一元二次方程的起源和应用

一元二次方程的起源和应用
一元二次方程的起源和应用

一元二次方程的起源与应用

一年七班 唐梦雷

一、定义:(quadratic equation of one variable )是指含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

二、 起源

在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。

埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。

希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。

在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a 、b 、c 为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。

韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。

我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。

我国数学家还在方程的研究中应用了内插法。

三、一元二次方程的广泛应用

例1:下列关于x 的方程,哪些是一元二次方程?

(1)35

22=+x ;(2)062=-x x ;(3)5=+x x ;(4)02=-x ; (5)12)3(22+=-x x x ;(6)2273x x = ;(7)312=+

x

x ;(8)522=+y x 注意点:

①二次项系数不为“0”; ②未知数指数为“2”; ③是整式方程;④只含有一个未知数.

例1:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2:方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

例3:若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

例4:若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )

A.m=n=2

B.m=2,n=1

C.n=2,m=1

D.m=n=1

(一)、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

例1:方程782=x 的一次项系数是 ,常数项是 。

例2:(2012?洪山区模拟)若将一元二次方程x x 4232-=--化成一般形式)0(02 a c bx ax =++后,一次项和常数项分别是 ;

例3:一元二次方程()()0112

=++++c x b x a 化为一般式后为01232=-+x x ,试求222c b a -+的值的算术平方根?

(二)、方程的解:使方程两边相等的未知数的值,就是方程的解。(简而言之:将该方程的解,代入原方程可以得到一个等式)

例1:(2013?牡丹江)若关于x 的一元二次方程为052=++bx ax (a ≠0)的解是1=x ,则b a --2013的值是 。

例2:(2012?鄂尔多斯)若a 是方程0322=--x x 的一个解,则a a 362-的值为( )

A .3

B .-3

C .9

D .-9

例3:关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值

为 。

例4:已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

(三)解一元二次方程的解法:①直接开方法;②因式分解法;③配方法;④公式法

①直接开方法:()m x m m x ±=?≥=,02

对于()m a x =+2,()()2

2n bx m ax +=+等形式均适用直接开方法 例1、解方程:();08212=-x ()216252x -=0; ()();09132

=--x 例2、若()()2

221619+=-x x ,则x 的值为 。 下列方程无解的是( )

A.12322-=+x x

B.()022

=-x C.x x -=+132 D.092=+x ②配方法:()002≠=++a c bx ax 222442a ac b a b x -=??

? ??+? 在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

例1:试用配方法说明322+-x x 的值恒大于0。

例2:已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3:已知,x、y y x y x 0136422=+-++为实数,求y x 的值。

例4:若912322-+--=x x t ,则t 的最大值为 ,最小值为 。 ③公式法:

条件:()

04,02≥-≠ac b a 且 a ac b b x 242-±-=,()

04,02≥-≠ac b a 且

例1:(1)01322=--x x ; (2)()

0122=++x x ; (3)0252=++x x ④因式分解法:()()021=--x x x x 21,x x x x ==?或

十字相乘法:左边可以分解为两个一次因式的积,右边为“0”,

如()()2

2n bx m ax +=+,()()()()c x a x b x a x ++=++ , 例1:()()3532-=-x x x 的根为( )

A 25=x

B 3=x

C 3,2

521==x x D 52=x 例2:方程062=-+x x 的解为( )

A.2321=-=,x x

B.2321-==,x x

C.3321-==,x x

D.2221-==,x x 例3:解方程: ()04321322=++++x x

例4:已知023222=--y xy x ,且0,0>>y x ,则

y

x y x -+的值为 例5:选择适当方法解下列方程:

⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x

⑷01432=--x x ⑸()()()()5211313+-=+-x x x x

四、专项训练:

(一)整体思想:

整体思想方法是指用“全局”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.利用整体思想往往能够避免局部思考带来的困惑.

