全面了解数字温度传感器规范(图)

全面了解数字温度传感器规范(图)

全面了解数字温度传感器规范(图)

为了实现最佳性能并确保系统稳健性,就必须要进行系统监控测量。其中一个必需的典型测量项目就是环境温度。使用简单的数字温度传感器进行该测量将为系统设计人员提供如下保证:组件正常工作,系统处于其性能或校准限值范围内,不会使用户遇到危险。

?测量结束后,通常由系统中的微控制器对环境温度进行相应调整。系统监控微控制器可以改变风扇速度、关闭非必要系统进程或使系统智能进入省电模式。系统设计人员需全面正确地了解数字温度传感器规范以设计系统,并就测量结果采取最佳措施。另外,全面了解传感器规范将确保在选择数字温度传感器器件时,可做到权衡得当。

?当选择数字温度传感器(也称作串行输出温度传感器)时,应考虑的主要规范包括精度、分辨率、功耗、接口和封装。

?

?图1 数字温度传感器总体结构图

?精度

?数字温度传感器精度表示传感器读数和系统实际温度之间的误差。在产品说明书中,精度指标和温度范围相对应。通常针对不同温度范围,有数个最高精度指标。对于-25~+100℃温度范围来说,±2℃精度是很常见的。Analog Device公司的ADT75、Maxim公司的DS75、National公司的LM75以及TI 的TMP75均具有这种精度节点。但是,还有更高精度的器件。例如,TI的TMP275在20~100℃温度范围内的精度为±0.5℃。

?

?图2 TMP275温度误差与温度对应关系的典型性能曲线

温度传感器工作原理

温度传感器工作原理 1.引脚★ ●GND接地。 ●DQ为数字信号输入\输出端。 ●VDD为外接电源输入端(在寄生电源接线方式时接地) 2.与单片机的连接方式★ 单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。 由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。 外部供电方式单点测温电路如图★ 外部供电方式多点测温电路如图★ 3.DS18B20的性能特点 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: ●独特的单线接口仅需要一个端口引脚进行通信。 ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。 ●不需要外部器件。 ●在寄生电源方式下可由数据线供电,电压围为3.0~5.5V。 ●零待机功耗。

●温度以9~12位数字量读出 ●用户可定义的非易失性温度报警设置。 ●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。 ●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。 4.部结构 .DS18B20采用3脚PR—35封装或8脚SOIC封装,其部结构框图★ 64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限数据。 MSB LSB MSB LSB MSB LSB DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。 高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★ 高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

温度传感器基础知识

https://www.360docs.net/doc/2418027170.html,/download/4104_0/101400.html 温度传感器基础知识 温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。 温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。常用的测温传感器的种类与测温范围如下表所示。

工作原理晶体二极管或三极管的PN 结的结电压是随温度而变化的。例如硅管的PN 结的结电压在温度每升高1℃时,下降-2mV ,利用这种特性,一般可以直接采用二极管(如玻璃封装的开关二极管1N4148)或采用硅三极管(可将集电极和基极短接)接成二极管来做PN 结温度传感器。这种传感器有较好的线性,尺寸小,其热时间常数为0.2—2秒,灵敏度高。测温范围为-50—150℃。典型的温度曲线如图1所示。同型号的二极管或三极管特性不完全相同,因此它们的互换性较差。 应用电路(一) 图(2)是采用PN 结温度传感器的数字式温度计,测温范围-50—150℃,分辨率为0.1℃,在0—100℃范围内精度可达±1℃。 1N4148 https://www.360docs.net/doc/2418027170.html,/datasheet/1N4148/28138465/Beyschlag

温度传感器DS18B20工作原理

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图1 DS18B20的内部结构

图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下: R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。 高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。 3 DS18B20的工作时序 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序,如图3(a)(b)(c)所示。

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

热电阻热电偶温度传感器校准实验资料讲解

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t的关系为: (1+At+Bt2) Rt=R 系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线R 制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。

