毕业设计---基于小波变换的图像处理方法研究

毕业设计---基于小波变换的图像处理方法研究
毕业设计---基于小波变换的图像处理方法研究

基于小波变换的图像处理方法研究

摘要

图像增强是图像处理的一个重要分支,它对提高图像的质量起着重要的作用。它通过有选择地强调图像中某些信息而抑制另一些信息,以改善图像的视觉效果,将图像转换成一种更适合于人眼观察和计算机进行分析处理的形式。传统的方法在增强图像对比度的同时也会增强图像噪声,而小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。

本文首先对传统图像增强理论进行概述,并给出直方图均衡化与灰度变换算法,通过matlab来观察其处理效果的特点,然后提出四种基于小波变换的图像增强方法,并分析它们与传统图像增强方法相比的优缺点,最后基于传统小波变换只能增强图像边缘部分而无法增强细节部分的缺点,引出了基于分数阶微分和小波分解的图像增强方法,并通过matlab观察了这种算法的处理效果。

关键词:图像增强;直方图均衡化;小波变换;分数阶微分

Image enhancement based on wavelet transformation

Abstract

Image enhancement is an important branch in image processing.It plays an important role in improving the quality of the images.It will improve the image visual effect through emphasizing the image information and inhibitting some other information selectively.It will converse images into a form more suitable for the human eye observation and computer analysis processing.The traditional method of image enhancement will enhance image contrast,image noise as well,while wavelet transform is a decompositon method of multi-scale and multi-resolution,it can separet noise from signal in different scale so that it can arrive the purpose of image enhancement according to the distribution of the noise.

In the paper,firstly, I will summarize the image enhancement theory and give the Histogram equalization algorithm,at the same time,I will analyze the disadvantages of the treatment effect through the Matlab.Then,I will give an image enhancement method based on the wavelet transform and analyze its advantages and disadvantages compared with traditional methods.Finally,because traditional wavelet transformation can only strengthen the edge of images instead of the details,we will introduce the image enhancement based on wavelet decomposition and fractional differentials.At the same time,we will observe the treatment effect of this algorithm by the matlab..

Keywords: Image enhancement; Histogram equalization; Wavelet transform; Fractional differenti

目录

第一章绪论 (1)

1.1 论文研究的背景和意义 (1)

1.2 国内的研究状况 (1)

1.3 论文的主要内容 (2)

第二章图像增强的传统方法 (3)

2.1 灰度变换法 (3)

2.1.1 图像反转 (3)

2.1.2 对数变换 (3)

2.1.3 分段线性变换 (4)

2.2 直方图调整法 (5)

第三章小波变换的理论基础 (8)

3.1 小波变换与傅里叶变换 (8)

3.1.1 小波变换的理论基础 (8)

3.1.2 小波变换和傅里叶变换的比较 (8)

3.2 小波变换基本理论 (9)

3.2.1 一维连续小波变换(CWT) (9)

3.2.2 一维离散小波变换(DWT) (10)

3.2.4 二维离散小波变换 (11)

3.3 小波变换的多尺度分析 (11)

第四章基于小波变换的图像增强 (13)

4.1 小波变换图像增强原理 (13)

4.2 小波变换图像增强算法 (14)

4.2.1 非线性增强 (14)

4.2.2 图像钝化 (14)

4.2.3图像锐化 (15)

4.2.4 基于小波变换的图像阈值去噪 (16)

4.3 改进的基于小波变换的图像增强算法 (17)

4.3.1 分数阶微分用于图像增强理论 (17)

4.2.2 分数阶微分滤波器的构造 (19)

4.2.3 基于分数阶微分和小波分解的图像增强 (20)

4.2.4 小波分解层次与分数阶微分阶次对图像处理结果的影响 (23)

第五章结论 (26)

致谢 (27)

参考文献 (28)

第一章绪论

1.1 论文研究的背景和意义

在我们所处的信息社会,人们对于信息获取和交流的要求越来越高,从而促进了信息处理和应用技术的飞速发展。图像,作为直观的信息表达和反映形式,越来越广泛地被应用于社会生活的各个方面。而图像处理技术,也随着人们要求的不断提高,应用领域的不断扩大而快速发展更新。

人们要求高质量的图像,不仅仅是为了满足视觉需要,更因为在信号分析、通信技术和计算机科学的各个方面,都需要对各种图像进行分析处理从而得出结论和相关数据。但事实上,由于客观环境和条件的限制,图像往往会受到各种噪声的污染,给后期的识别和利用造成困难,所以图像的增强和降噪,很自然就成为了现代图像处理技术中的重要组成部分。

小波分析是近些年来国际上掀起热潮的一个国际前沿领域,它在时(空)域和频域上同时具有的良好局部化性质以及多分辨率分析的特性,使之被广泛的应用于信号和图像处理中。由于噪声和边缘点在不同小波系数上所体现的不同特性,小波变换为我们希望兼顾增强图像特性和减小噪声放大提供了可能途径,所以,人们希望将这一数学工具运用于图像处理,取得比较好的图像增强和去噪效果。[1]

1.2 国内的研究状况

国内的图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。这一时期由于图像存储成本高,处理设备造价高,因而其应用面窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式。20世纪80年代进入了普及期,此时的计算机已经能够承担起图形图像的处理任务。20世纪90年代进入应用期,人们运用图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。图像增强是图像处理的重要组成部分,传统的图像增强对于改善

图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。其中基于小波变换的图像增强方法得到了广泛的应用,近年来,基于分数阶微分的图像增强在图像处理领域也拥有了广阔的应用前景。

1.3 论文的主要内容

本论文以小波分析理论为基础,主要研究了基于小波变换的图像增强和分数阶微分增强。论文主要通过分析传统图像增强(主要为直方图均衡化)的缺点来突出基于小波变换的图像增强的优点。同时给出各种增强方法的算法。

全文共分为五章,具体安排如下:

