应使用热镀锌件并用弹簧垫圈压紧。 2.紧固标准件全部采用不锈钢材料。 3.信号灯杆安装应保证杆体垂直,倾斜度不得超过±0.5%。 4.信号灯杆安装应有足够的强度,能抵抗12 级大风或者一般移动物体的撞击。 5.信号灯杆保护接地电阻应小于4Ω。 SCATS检测线圈 材料要求

交通信号控制优化服务解决方案

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。 在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。 ?单点信号控制 主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。针对信号控制路口常用的单点信号控制方法有Webster等方法。 ?交通信号子区划分 主要基于距离原则、车流特征原则、周期原则的子区划分原则及其相关的关联度判断方法、合理周期范围判断方法的划分方法总结。 ?主干道交通信号协调控制 主要包括单向绿波协调控制、对称双向绿波协调控制、非对称双向绿波协调控制的方法。针对不同地市信号控制路口不同的流量特征可选用相对应的主干道信号协调控制方法。 ?同类型交通信号路口协调控制 主要针对信号路口饱和度同类型及其基础上的潮汐特征同类型进行交通信号路口同类型的判定分析,归纳与其相对应的信号控制适用方法。 ?长距离交通信号协调 主要对相邻路口间距离较长的信号路口及交通信号路口数较多的整体距离较长的协调控制方法进行研究,针对长距离交通信号协调的分类归纳相对应的协调模式及方法。 ?区域协调控制 交通区域协调控制是二维上的控制,它通过将绿波协调控制的路口利用组合叠加的方式,对各信号控制路口的信号周期、绿信比以及路口间的相位差进行优化,以减小延误、提高路网通行效率的信号控制方法。当前交通信号区域协调控制的方法主要可以分为结合调控的协调方法、基于延误的协调方法和基于绿波带优化的协调方法。 通过全面深入的了解信号控制的基础理论及信号控制主流模式及技术方法,掌握前沿技术,归纳出适用性强的主流核心技术规范,为交通信号控制优化提供

道路交通信号控制设计方案

道路交通信号控制设计方案 1.KITOZER_1.0简易信号机 1.1适用围: 适用畴为两相位控制的过街请求,广泛的使用于超市、学校、医院等人流较多的非十字路口。该产品具有成本低、产品稳定可靠、操作简单、调试方便等特点。 1.2技术指标: 交流输入:220(±20%)VAC,50±2HZ。 输入交流功耗≤50W (不包括信号灯功耗)。 额定电流:20A。 工作环境温度:-20℃~70℃ 1.3功能特点: 两相位过街请求运行模式。 可运行黄闪、全红、全灭等降级模式。 操作简单,使用方便的上位机界面控制。 兼容3.0以上的信号机组网协议。 2.KITOZER_1.1移动信号机 2.1适用围: 是路口停电或者其他紧急情况下信号机的替代产品,该产品使用太阳能提供电源,续航能力达到72小时。另外,该产品

具有两相位、四相位、黄闪等多种运行模式,完全满足目前十字路口信号灯车辆控制的需求。 2.2技术指标: 交流输入:220(±20%)VAC,50±2HZ。 输入交流功耗≤50W (不包括信号灯功耗)。 额定电流:20A。 工作环境温度:-20℃~70℃ 2.3功能特点: 太阳能信号灯是一种将太阳能转换成电能的环保信号灯。 可设置两相位、四相位、黄闪等多种运行模式。 绿灯时间可按路况需求任意调配。 蓄电池充电装置,一次充电最少可用72小时。 信号灯的高度可适度调节。 使用方便、操作简单,可随时工作。 3.KITOZER_1.2行人过街触发信号机 3.1适用围: 该产品是专门为学校、医院、商场等门口车流量稳定,只有车道和人行道的小型交通路口,方便行人安全过街而设计的设备。该产品具有成本低、安装方便、操作简单、在户外恶劣气候条件下运行稳定等诸多特点。 3.2技术指标:

交通信号灯的PLC控制教(学)案

交通信号灯的PLC控制 使用教材:《可编程序控制器及其应用》(中国劳动社会保障) 授课班级:10秋电气班(中职二年级学生) 学生人数:30人 教学容:基于课本《基本指令综合运用》一节的容作拓展学习 授课类型:理实一体 一、教学目标 知识技能目标:1.进一步学习PLC的编程。 2.掌握交通信号灯的控制原理。 专业能力目标:培养学生的动手操作能力和自主探究能力。 职业情感目标:通过“工学一体化”的课堂教学,让学生边学边做,体验学习的充实与快乐。在小组合作学习中,互相交流促进,增强学生合作意识。 二、教学重点与难点 重点:交通灯PLC控制电路的组装与工作过程。 难点:交通灯PLC程序设计、调试运行。 三、教法与学法 教法:项目教学法(确定项目、制定计划、实施计划、检查评估、记录归档、知识延伸) 学法:小组学习法(将学生分为六个小组,每个小组设工段长、操作工等不同岗位,让学生分别明确自己的任务和职责。) 四、课时、教具 课时:2课时 教具:PLC与变频器实训室(集PLC编程电路安装、教室功能于一体,并具有多媒体演示功能);主要设备:S7-200 PLC、计算机、万用表。 五、教学程序 本次项目实施设置了六个环节,如图所示:

六、教学过程 教学过程一、确定项目(约10分钟) 采用创设工作情境的方式引入项目: 假设道路上没有交通灯,世界将变成什么样子?实际生活通灯是如何控制的?如果用我们所学的PLC知识,应该如何完成? 一组同学展示: 1.彩色图片展示:搜集十字路口交通灯图片。 2.交通灯工作演示:通过多媒体展示交通灯工作示意图,各组同学在操作中认识交通灯工作原理。 项目任务描述: 1、启动:当按下启动按钮时,信号灯系统开始工作。 2、停止:当需要信号灯系统停止工作时,按下停止按钮即可。 采用创设情境的方式引入项目,此方式使学生更直观了解本节课的实训项目,引起学生的学习兴趣。 充分发挥学生的自主能动性,使学生充分参与到教学活动中来。

交通信号集中控制系统技术方案

城市交通信号集中控制系统 技术方案

目录 1、系统设计依据 (2) 2、系统的组成 (3) 3、功能与特点: (6) 4、系统指标 (7) 4.1 中心计算机配置指标: (7) 4.2、通讯系统 (8) 4.3 、交通信号机的技术指标: (9) 4.4、环行线圈车辆检测器的技术指标: (9) 5、组成设备介绍 (10) 5.1、UTC1000集中协调式交通信号控制机 (10) 5.2、环形线圈车辆检测器: (12) 5.3、GIS地理信息系统(可选): (14) 5.4、通讯计算机系统 (14) 5.5、中心软件 (15) 5.5.3、操作台软件基本功能说明: (18) 附件1、信号机基础件: (44) 附件2、信号机外型图: (45) 附件3、信号机实际效果图: (1)

城市交通集中协调式控制系统(UTCS, Urban Traffic Control System)是现代城市智能交通系统(ITS )的重要组成之一,主要用于城市道路交通的控制与智能化管理。 交通信号控制系统主要功能是自动协调和控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染等减至最小,充分发挥道路系统的交通效益。必要时,可通过指挥中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 通过安装在道路上的车辆检测器,智能信号控制系统可以优化交通信号灯网络的交通方案,使其适应交通流变化条件,从而使在控路网中运行的车辆的延误和停车次数达到最小,交通信号控制系统全面实施以后,在控制区域内应达到:行车延误减少15%以上、行车速度提高10%以上,停车次数减少15%以上。 1、系统设计依据 依据国家和行业相关标准、相关研究成果等资料进行本设计,具体如下: 《全面推进公安交通管理信息系统建设和应用工作的意见》 《道路交通信号机标准》(GA47-2002) 《道路交通信号控制系统术语》(GA/T509---2004) 《公安交通指挥系统工程设计规范》(GA/T515---2004) 《城市道路交通信号控制方式适用规范》(GA/T527-2005) 《交通信号控制机与上位机间的数据通信协》 (GB20999-2007-T)《倒记时显示器》(GAT508-2004) 《计算机信息系统安全保护等级划分准则》(GB17859) 《民用闭路监视电视系统工程技术规范》(GB50198)

交通信号灯的自动控制

交通信号灯的自动控制 1. 设要求以及主要内容 (1) 2.总体设计 (1) 2.1.555秒脉冲模块设计 (1) 2.2.控制单元设计 (2) 2.2.1 4秒定时电路 (2) 2.2.2 6秒定时电路 (3) 2.2.3 25秒定时电路 (4) 2.2.4 JK时序电路 (4) 2.2.5时序信号 (6) 3.设计心得 (6) 4.参考文献 (7) 5.附录 (8)