例1:若()()044342

=-+++y x y x ,则4x+y= 。 例2:()()

=+=-+-+2222222,06b a b a b a 则 。 例3:若()()032=+--+y x y x ,则x+y=

例4:若142=++y xy x ,282=++x xy y ,则x+y= 。

例5:已知322-+y y 的值为2,则1242++y y =

例6:(苏州市)若2

20x x --=,求1)(222---x x x x 的值? (二)降次的思想:

通过变形,把高次项逐步转化为一次式或常数,从而达到降次的目的

例1:解方程02323=+-x x x

例2:如果012=-+x x ,那么代数式7223-+x x 的值。

例3:已知a 是一元二次方程0132

=+-x x 的一根,求1152223++--a a a a 的值。 例4:解方程组

???=+-=-)2(.065)1(,6222y xy x y x

(三)当一元二次方程的解为“1”或“-1”时

对于一元二次方程的一般形式02=++c bx ax (0≠a ),如果有一个根为1,则0=++c b a ;如果有一个根为-1,则0=+-c b a ;反之也成立;

巧求方程的解:①085132=--x x ②02113342=-+x x

例1:已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程

必有一根为 。

例2:方程()()02=-+-+-a c x c b x b a 的一个根为( )

A 1-

B 1

C c b -

D a -

(四)判别式“?”的应用

判别式:根据一元二次方程的系数,判断该方程是否有实数根

例1:(2013?珠海)一元二次方程:①0322=++x x ,②0322=--x x .下列说法正确的是( )

A .①②都有实数解

B .①无实数解,②有实数解

C .①有实数解,②无实数解

D .①②都无实数解

例2:若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

例3:(2013?潍坊)已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( )

A .当k =0时,方程无解

B .当k =1时,方程有一个实数解

C .当k =-1时,方程有两个相等的实数解

D .当k ≠0时,方程总有两个不相等的实数解.

例4:(2013?六盘水)已知关于x 的一元二次方程()01212=+--x x k 有两个不相等的实数根,则k 的取值范围是 。

例5:关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )

A.10≠≥m m 且

B.0≥m

C.1≠m

D.1>m

例6:已知关于x 的方程()0222=++-k x k x

(1)求证:无论k 取何值时,方程总有实数根;

(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

例7:m 为何值时,方程组???=+=+.

3,6222y mx y x 有两个不同的实数解?有两个相同的实

数解

(五)韦达定理:

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

对于02=++c bx ax 而言,当满足①0≠a 、②0≥?时,

才能用韦达定理。

a

c x x a b x x =-=+2121, 注意:切记盲目用韦达定理,而忽视了0≥?

例1:(2013?雅安)已知21,x x 是一元二次方程022=-x x 的两根,则21x x +的值是( )

A .0

B .2

C .-2

D .4

例2:(2013?天门)已知α,β是一元二次方程0252=--x x 的两根,那么α2+αβ+β2的值为( )

A .-1

B .9

C .23

D .27

例3:已知一个直角三角形的两直角边长恰是方程07822=+-x x 的两根,那么这个直角三角形的斜边长是( ) A.3 B.3 C.6 D.6

例4:(2013?泸州)已知21,x x 是一元二次方程0332=-+x x 的两个实数根,则2

112x x x x +的值为( ) A .5 B .-5 C .1 D .-1

例5:已知b a ≠,0122=--a a ,0122=--b b ,求=+b a

例6:若0122=--a a ,0122=--b b ,则a

b b a +的值为 。 例7:已知βα,是方程012=--x x 的两个根,那么=+βα34 .

(六)应用题

类型一:单循环赛制(注意区别双循环赛)

例1:(2013?东营)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数有多少?

例2:(2011?黄石)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定45条直线.则n 的值为 例3:(襄樊市改编)如图,锐角AOB 的内部,画1条射线,可得3个锐角;画2条不同的射线,可得6个锐角;画3条不同的射线,可得10个锐角;…;照此规律,画多少条射线可以得到66个角?

类型二:几何中的一元二次方程

例1:(2009?庆阳)如图,在宽为20米,长为30米的矩形地面上修建两条同样

宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为

例2:(2011?台湾)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为

4

21平方公分,则此方格纸的面积为多少平方公分?( )

A .11

B .12

C .13

D .14

例3:(2013?衢州)如图在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.

(1)用a,b,x表示纸片剩余部分的面积;

(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,

求正方形的边长.

类型三:薄利多销的商家

例1:(2013?泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?

例2:(2012?山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

类型四:增长率的问题

例1:(2012?钦州)近年来,某县为发展教育事业,加大了对教育经费的投入,

2009年投入6000万元,2011年投入8640万元.