第一章绪论。介绍论文研究的背景意义、国内外的发展状况、研究的主要内容及结构安排。

第二章图像增强的传统方法。主要介绍了灰度变换和直方图均衡化的基本原理。

第三章小波变换的理论基础。

第四章基于小波变换的图像增强。主要研究了传统的小波变换图像增强和加入分数阶微分的小波变换图像增强,并对比分析了各种方法的优缺点。

第五章总结。总结本文的研究内容。

第二章 图像增强的传统方法

2.1 灰度变换法

灰度即使用黑色调表示物体。每个灰度对象都具有从0%(白色)到100%(黑色)的亮度值。灰度变换处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化和图像显示的一个重要组成部分。灰度变换主要是针对独立的像素点进行处理,通过改变原始图像数据所占有的灰度范围而使图像在视觉上得以改观。灰度变换图像反转、对数变换和分段线性变换等。 2.1.1 图像反转

图像反转简单来说就是使黑变白,使白变黑,将原始图像的灰度值进行反转,使输出图像的灰度随输入图像的增加而减少。假设对灰度级范围是()1,0-L 的图像求反,就是通过变换将()1,0-L 变换到()0,1-L ,变换公式为:t=L-1-s (2.1) 变换图像如图

2.1

原图

反转后的图像

(a)

(b)

图2.1 原始图像和经反转增强后的图像

由图2.1可以看到,反转后的图像有黑变白由白变黑了。 2.1.2 对数变换

对数变换的一般表达式为:

)1log(r c S += (2.2)

其中c 是一个常数,并假设0≥r ,此变换使一窄带低灰度输入图像值映射为一宽带输入值。可以利用这种变换来扩展被压缩的高值图像中的暗像素。相对

的是反对数变换的调整值。转换图如图2.2:

经对数变换增强后的图像

(a)

(b)

图2.2 经对数变换增强后的图像

由图2.2可知,经对数变换后图像明显变亮了。 2.1.3 分段线性变换

分段线性变换函数是前两种灰度变换的补充,它的优势在于形式可任意合成。它的目的在于感兴趣区间增强,不感兴趣区间抑制,分段线性函数的主要缺点是需要更多的用户输入。其公式为[3]

:

????

??

???+---+---=d b y x f b m d m c

a y x f a

b c

d y x f a c y x g f g ]),([]),([)

,(),(

f

m y x f b b y x f a a

y x f ≤≤≤≤≤≤),(),(),(0 (2.3)

f m 表示),(y x f 的最大值,(2.3)式表示原图像),(y x f 的灰度取值范围由

[]b a ,扩展到了[]d c ,,其中实现了[]b a ,的行拉伸,对[]a ,0和[]f m b ,的抑制。通过

对(2.3)式中不同参数的调整,改变线段的斜率,可以实现对任意灰度区间进行拉伸或抑制,从而凸显出图像中感兴趣的区域。其增强图(2.3)所示:

0100200

100

200

(c)分段函数

(a)原

图(b)增强后的图像

图2.3 经分段线性变换增强后的图像

2.2 直方图调整法

直方图调整法最常用的是直方图均衡化。

直方图均衡是图像对比度增强中一种有效的算法,主要通过增加图像灰度值的动态范围增加对比度,以致图像具有较大的反差,大部分细节比较清晰。直方图均衡法建立在概率论的基础上,设图像的灰度级是一个连续的随机变量,将灰度级进行归一化,可以证明:当灰度级[])1,0(∈r r 的分布为均匀分布时,图像的信息熵最大。在数字图像中,灰度级是离散值,在进行直方图均衡处理时,往往是用灰度频数近似代替概率值,因此得到的结果只是一个近似均匀的直方图分布。

为了研究方便,往往先将直方图归一化,即将原图像灰度范围归一化到[]1,0之间,假设r 和s 分别代表原图和均衡化后图像的灰度级,做以下灰度级变换

)(r T s =。

为使这种灰度变换具有实际意义,规定T 满足如下条件: (1) 在10≤≤r 区间内,)(r T 为单调增加;

(2) 对10≤≤r ,对应有1)(0≤≤r T 。

条件(1)使变换后的灰度值保持从黑到白的次序,且保持若)(r T 已知则其逆变换)(1s T -存在;条件(2)保证变换后的像素灰度级仍在归一化的范围内。

通常把r 和s 分别看成两个随机变量,设)(r p r 和)(s p s 分别是r 和s 的概率密度函数。由概率论的基本理论可知:若)(r p r 和)(r T 的逆)(1s T -已知,则有:

ds

dr

r p s p r s )

()(= (2.4) 也就是说,均衡化(变换)后的图像s 的概率密度函数)(s p s 是由原图的概率密度函数)(r p r 和所选择的变换函数)(r T s =所决定的。换一句话说,直方图均衡图像增强技术的实质,就是选用合适的变换函数)(r T 来修正图像灰度级r 的概率密度函数)(r p r ,从而得到灰度级具有)(s p s 的新图像。

)(r T 往往根据需要来选择,为了能从图像中获得尽量多的信息量,常常要求

)(r p r 为一常数,即所谓直方图均衡化。图像中所有灰度出现频率相等的图像,所包含的信息量最大。为此,选取

ωωd p r T s r

r )()(0

?== (2.5)

即,选取变换函数为原图像概率密度函数的分布函数,则显然)(r T 满足条件(1)和条件(2),又

)())(()(0

r p d p dr d dr r dT dr ds r

r r ?===ωω (2.6) 所以, 1)

(1

)()

()(===r p r p ds dr r p s p r r r s (2.7) 故,这样选取的)(r T 满足均衡化要求,使得均衡化后的图像灰度级是均匀分布的。这意味着图像灰度的动态范围得到增强,从而提高了图像的对比度。