交通灯的自动控制 1. 设要求以及主要内容 1.通常情况下,大道绿灯亮,小道红灯亮; 2.若小道来车,大道经6秒由绿灯变为黄灯;再经过4秒,大道由黄灯变为红灯,同时,小道由红灯变为绿灯; 3. 小道变绿灯后,若大道来车不到3辆,则经过25秒钟后自动由红灯变为黄灯,再经过4秒变为红灯,同时,大道由红灯变为绿灯; 4.如果小道在绿灯亮时,小道绿灯亮的时间还没有到25秒,只要大道检测到已经超过3辆车在等候,那么小道应立即由绿灯变为黄灯,再经过4秒变为红灯,同时,大道由红灯变为绿灯。 2.总体设计 首先由一个555发生产生一个秒脉冲,提供给FPGA一个时钟信号,然后经过控制单元处理以后输出给信号灯。总体原理框图如图1 图1 原理框图 2.1.555秒脉冲模块设计 产生秒信号的电路有多种形式,如图2 是利用555 定时器组成的秒信号发生器。当接通电源以后,因为电容上的初始电压为零,无哦一输出为高电平,并开始经电阻R向电容C充电。当充到输入电压为V1=Vt+时,输入跳变为低电平,电容C又经过电阻R开始放电。当放电至V1=Vt-时,输出电位又跳变成高电平,电容C重新开始充电如此周而复始,电路便不停地振荡。V1和Vo的电压波形如图3所示。因为该电路输出脉冲的周期为T≈0.7(R1+2R2)C。若T=1S,令C=10,R1=39K,则。取固定电阻与的电位器相串联代替电阻R2。在调试电路时,调试电位器R P,使输出脉冲为1s。

城市道路智能交通信号控制系统

城市道路智能交通信号控制系统 智能交通信号控制系统是城市道路交通管理系统中对交叉路口、行人过街,以及环路出入口采用信号控制的子系统,是运用了交通工程学、心理学、应用数学、自动控制与信息网络技术以及系统工程学等多门学科理论的应用系统。 主要包括交通工程设计、车辆信息采集、数据传输与处理、控制模型算法与仿真分析、优化控制信号调整交通流等。国内外各大中城市已有的交通信号控制系统就是根据不同环境条件,基于各自城市道路的规划和发展水平建立起来的。 国家重点基础研究规划(973)项目“信息技术与高性能软件”中设立的二级课题“城市交通监控系统”,结合我国城市交通发展的特点,确定了建立实时自适应的城市道路智能交通信号控制系统的智能化管理的发展方向。 智能交通信号控制系统的基本组成 智能交通信号控制系统的基本组成是主控中心、路口交通信号控制机以及数据传输设备。其中主控中心包括操作平台、交互式数据仓、效益指标优化模型、数据(图象)分析处理等。具体结构框架见下图。

城市道路智能交通信号控制系统框架 智能交通信号控制系统的核心 智能交通信号控制系统的核心是控制模型算法软件,是贯穿规划设计在内的信号控制策略的管理平台,体现着交通管理者的控制思想,它包括信号控制系统将起到的作用和地位。 目前,国内外已应用的信号控制系统大多是以优化定周期方案、优化路口绿信号配比以及协调相关路口通行能力为基础的,是根据历史数据和自动检测到的车流量信息,通过设置的控制模型算法选取适当的信号配比控制方案,是被动的控制策略。 应用较多的核心软件即效益指标优化模型的是英国运输和道路研究所(TRRL)

研制的SCOOT系统(Split Cycle Offset Optimization Technique)和澳大利亚悉尼为应用背景开发的SCATS系统 (Sydney Coordinated Adaptive Traffic System),他们是动态的实时自适应控制系统的早期代表,也是未来一个时期交通信号控制系统智能化发展的开发基础。 随着网络技术的发展,交互式控制策略使信号控制由感控到诱导实现了真正的智能,交通信号控制系统不仅可以检测到车流量等交通信息参数,调控路口绿信号配比,变化交通限行、禁行等指路标志,还可以根据系统联接的数据仓完成与交通参与者之间的信息交换,向交通参与者显示道路交通信息、停车场信息,提供给交通参与者合理的行驶线路,以达到均衡道路交通负荷的主动的控制策略。 尤其重要的是计算机网络技术和数字化使数据传输和信息利用得到了可靠保证。可以说,城市道路智能交通信号控制系统是城市道路交通管理随着信息产业技术迅猛发展的综合产物。 交通信号控制系统的主要术语和参数 周期:是指信号灯色发生变化,显示一个循环所需的时间,也称周期长,即红、黄、绿灯时间之和。 相位:即信号相位,是指在周期时间内按需求人为设定的,同时取得通行权的一个或几个交通流的序列组。 相位差:具有相同周期长的相关路口,在同方向上的两个相关相位的启动时间差,称为相位差。 绿信比:是指在周期长内的各相位绿灯时间与周期长之比。 饱和流量:是衡量路口交通流施放能力的重要参数,通常是指一个绿灯时间内的连续通过路口的最大车流量。 流量系数:是实际流量与饱和流量的比值。既是计算信号配时的重要参数,又是衡量路口阻塞程度的一个尺度。 绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。 有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯

相关文档
最新文档