(1)求2009年至2011年该县投入教育经费的年平均增长率;

(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.

例2:(2013?襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.

(1)求每轮传染中平均一个人传染了几个人?

(2)如果不及时控制,第三轮将又有多少人被传染?

例3:(2013?巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率?

巩固练习(二)

1.(2012?洪山区模拟)若将一元二次方程x x 4232-=--化成一般形式)0(02 a c bx ax =++后,一次项和常数项分别是 ;

2.一元二次方程()()0112

=++++c x b x a 化为一般式后为01232=-+x x ,试求222c b a -+的值的算术平方根?

3.(2013?牡丹江)若关于x 的一元二次方程为052=++bx ax (a ≠0)的解是1=x ,则b a --2013的值是 。

4.(2012?鄂尔多斯)若a 是方程0322=--x x 的一个解,则a a 362-的值为( )

A .3

B .-3

C .9

D .-9 5.(苏州市)若220x x --=,求1

)(222---x x x x 的值?

6.已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x ,

(1)求k 的取值范围;

(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不存在,请说明理由。

7.已知472-=-a a ,472-=-b b )(b a ≠,求

b

a a

b +的值?

8.(2012?潍坊)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为多少?

9.(2012?南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有多少支?

10.(2010?本溪)为执行“两免一补”政策,丹东地区2007年投入教育经费2 500万元,预计2009年投入3 600万元,则这两年投入教育经费的平均增长率为多少?

11.(2013?玉林)已知关于x 的方程02=++n x x 有两个实数根-2,m .求n m ,的值?

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程的实际应用题

一元二次方程的实际应用题 (一)传播问题 1.市政府为了解决市民看病难的问题,决定下调药品的价格。某种药品经过连续两次降价后,由每盒200元下调至 128元,则这种药品平均每次降价的百分率为 2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。 3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每 个支干长出小分支。 4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。 5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。 6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少 名同学? 7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人? 8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分 析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? (二)平均增长率问题 变化前数量×(1 x)n=变化后数量 1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长 率为。 2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。 3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500 元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子) 。 4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3 月份价格的平均增长率。 5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率? 6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平 均每年增长的百分数。

一元二次方程及其应用练习题

一元二次方程及其应用 一、选择题 1(2015?酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是() A.2500x2=3500 B.2500(1+x)2=3500 C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500 2.(2015?安徽)我省2013年的快递业务量为亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.(1+x)= B.(1+2x)= C.(1+x)2= D.(1+x)+(1+x)2= 3.(2015?日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资亿元人民币,那么每年投资的增长率为()A.20% B.40% C.-220% D.30% ( 1. (2016·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为万人次,设观赏人数年均增长率为x,则下列方程中正确的是() A.20(1+2x)= B.(1+x)2=20 C.20(1+x)2= D.20+20(1+x)+20(1+x)2= 2. (2016·江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是() A.2B.1C.﹣2D.﹣1 3. (2016·辽宁丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为. 4.(2016·四川攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4 5.(2016·广西桂林)若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是() A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5 ] 6.(2016·贵州安顺)已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是() A.b=﹣3B.b=﹣2C.b=﹣1D.b=2 8. (2016·云南省昆明市)一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 9.(2016河北3分)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

实际问题与一元二次方程的应用

《实际问题与一元二次方程的应用》说课稿尊敬的各校评委、各位老师: 大家好!我是永靖县第六中学的数学教师张红红,今天我说课的内容是人教版九年级数学第二十三章实际问题与一元二次方程应用的第二课时,下面我谈一下,我对这部分教材的理解、以及自己课后的一点体会。 一、教材分析 1、教材的地位与作用 一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位,其中一元二次方程的应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是函数学习的基础,它是研究现实世界数量关系和变化规律的重要的数学模型。本节课以一元二次方程解决的实际问题为载体,通过对它的学习和研究,体现数学建模的过程,帮助学生形成应用意识,其应用的广泛性让学生激发出学习数学的兴趣,能让学生体会到学数学、做数学、用数学的快乐。由于列出一元二次方程解应用题及应用相当广泛,在几何,物理及其它学科中都有大量的问题存在;因此,它是学习的重点。本节课侧重于几何方面的应用,现代心理学的研究表明,学生解应用题最常见的困难是,不会将实际问题提炼成数学问题,鉴于学生比较缺乏社会生活经历,搜集信息,处理信息的能力较弱,由此,这些是本节课的难点。而用一元二次方程解应用题的数量关系也比用一元一次方程解应用题的数量也要复杂一些,根据教学大纲的要求,以及本节教材的内容和九年级学生的认知特点,我这样设定了教学目标。 2、说教学目标 知识方面:以一元二次方程解决的实际问题为载体,让学生初步掌握数学建模的基本方法。 能力方面:通过对一元二次方程的应用问题的学习和研究,让学生体验数学建模的过程,从而学会发现、提出日常生活、生产或其它学科中可以用一元二次方程来解决的实际问题,并能用正确的语言表述问题、及其解决过程。