在实际应用中,往往处理的是离散化后的数字图像。设离散化后图像的灰度级为,,,,,1210-L r r r r 其中L 是最大灰度级。k r 的概率为

)1,,2,1,0()(-==

L k n

n r p k

k r (2.8) 其中,n 是数字图像的像素总数,k n 是灰度级为k r 的像素个数。离散化后的变换函数为: )()(0j k

j r k k r p r T s ∑=== 1,,2,1,0-=L k (2.9)

利用(2.9)式可以把灰度级为k r 的像素映射成相应的灰度级为k s 的像素,从而实现均衡化。在上式中,用灰度频数来近似代替概率值,因而得到的结果是一个近似均匀的直方图分布[4]

。图2.4是采用直方图方式进行增强的例子:

(a)原图

100

200

(c)原图的灰度直方图

(b)原图直方图均衡化

100200

0 (d)均衡后的灰度直方图

图2.4 直方图均衡化增强算法

由图2.4可知,原图的灰度范围大约是100到200之间,灰度范围比较狭窄,所以整体上看对比度比较差,而直方图均衡化后,灰度几乎是均匀的分布在0到255的范围内,图像明暗分明,对比度很大,图像比较清晰明亮,很好地改善了原始图像的视觉效果。这说明直方图均衡化能够使处理后图像的概率密度函数服从均匀分布,扩张了像素值的动态范围。但这种方法不能抑制噪声,增强了图像的同时也增强了噪声。

第三章 小波变换的理论基础

3.1 小波变换与傅里叶变换

3.1.1 小波变换的理论基础

小波变换是一种信号的时间-尺度分析方法,具有多分辨率分析的特点,而且在时间域和频率域都具有表征信号局部特征的能力,是一种时间窗和频率窗都可以改变的时频局部化分析方法。在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,正是这种特性使小波变换具有对信号的自适应性[5]

3.1.2 小波变换和傅里叶变换的比较

傅里叶变换广泛应用于信号处理,但它只能较好地应用于平稳信号,只能提供信号的全局信息,缺少信号的局部信息。Gabor 引入局部傅里叶变换,通过一个滑动窗,可以实现时频分析,这种方法具有局部化分析能力,但对于一个固定窗函数,它的分辨率也是固定的,只能应用于平稳信号的分析,对非平稳信号就无法分析。小波变换产生于传统傅里叶分析和短时傅里叶分析,能体现信号的局部信息,而且可以调整时间分辨率和频率分辨率的尺度,对非平稳信号的分析取得了较好的效果。

小波变换的理论基础来源于傅里叶分析,与傅里叶变换紧密联系在一起,傅里叶变换是小波基构造的主要理论依据,二者是相辅相成的,小波变换是对傅里叶变换的发展与提升。两者之间主要有如下差别:

(1) 傅里叶变换以}{t j e ω为正交基,然后把能量有限信号)(t f 分解到正交基对应的空间上去;小波变换以),,2,1(J j W j =-和j V -所构成的空间,再把能量有限信号)(t f 分解到),,2,1(J j W j =-和j V -构成的空间上。

(2) 傅里叶变换的公式是固定的;小波分析中的小波函数具有多样性,在实际应用中,用不同的小波函数处理同一问题时,其处理结果有时会大相径庭。因此怎么选择小波函数处理实际问题是小波变换在应用中的一个难题,现有的方法是通过反复实验,通过对实验结果的比较,选择效果好的小波函数。

(3) 傅里叶变换在频域中,尤其是作用到一些较平稳的信号,取得了较好局部化效果,傅里叶变换中的ωωd f )(^

表示频率为ω的谐波分量的振幅,)(t f 的全局特性决定了ωωd f )(^

(4) 小波分析中的尺度a 相当于傅里叶变换中的ω,a 值越大对应ω的值越小。

(5) STFT 的变换系数),(τωS 取决于区间[]δτδτ+-,的信号,δ是由函数

)(t g 唯一确定,时间宽度固定为δ2。小波变换的变换系数),(b a W i 取决于区间

[]ψψ?+?-a b a b ,的信号情况,其时间宽度为ψ?a 2,该时间宽度由尺度a 决定,

随a 变化而变化的,因此小波变换和傅里叶变换相比更具灵活性。

3.2 小波变换基本理论

3.2.1 一维连续小波变换(CWT )

在Fourier 变换?∞

∞--=dx e t f F jx )()(ω中,用小波基函数)(x ψ做平移和伸缩

变换,得到函数??? ??-a b x ψ,用??? ??-a b x ψ代替傅里叶变换的基函数jx

e 的伸缩函数

x j e ω,得到的新变换就称为连续小波变换,具体定义如下:

函数)()(2R L x ∈ψ称为小波函数(又叫基本小波或母小波),如果满足准许条件:

∞<=?

+∞

-ωω

ωψ?d C 2

^

)( (3.1)

其中()ωψ^

为()ωψ的Fourier 变换,则连续小波变换定义为:

dx a

b

x x f a

b a f W )(

)(1),)((*?

+∞

--=

ψ? (3.2) 式中:R b a ∈,且a a ,0≠为缩放因子(对应于频率信息);b 为平移参数(对应于时空信息);)(*x ψ表示)(x ψ的复共轭。准许条件在)()(2R L t f ∈下可以等价地表示为:

?+∞

-=0)(dt t ψ (3.3)

小波变换结果为各种小波系数,这些系数由尺度和位移函数组成。 3.2.2 一维离散小波变换(DWT ) dadb x b a f W a C x f b a R )(),)((1)(,22

ψ??

??-=

(3.4) 令11,b b a a ==,则

dt t t f b a f W b a R

)()(),)((1

1,11?-

?

dt t dbda t b a f W a C b a b a R )(])(),)((1

[111,02-+∞+∞

∞-???=ψψψψ

dbda dt t t C b a f W a b a R

b a ])()(1

)[,)((111,02-+∞+∞

∞-???=ψψψψ dbda b b a a K b a f W a ),,,(),)((1

1102ψψ??+∞+∞∞

-=

(3.5) 式中,dt t t C b b a a K b a R

b a )()(1

),,,(11,11-?=ψψψψ称之为再生核。

显然,当)(,t b a ψ与()t b a 11,ψ正交时,0),,,(11=b b a a K ψ,即这时),)((b a f W ψ对),)((11b a f W ψ “没有贡献”。小波的尺度当0=j 时,取00b a b j =,下面小波函数可以实现离散化且不丢

失信息: ()

002

0,)(kb t a a t j

j

k j -=--ψω Z k j ∈, (3.6)

根据以上的讨论,离散小波变换的定义如下:

设()()0,02

,>∈a R L t b a ψ是常数,()()

k t a a t j

j

k j -=--

02

0,ψψ ()Z k j ∈,.则称

dt t t f k j f W k

j R

a )()(),)((,?-

(3.7)

为()t f 的离散小波变换。特别地,取20=a ,则称以离散小波函数

()()k t a a t j

j

k j -=--02

0,ψ ()Z k j ∈,为函数的(3.7)式变换称为二进制小波变换。

3.2.3 二维连续小波变换

若信号函数()()()y x R L y x f ,,,2ψ∈为二维小波母函数,则其构造可由一维母

小波的张量积形成。 ()??

? ??--=

a c y a

b x a y x

c b a ,1,,,ψψR c b a ∈,,且0≠a (3.8) 因为图像信号是一种二维信号,所以将一维小波扩展为二维情况,便于后续的使用和分析。

()dxdy a c y a

b x y x f a

c b a f W ???

??--=

??

,,1),,)((ψψ (3.9)

3.2.4 二维离散小波变换

我们只要把参数c b a ,,离散化0000020010,,,,,c b a a c k c a b k b a a j

j j ---===为常

数,Z k k j ∈21,,,则有离散参数变换:

()()

()dxdy c k y a b k x a y x f a k k j DPWT j j j 020010021,,,,--=??ψ (3.10) 将y x ,离散化,即得到离散空间小波变换:

),(),(),,(02200110210211

2

c k l a b k l a l l f a k k j DSWT j

j

l l j --=∑∑ψZ l l ∈21, (3.11)

令1,2000===c b a ,即得到离散小波变换,表示为:

)2,2(),(2),,(221121211

2

k l k l l l f k k j DW T j j i i j --=∑∑ψ Z l l ∈21, (3.12)

3.3 小波变换的多尺度分析

小波变换的多尺度分析(或多分辨率分析)是建立在函数空间概念上的理论,随着尺度由大到小变化,在每个尺度上可以由粗及细地观察图像的目标。大尺度

时,观察到的是图像的基本特征;在小尺度的空间里,则可以看到目标的细节。

把二维图像信号)(),(22R L y x f ∈所占据的总频带定义为),()2(0y x V 空间,用理想的低通滤波器0h 和高通滤波器1h 在行、列方向将它们分别分解成低频部分

)()1(1x V 和高频部分,)1(1W 每一方向的两部分分别反映出该图像信号在剖分方向上的概貌和细节;对于)()()1(1)1(1y V x V ?经第二级()2=a 分解后又被剖分成低频

)()()1(2)1(2y V x V ?、垂直方向的高频)()()1(2)1(2y W x V ?、以及对角线方向的高频)()()1(2)1(2y W x W ?,......,在这种空间剖分过程中,),)(()1(y x i i V j =反映的是图

像信号在空间),()2(1y x V j -中沿i 方向的低频子空间,),)(()

1(y x i i W j =反映的是图像信号在空间),()

2(1y x W j -中沿i 方向细节的高频子空间。

从多分辨率分析可以看出,空间的每次剖分包含两部分:一部分是图像信号通过低通滤波后得到的低频概貌;另一部分是通过带通滤波(小波变换)得到的图像高频细节。对于低频概貌,重复以上过程,最终把图像信号分解成多个等级的高频细节与最后一次低通滤波后的低频概貌之和。

在剖分过程中,这些子空间具有以下特征: (1) 单调性:1-?j j V V 对于任意Z j ∈; (2) 逼近性:{});(,02R L V V j Z

j j Z

j =?=∈∈?

(3) 伸缩性:()()12-∈?∈j j V t f V t f ;

(4) 平移不变性: ()()

j j j V k t f V t f ∈-?∈2;

满足的上述性质称为多尺度分析,即任意函数),(),()2(0y x V y x f ∈,应用多尺度分析将其分解为细节部分或是某一方向上的细节部分和()y x f ,的基本特征部分)()()1()1(y V x V i i ?,然后将)()()1()1(y V x V i i ?进一步分解,可得到任意尺度下

()y x f ,基本特征部分以及细节部分之和

【1】

第四章基于小波变换的图像增强

4.1 小波变换图像增强原理

图像增强技术中的一个难点,就是在去除噪声的同时,会造成图像细节信息的损失,从而给后续的处理以及分析工作带来困难。因此如何将同在高频区域的噪声和图像细节信息准确地分离开,就成为解决问题的关键。【6】

由于小波变换的多分辨率分析,能够有效地抑制噪声,增强图像感兴趣部分,因而小波变换图像增强得到了广泛的应用。小波变换把图像在各个尺度上分为低频分量和水平高频,垂直高频,对角高频四个不同的分量,变换后,根据图像需要增强处理的需要,对不同位置不同方向上的某些分量改变其小波系数的大小,从而使得某些感兴趣的分量被放大而使得某些不需要的分量减小,实际应用中,通过对高频部分分量进行变换,经过处理就能达到增强图像的目的。图4.1是经两尺度小波变换分解后图像的各个层次分量,其中LL是低频部分,它代表图像的主要内容信息,集中了图像的绝大部分能量,而HL,LH和HH是高频部分,分别代表图像水平方向、垂直方向和对角线方向的细节。如果对图像的低频部分继续进一步做小波分解,就可以得到多个尺度的图像时频信息。

图4.1 两尺度小波分解图

由图4.1可知,数字图像的小波分解实质上就是把图像信号分解成不同频带范围内的图像分量。每一层小波分解都将待分解图像分解成4个子带,很好地分离出表示图像内容的低频信息。因此,小波变换能在不同的尺度上,采用不同的方法来增强不同频率范围内图像的细节分量,再把处理后的系数进行小波重建,这样就能够在突出图像细节特征的同时,有效抑制图像噪声的影响,使图像轮廓

更加突出。[4]

4.2 小波变换图像增强算法

4.2.1 非线性增强

具体实现步骤如下[5]

: (1) 读入原图像。

(2) 对原始图像进行小波分解,得到低频子带LL 和三个高频子带LH 、HL 、HH (细节部分);

(3) 对高频系数进行非线性增强,这样达到去噪并增强的目的,其函数满足:

???