(完整版)一元二次方程知识点及其应用

一、相关知识点 1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数 (1)明确只有当二次项系数0≠a 时,整式方程02 =++c bx ax 才是一元二次方程。 (2)各项的确定(包括各项的系数及各项的未知数). (3)熟练整理方程的过程 3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 二.解法 1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解; 2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题: (1)开平方法:对于形如n x =2 或)0()(2 ≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未 知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2 的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0-ac b 时,方程有两个实数根,且这两个实数根不相等; 当042 =-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x 221- ==;

一元二次方程根的分布教学设计

一元二次方程根的分布教学设计 大庆一中高中部孙庆夺 一、教学分析 (一)教学内容分析 本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。这段内容与一元二次不等式,二次函数等内容有着紧密的联系。它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。从而提升学生对数学知识的应用能力。通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。 (二)教学对象分析 高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。学生学习了函数与方程,二次方程,二次函数的知识, 已经具有用数学知识解决实际问题的能力。学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。 (三)教学环境分析 由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。多媒体网络教学,是现代高中数学教学全新的教育技术,

使传统的教学方式得到补充。在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。 (四)教学手段 采用多媒体网络教学。《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。 (五)教学方式 自主式探究,学案式导学。自主探究,学案导学的教学方式,能够激发学生的学习兴趣、突出学生的主题地位,培养学生的数学应用意识、合作精神,这与《新课标》的要求是吻合的。 二、教学目标 1.知识与能力 加深对一元二次方程,二次函数图象与性质的认识;会利用函数知识,方法重新审视一元二次方程. 2.过程与方法 体验“观察-猜想-验证”探究问题的方法,领会由简单到复杂,由特殊到一般的化归思想,加深对函数与方程,数形结合思想的理解。

一元二次方程的实际应用只是分享

一元二次方程的实际 应用

一元二次方程的实际应用 1、阅读下面解题过程,解方程x2-1x1-2=0 解分以下两种情况:(1)当x≥0时,原方程可化为x 2、阅读下面解题过程,解方程x2-1x1-2=0 3、解分以下两种情况: 4、(1)当x≥0时,原方程可化为x2-x=0,解得x1=2 x2=-1(不和题意,舍去) 5、(2)当x<0时,原方程可化为x2+x-2=0,解得x1=-2 x2=1 (不合题意,舍去)∴原方程的根是x1=2 x2=-2 6、请照此方法解方程 x2-| x-1 |-1=0 7、已知关于x的方程x2-(k+2)x+2k=0. 8、(1)求证:无论k取任意实数值,方程总有实数根. 9、(2)若等腰三角形ABC的一边a=1,另两边长b、c恰是这个方程的两个根,求△A BC的周长. 10、已知函数y=2/x和y=kx+1(k不等于0). (1)若这两个函数的图像都经过(1,a),求a和k的值 (2)(2)当K取何值时,这两个函数的图像总有公共点 4、已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°; (2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与 证明;若不存在,请说明理由; (3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由. 5、已知关于x的方程x2-(m+2)x+(2m-1)=0 (1)求证:方程有两个不相等的实数根 (2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长. 如图,要设计一幅宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3:2,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(结果保留

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身文档设计者: 设计时间 : 文档类型: 文库精品文档,欢迎下载使用。Word 精品文档,可以编辑修改,放心下载 1.如果2是一元二次方程x 2 +bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.2 16(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型: 考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断, 注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接