??---+=***)1(),(),()1(),(),(11T G j i W j i W G T G j i W j i W in

in in out 111

),(),(),(T j i W T j i W T j i W in in in -<≤> (4.1)

其中G 是小波系数增强倍数,1T 是小波系数阈值,),(j i W in 是图像分解后的小波系数,),(j i W out 是图像增强后小波系数。

(4) 将处理后的两种小波系数进行小波逆变换,从而得出增强后的图像(输出图像)

具体实例如图4.2:

(a)原图

50

100

150

200

250

50100150200

250

(b)2层小波增强图像

50

100

150

200

250

50100150200

250

图4.2 非线性小波增强

由图4.2观察可知,经非线性小波增强后,图像的对比度明显增强,噪声得到了有效抑制,但丢失了某些细节信息。 4.2.2 图像钝化

钝化操作主要是提取图像中的低频成分,抑制尖锐的快速变化的成分,在图像时域中的处理时,只需要把图像作用于一个平滑滤波器,使得图像中的每个点与其相邻点做平滑即可[1]

图4.3以一个多面体为例,分析传统的离散傅里叶变换(DCT )对图像钝化与小波变换对图像钝化的优缺点:

原图

50100150200250

50100150200

250

传统DCT 钝化

5010015020025050100150200

250

小波变换钝化

5010015020025050100150200

250

图4.3 基于DCT 与小波变换的图像钝化

由图4.3可知,采用DCT 在频域滤波的方法得到的钝化结果更为平滑,这是因为其分辨率高,而小波方法得到的结果在很多地方有不连续的现象,因为对系数做放大或抑制在阈值两侧有间断,而且分解层数很低,没有完全分离出频域的信息。而且我们在做系数放大或抑制的时候,采用的标准根据系数绝对值的大小,没有完全体现出其位置信息,但是在小波系数中,我们很容易在处理系数的过程中加入位置信息。 4.2.3 图像锐化

图像锐化就是把图像中尖锐的部分尽可能地提取出来,用于检测和识别等领域。它的任务是突出高频信息,抑制低频信息,从快速变化的成分中分离出标识系统特性或区分子系统边界的成分,以便进一步的识别、分割等操作。锐化的方法是作用掩膜或做差分,二者均很难识别点之间的关联信息[1]

(a) 原图

50100150200250

50100150200

250

(b) 传统DCT 锐化

50100150200250

50100150200250

(c) 小波变换锐化

50100150200250

50100150200250

图4.4 基于DCT 与小波变换的图像锐化

图4.4是采用DCT 与小波变换锐化的实例。 由图4.4可知:

(1) 使用DCT 方法进行高通滤波得到的高频结果比较纯粹,完全是原图像上的边缘信息,而使用小波方法,不仅只有高频成分,还有变换非常缓慢的低频成分,这是因为二者同样在小波系数上体现为绝对值较低的部分。

(2) 时间复杂度:DCT 需做两次DCT 变换,每次复杂度为○()log n n ,还有一次中间系数处理,复杂度为○)(n ,总共复杂度为2○()log n n +○)(n ;小波变换分解,重构与系数处理的复杂度均为○)(n ,共为3○)(n ,时间复杂度明显少于DCT.

4.2.4 基于小波变换的图像阈值去噪

(1) 思想:由于图像和噪声经小波变换后有不同的统计特性,图像本身的能量对应着幅值较大的小波系数,主要集中在高频;噪声能量则对应着幅值较小的小波系数,并分散在小波变换后的所有系数中。根据这一特性,设置一个阈值门限,认为大于该阈值的小波系数的主要成分为有用信号,给与收缩后保留;小于该阈值的小波系数,主要成分为噪声,予以剔除,一次达到去噪目的。

(2) 步骤:

① 图像信号的小波分解:选择一个小波和小波分解层次N ,然后计算信号S 到第N 层的分解。

② 对高频系数进行阈值量化:对于从1到N 的每一层,选择一个阈值,并对这一层的高频系数进行阈值量化处理。

③ 二维小波的重构:根据小波分解的第N 层的低频系数和经过修改的从第一层到第N 层的各层高频系数计算二维信号的小波重构。具体实例如图4.5:

原始图像

50100150200250

50

100150200250

含噪声图像

50100150200250

50100150200250

第一次去噪图像50100150200250

50100150200250

第二次去噪图像50100150200250

50100150200250

图4.5 基于小波变换的阈值图像降噪

由图4.5可知,第一次去噪已经滤去了大部分的高频噪声,但与原图相比,

仍含有不少的高频噪声;第二次去噪是在第一次去噪的基础上,再次滤除高频噪声,具有较好的效果。

4.3 改进的基于小波变换的图像增强算法

图像增强就是锐化高频部分的同时平滑图像的低频成分。近年来,采用分数阶微分理论进行图像处理是一个新的热点。[7]

接下来将讨论基于小波分解与分数阶微分的图像增强算法。

4.3.1 分数阶微分用于图像增强理论

分数阶微分是由整数阶微分推衍而来,它包括了通常的整数阶微分运算,但又是整数阶微分运算的扩展,一般将微分阶次为非整数的微分称为分数阶微分。对于10<

[7]

分数阶微分有很多种时域和频域的定义。Grunwald-Letnikov 定义[7]

是从研究连续函数整数阶导数的经典定义出发,将微积分的阶数由整数扩大到分数推衍得到。Grunwald-Letnikov 的v 阶导数定义: 则()t f 的v 阶导数定义为

)()1()1()1(1lim

0mh t f m v v h D h

a t m m

v h v t G -+-Γ+Γ-=∑-=→α

(4.1)

其中Gamma 函数: ()()!10

1?∞---==Γn dt t e n n t (4.2) 若一元信号()t f 的持续时间为[]t a t ,∈,将信号持续时间[]t a ,按单位1=h 等

分,得到??a t h a t n h -=?

??

???-==1

,可以推导出一元信号分数阶微分的差分近似表达

()()()()()()()()() +-++-Γ+-Γ++-+--+

--+≈n t f n v n v t f v v t f v t f dt t f d v

v 1!12211)

( (4.3)

关于数字图像处理论文的题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

通信工程专业 本科毕业设计题目(DOC)

通信工程和电子信息工程专业 毕业设计参考题目 来源: 来源不限.. 科研生产实际自拟其它状态: 可选状态结束状态状态不限.. 列表按默认题目导师专业来源部门限选已选结束日期降序升序排列 自动化与电气工程系秦刚电子信息工程[需要1人] 已结束浏览详情 [1] 电缆隧道车转向控制系统的研究4004 张海宁专业方向不限[需要1人,已接受0人] 可选报 [2] 电动扭矩扳手设计还没有人选报! 雷斌专业方向不限[需要1人] 已结束浏览详情 [3] 便携式水分数据采集仪设计与实现4018 王鹏专业方向不限[需要1人] 已结束浏览详情 [4] 基于WIFI的嵌入式图像监控系统--图像存储模块4023 张峰专业方向不限[需要1人] 已结束浏览详情 [5] 无线气压测量系统—接口及显示单元设计4015 雷斌专业方向不限[需要1人] 已结束浏览详情 [6] 基于Creator/V ega的试验水槽仿真模型的实现4031 雷斌专业方向不限[需要1人] 已结束浏览详情 [7] 靶场试验环境的虚拟现实场景建模4016 雷斌专业方向不限[需要1人] 已结束浏览详情 [8] 便携式热敏电阻测温缆数据采集仪设计4015 雷斌专业方向不限[需要1人] 已结束浏览详情 [9] 多路高精度计时及延时控制器通信接口设计4032 雷斌专业方向不限[需要1人] 已结束浏览详情 [10] 多路高精度计时及延时控制器人机接口设计4019 雷斌专业方向不限[需要1人] 已结束浏览详情 [11] 多路高精度计时及延时控制器设计与实现4032 雷斌专业方向不限[需要1人] 已结束浏览详情 [12] 水下激光靶目标检测器设计与实现4029 雷斌专业方向不限[需要1人] 已结束浏览详情

电子科技大学-数字图像处理-课程设计报告

电子科技大学 数字图像处理课程设计 课题名称数字图像处理 院(系)通信与信息工程学院 专业通信工程 姓名 学号 起讫日期 指导教师

2015年12月15日 目录 摘要: (03) 课题一:图像的灰度级分辨率调整 (04) 课题二:噪声的叠加与频域低通滤波器应用 (06) 课题三:顶帽变换在图像阴影校正方面的应用 (13) 课题四:利用Hough变换检测图像中的直线 (15) 课题五:图像的阈值分割操作及区域属性 (20) 课题六:基于MATLAB?的GUI程序设计 (23)

结束语: (36) 参考文献: (37)

基于MATLAB?的数字图像处理课题设计 摘要 本文首先对数字图像处理的相关定义、概念、算法与常用变换进行了介绍;并通过七个课题实例,借助MATLAB?的图像处理工具箱(Computer Vision System Toolbox)对这些案例逐一实现,包括图像的灰度值调整、图像噪声的叠加、频域低通滤波器、阈值分割、Hough变换等,常用的图像变化与处理;然后通过MATLAB?的GUI程序设计,对部分功能进行模块化整合,设计出了数字图像处理的简易软件;最后给出了软件的帮助文件以及该简易程序的系统结构和m代码。 关键词:灰度值调整噪声图像变换 MATLAB? GUI设计

课题一:图像的灰度级分辨率调整 设计要求: 128,64,32,16,8,4,2,并在同一个figure窗将图像的灰度级分辨率调整至{} 口上将它们显示出来。 设计思路: 灰度级分辨率又称色阶,是指图像中可分辨的灰度级的数目,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上的光辐射值的强度,所以灰度级分辨率又称为辐射计量分辨率。随着图像灰度级分辨率的的逐渐降低,图像中所包含的颜色数目将变得越来越少,从而在颜色维度造成图像信息量的退化。 MATLAB?提供了histeq函数用于图像灰度值的改变,调用格式如下: J = histeq(I,n) 其中J为变换后的图像,I为输入图像,n为变换的灰度值。依次改变n的值为 128、64、32、16、8、4、2 就可以得到灰度值分辨率为128、64、32、16、8、4、2 的输出图像。利用MATLAB?的subplot命令可以将不同灰度的图像放在同一个figure中方便对比。 课题实现: 该思路的MATLAB?源代码如下: in_photo=imread('lena.bmp'); %读入图片“lena.bmp”,位置在matlab当前工作区路径下D:\TempProject\Matlab\Works for i = [128,64,32,16,8,4,2] syms(['out_photo',num2str(i)]); %利用for循环定义7个变量,作为不同灰度值分辨率的输出变量 eval(['out_photo',num2str(i), '=histeq(in_photo,i)',';']); %histeq函数用于改变图像灰度值,用eval函数给变量循环赋值