1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2 ≥=a a x 或)0()(2 ≥=-a a b x 的一元二次方程,就可用 直接开平方的方法. (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2 ()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. (3)公式法:一元二次方程2 0(0)ax bx c a ++=≠的求根公式是 221,2 4(40)2b b ac x b ac a -±-=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程 的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. ◆典例精析 例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1 B .1- C .2 D .2- 【答案】A 【解析】本题考查了一元二次方程的根。因为x=3是原方程的根,所以将x=3代入原方程, 原方程成立,即06332 =--k 成立,解得k=1。故选A 。 例2(湖北仙桃)解方程:2 420x x ++= 【分析】根据方程的特点, 灵活选用方法解方程.观察本题特点,可用配方法求解. 【答案】2 42x x +=-

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程的起源和应用

一元二次方程的起源与应用一年七班唐梦雷一、定义:(quadratic equation of one variable)是指含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。二、起源在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数

学家们为了解三次方程而开始应用复数根。韦达(1540-1603)除已知一元方程在复数范围内恒有解 外,还给出根与系数的关系。我国《九章算术.勾 股》章中的第二十题是通过求相当于的正根而解决的。 我国数学家还在方程的研究中应用了内插法。三、 一元二次方程的广泛应用x例1:下列关于的方程, 哪些是一元二次方程?;(1)(2); (3);(4);22222(5); (6);(7)(8); x注意点:① 二次项系数不为“0”;②未知数指数为“2”;③是整 式方程;④只含有一个未知数.22例1:当k 时,关于x的方程是一元二次方程。 m例2:方程是关于x的一元二次方程,则m的 值为。2例3:若方程是关 于x的一元二次方程,则m的取值范围 是。mn2例4:若方程nx+x-2x=0是一元二次方程, 则下列不可能的是() A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 2(一)、一元二次方程的一般 形式:,它的特征是:等式左2边是一 个关于未知数的二次多项式,等式右边是零,其中 叫做二次项,叫ax xa做二次项系数;叫做一次项,叫

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程的实际应用教案(供参考)

教学过程 一、复习预习 我们已经学习了一元二次方程的定义和四种解法,下面我们一块来复习一下: 1. 用直接开平方法解方程2 (3)8x -=,得方程的根为( )

A. 3x =+ B. 1233x x =+=- C. 3x =- D. 1233x x =+=- 2. 方程2(1)0x x -=的根是( ) A .0 B .1 C .0,-1 D .0,1 3. 设(1)(2)0x x --=的两根为12x x 、,且1x >2x ,则122x x -= 。 4. 已知关于x 的方程22440x kx k ++=的一个根是-2,那么k = 。 5.243 x x ++ =2(________)x + 今天我们将继续学习列方程解应用题。大家先来看这样一道题:某商场销售一批名牌衬衫,平均每天可以售出 20件,每件盈利40元,为了扩大销售,增加利润,尽量减少 库存,商场决定采取适当的降价措施,经调查发现,如果每 件衬衫降价1元,商场平均每天多售出2件,若商场平均 每天要盈利1200元,每件衬衫应降价多少元? 在一次数学检测中,赵亮对下道应用题的解答过程如下: 解:设每件衬衫应降价x 元,则每件所获得的利润为 (40-x)元,但每天可多销出2x 件,每天可卖(20+2x)件,根据题意可列方程: (40-x)(20+2x)=1200 x 2-30x+200=0 解得:x 2=20 x 2=10 答:若商场每天要盈利1200元,每件应降价10元或20元. 当试卷发下时,赵亮发现本题被扣去1分,他百思不得其解,为什么要扣去1分呢?你能帮赵亮同学找找原因吗? 当降价20元或10元时,每天都能盈利1200元, 因要尽量减少库存,在获利相同条件下,降价愈多,销售越快,才能满足题目中的要尽量减少库存的要求,故应选择每件降价20元.因而列方程解应用题时应认真审题, 不能漏掉任何一个条件,所以我们今天就来具体学习一下列方程解应用题。 二、知识讲解 1.列一元二次方程解应用题的一般步骤是: “审、设、列、解、答”.

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身 1.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.216(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型:

考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后 再进行判断,注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程, 就可用直接开平方的方法. (2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是: ①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方

一元二次方程根与系数关系附答案

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根 D.无法确定 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为() A.﹣1 B.0 C.1 D.3 评卷人得分

二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为. 评卷人得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.

相关文档
最新文档