数字图像处理系统毕业设计论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

基于Matlab的数字图像处理系统毕业设计论文

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

数字图像处理课程设计题目和要求-2013

. . . .页脚. 数字图像处理课程设计容、要求 题目一:图像处理软件 1、设计容及要求: (1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。 (2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明): (1)实现图像处理的基本操作 学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如 image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。 (2)图像处理算法的实现与显示 针对课程中学习的图像处理容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。改变图像处理的参数,查看处理结果的变化。自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。 (3)参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

. . . 题目二:数字水印 1、设计容及要求: 为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品发生争执时,通过提取水印信息确认作品。通常情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。根据这一要求,设计水印算法。 (1)、查阅文献、了解数字水印的基本概念。 (2)、深入理解一种简单的数字水印嵌入与提取方法。 (3)、能够显示水印嵌入前后的载体图像。 (4)、能够显示嵌入与提取的水印。 (5)、选择一种以上的攻击方法,测试水印算法的鲁棒性等性能。 (6)、设计软件界面 2、参考方案 (1)对水印图像进行编码置乱(可采用伪随机码,提高水印图像的隐蔽性); (2) 对图像进行子图像分解(如8*8),对子块分别进行DCT变换; (3) 对DCT系数按照zig-zag排序进行排列,选择一种频系数,对该种频系数相邻 的系数进行水印嵌入 (4) 低通滤波检验水印算法的抗攻击性。 (5) 设计数字水印的软件界面。 .页脚.

简单数字图像处理系统

数字图像课程设计简单数字图像处理系统 function varargout = untitled(varargin) % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @untitled_OpeningFcn, ... 'gui_OutputFcn', @untitled_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before untitled is made visible. function untitled_OpeningFcn(hObject, eventdata, handles, varargin) %界面初始化函数 setappdata,'I',0); % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to untitled (see VARARGIN) % Choose default command line output for untitled = hObject;

(完整版)基于matlab的数字图像处理毕业设计论文

优秀论文审核通过 未经允许切勿外传 摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。关键词:MATLAB,数字图像处理,图像增强,二值图像

Abstract Digital image processing is an emerging technology, with the development of computer in various areas on the processing speed requirement is relatively ),线性量化(liner quantization ),对数量化,MAX 量化,锥形量化(tapered quantization )等。 3. 采样、量化和图像细节的关系 上面的数字化过程,需要确定数值N 和灰度级的级数K 。在数字图像处理中,一般都取成2的整数幂,即: (2.1) (2.2) 一幅数字图像在计算机中所占的二进制存储位数b 为: *log(2)**()m N N b N N m bit == (2.3) 例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。 由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。N 和K 的值越大,图像越清晰。 2.2 数字图像处理概述 2.2.1 基本概念 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的

数字图像处理课程设计题目

PROJECT 03-01 Image Enhancement Using Intensity Transformations The focus of this project is to experiment with intensity transformations to enhance an image. Download Fig. 3.8(a) and enhance it using (a) The log transformation of Eq. (3.2-2). (b) A power-law transformation of the form shown in Eq. (3.2-3). In (a) the only free parameter is c, but in (b) there are two parameters, c and r for which values have to be selected. As in most enhancement tasks, experimentation is a must. The objective of this project is to obtain the best visual enhancement possible with the methods in (a) and (b). Once (according to your judgment) you have the best visual result for each transformation, explain the reasons for the major differences between them. 使用强度的转变实现图像增强 这个项目的焦点就是通过强度转换实验来增强图像。 下载图片3.8(a),并且对它实现增强。对数变换的公式如3.2.2所示,幂次变换的基本形式如3.2.3所示。 在(a)中,唯一的自由参数是c,但是在(b)中有两个参数,c以及一个需要被选定值的参数r,在大多数关于增强的任务中,实验是必须的。这个项目的目的是为了用在(a)和(b)中的方法来获得最佳可视化增强的可能性,一旦(根据你的判断)你对每一个变换都拥有了最好的视觉效果,解释一下它们之间产生主要差别的原因。 PROJECT 03-02 [Multiple Uses] Histogram Equalization (a) Write a computer program for computing the histogram of an image. (b) Implement the histogram equalization technique discussed in Section 3.3.1. (c) Download Fig. 3.8(a) and perform histogram equalization on it. As a minimum, your report should include the original image, a plot of its histogram, a plot of the histogram-equalization transformation function, the enhanced image, and a plot of its histogram. Use this information to explain why the resulting image was enhanced as it was. 直方图均衡化 (a)写一个程序来计算图像的直方图 (b)实现直方图均衡化方法在参考3.3.1 (c)下载图38(a)并实现其直方图均衡。 你的实验报告中至少需要包括原图,绘制其直方图,增强后的图形,并绘制它的直方图。用以上这些信息解释为什么图像的增强结果是这样的。 PROJECT 03-03 [Multiple Uses]

数字图像处理基础知识总结

第一章数字图像处理概论 *图像是对客观存在对象的一种相似性的、生动性的描述或写真。 *模拟图像 空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像 *数字图像 空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。 *数字图像处理(Digital Image Processing) 利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。(计算机图像处理) *数字图像处理的特点(优势) (1)处理精度高,再现性好。(2)易于控制处理效果。(3)处理的多样性。(4)图像数据量庞大。(5)图像处理技术综合性强。 *数字图像处理的目的 (1)提高图像的视感质量,以达到赏心悦目的目的 a.去除图像中的噪声; b.改变图像的亮度、颜色; c.增强图像中的某些成份、抑制某些成份; d.对图像进行几何变换等,达到艺术效果; (2)提取图像中所包含的某些特征或特殊信息。 a.模式识别、计算机视觉的预处理 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 **数字图像处理的主要研究内容 (1)图像的数字化 a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理 b.主要包括的是图像的采样与量化 (2*)图像的增强 a.加强图像的有用信息,消弱干扰和噪声 (3)图像的恢复 a.把退化、模糊了的图像复原。模糊的原因有许多种,最常见的有运动模糊,散焦模糊等(4*)图像的编码 a.简化图像的表示,压缩表示图像的数据,以便于存储和传输。 (5)图像的重建 a.由二维图像重建三维图像(如CT) (6)图像的分析 a.对图像中的不同对象进行分割、分类、识别和描述、解释。 (7)图像分割与特征提取 a.图像分割是指将一幅图像的区域根据分析对象进行分割。 b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。 (8)图像隐藏 a.是指媒体信息的相互隐藏。 b.数字水印。 c.图像的信息伪装。 (9)图像通信

数字图像处理系统论文

数字图像处理系统论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

图像处理毕业设计题目

图像处理毕业设计题目 篇一:数字图像处理论文——各种题目 长春理工大学——professor——景文博——旗下出品1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识

别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容: 基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1> 对原始参考图和实时图像进行去噪处理; 2> 对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑;

图像处理课程设计

《图像处理技术应用实践》课程设计题目图像增强算法综合应用 学生姓名韩帅_______ 学号 院系计算机与软件学院 专业计算机科学与技术 范春年____ 噪声,不同的去噪方法效果不同,因此应该采用不同的去噪方法以达到最好的去噪效果。? (2)随机噪声应在空间域去除,而空域去噪方法中,中值滤波法效果最好。? (3)周期噪声应在频域中消去。?

(4)去除噪声后的图像仍然可以改善处理。? (5)均方误差评估去噪处理后图像的去噪效果。 2.2算法设计? (1)读入初始图片及加噪图片。? clc;?clear;? f=imread();? ? for?j?=?1?:?N? ???????d?=?sqrt((i-m)^2+(j-n)^2);? ????? h?=?1/(1+0.414*(d/d0)^(2*nn));??%?计算低通滤波器传递函数??????????? ?result(i,j)?=?h?*?G(i,j);???????? end???

end (4)计算均方误差评估去噪效果。? [m?n]=size(p);?l=f-p;? he=sum(sum(l));? avg=he/(m*n); ?k=l-avg;? result1=(sum(sum(k.^2)))/(m*n);? for i=1:M for j=1:N d=sqrt((i-m)^2+(j-n)^2); h=1/(1+0.414*(d/d0)^(2*nn)); %h=1/(1+(d/d0)^(2*nn)); %备用 G(i,j)=h*G(i,j); end end p=uint8(real(ifft2(ifftshift(G)))); subplot(341);imshow(f),title('原图'); subplot(345);imshow(log(abs(f2)),[]),title('频谱'); subplot(349);imhist(f),title('原图'); subplot(342);imshow(g),title('噪声');

数字图像处理车牌识别课程设计matlab实现附源代码

基于matlab的车牌识别系统 一、目的与要求 目的:利用matlab实现车牌识别系统,熟悉matlab应用软件的基础知识,了解了基本程序设计方法,利用其解决数字信号处理的实际应用问题,从而加深对理论知识的掌握,并把所学的知识系统、高效的贯穿到实践中来,避免理论与实践的脱离,巩固理论课上知识的同时,加强实践能力的提高,理论联系实践,提高自身的动手能力。同时不断的调试程序也提高了自己独立编程水平,并在实践中不断完善理论基础,有助于自身综合能力的提高。 要求: 1.理解各种图像处理方法确切意义。 2.独立进行方案的制定,系统结构设计要合理。 3.在程序开发时,则必须清楚主要实现函数的目的和作用,需要在程序书写时说明做适当的注释。如果使用matlab来进行开发,要理解每个函数的具体意义和适用范围,在写课设报告时,必须要将主要函数的功能和参数做详细的说明。 4、通过多幅不同形式的图像来检测该系统的稳定性和正确性。 二、设计的内容 学习MATLAB程序设计,利用MATLAB函数功能,设计和实现通过设计一个车牌识别系统。车牌识别系统的基本工作原理为:将手机拍摄到的包含车辆牌照的图像输入到计算机中进行预处理,再对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后将其逐个与创建的字符模板中的字符进行匹配,匹配成功则输出,最终匹配结束则输出则为车牌号码的数字。车牌识别系统的基本工作原理图如图1所下所示:

三、总体方案设计 车辆牌照识别整个系统主要是由车牌定位和字符分割识别两部分组成,其中车牌定位又可以分为图像预处理及边缘提取模块和牌照的定位及分割模块;字符识别可以分为字符分割和单个字符识别两个模块。 为了用于牌照的分割和牌照字符的识别,原始图象应具有适当的亮度,较大的对比度和清晰可辩的牌照图象。但由于是采用智能手机在开放的户外环境拍照,加之车辆牌照的整洁度、自然光照条件、拍摄时摄像机与牌照的矩离等因素的影响,牌照图象可能出现模糊、歪斜和缺损等严重缺陷,因此需要对原始图象进行识别前的预处理。 牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。 由于拍摄时的光照条件、牌照的整洁程度的影响,和摄像机的焦距调整、镜头的光学畸变所产生的噪声都会不同程度地造成牌照字符的边界模糊、细节不清、笔划断开或粗细不均,加上牌照上的污斑等缺陷,致使字符提取困难,进而影响字符识别的准确性。因此,需要将拍出的车牌进行处理,在这个过程中,我采用画图工具,将汽车图像的车牌部分进行裁剪,并将车牌的蓝色部分过亮的地方颜色加深,还将车牌中的一个白色的原点抹去,另外还将车牌上的铆钉使用车牌的蓝色背景覆盖,这样分割出的字符更加准确。 车牌识别的最终目的就是对车牌上的文字进行识别。主要应用的为模板匹配方法。 因为系统运行的过程中,主要进行的都是图像处理,在这个过程中要进行大量的数据处理,所以处理器和内存要求比较高,CPU要求主频在600HZ及以上,内存在128MB 及以上。系统可以运行于Windows7、Windows2000或者Windows XP操作系统下,程序调试时使用matlabR2011a。 四、各个功能模块的主要实现程序 (一)首先介绍代码中主要的函数功能及用法:

基于matlab的数字图像处理本科毕业设计论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

相关文档
最新文档