(2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法两种校验方法。比较法是将标准水银温度计或标准铂电阻温度计与被校电阻温度计一起插入恒温水浴中,在需要的或规定的几个稳定温度下读取标准温度计和被校验温度计的示值并进行比较,其偏差不超过最大允许偏差。在校验时使用的恒温器有冰点槽,恒温水槽和恒温油槽,根据所校验的温度范围选取恒温器。比较法虽然可用调整恒温器温度的方法对温度计刻度值逐个进行比较校验,但所用的恒温器规格多,一般实验室多不具备。因此,工业电阻温度计可用两点法进行校验,即只校验R0与R100/ R0两个参数。这种校验方法只需要有冰点槽和水沸点槽,分别在这两个恒温槽中测得被校验电阻温度计的电阻R0 和R100,然后检查R0 值和R100/R0 的比值是否满足规定的技术数据指标,以确定温度计是否合格。 (3) 热电阻的类型 1)普通型热电阻。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 2)铠装热电阻。铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 3)端面热电阻。端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 4)隔爆型热电阻。隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。 2.热电偶 (1) 热电偶原理 将两种不同材质的金属导线连接成闭合回路,如果两接点的温度不同,由于金属的热电效应,在回路中就会产生一个与温差有关的电动势,称为温差电势。在回路中串接一毫伏表,就能粗略地测出温差电势值。如图1:

基于数字温度传感器的数字温度计

黄河科技学院《单片机应用技术》课程设计题目:基于数字温度传感器的数字温度计 姓名:时鹏 院(系):工学院 专业班级: 学号: 指导教师:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业S13 级 1 班 学号1303050025 时鹏指导教师朱煜钰 题目:基于数字温度传感器的数字温度计设计 课程:单片机应用技术课程设计 课程设计时间2014年10月27 日至2014年11 月10 日共2 周 课程设计工作内容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页)

课程设计任务书及摘要 一、课程设计题目:基于数字温度传感器的数字温度计 二、课程设计要求 利用数字温度传感器DS18B20与单片机结合来测量温度。利用数字温度传感器DS18B20测量温度信号,计算后在LED数码管上显示相应的温度值。其温度测量范围为-55℃~125℃,精确到0.5℃。数字温度计所测量的温度采用数字显示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示。 三、课程设计摘要 DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。 该系统由上位机和下位机两大部分组成。下位机实现温度的检测并提供标准RS232通信接口,芯片使用了ATMEL公司的AT89C51单片机和DALLAS公司的DS18B20数字温度传感器。上位机部分使用了通用PC。该系统可应用于仓库测温、楼宇空调控制和生产过程监控等领域。 四、关键字:单片机温度测量DS18B20 数字温度传感器AT89C51

温度传感器课程设计

温度传感器课程设计报告 专业:电气化___________________ 年级:13-2 学院:机电院 姓名:崔海艳 ______________ 学号:8021209235 目录 1弓I言................................................................... ..3

2设计要求................................................................. ..3 3工作原理................................................................. ..3 4 方案设计 ................................................................ ..4 5单元电路的设计和元器件的选择.............................................. ..6 5.1微控制器模块........................................................... .6 5.2温度采集模块...................................................... .. (7) 5.3报警模块.......................................................... .. (9) 5.4 温度显示模块..................................................... .. (9) 5.5其它外围电路........................................................ (10) 6 电源模块 (12) 7程序设计 (13) 7.1流程图............................................................... (13) 7.2程序分析............................................................. ..16 8.实例测试 (18) 总结.................................................................... ..18 参考文献................................................................ ..19

基于DSP与数字温度传感器的温度控制

O 引言 20世纪60年代以来,数字信号处理器(Digital Signal Processing,DSP)伴随着计算机和通信技术得到飞速发展,应用领域也越来越广泛。在温度控制方面,尤其是固体激光器的温度控制,受其工作环境和条件的影响,温度的精度要求比较严格,之前国内外关于温度控制基本上都采用温度敏感电阻来测量温度,然后用风冷或者水冷方式来达到温度控制效果,精度不够且体积大。本文基于DSP 芯片TMS320F2812与数字温度传感器DSl8B20设计出一个温度测量系统,根据测量所得的温度与设定的参量,并利用模糊PID算法计算出控制量,利用该控制量调节由DSP事件管理器产生PWM波的占空比,并作用于半导体制冷器,以达到温度控制效果,实现控制精度高,体积小的温度控制系统。 l 系统硬件组成 1.1 DSl8820功能结构与使用 DSl8820是DALLAS公司生产的一线式数字温度传感器,具有3引脚T0-92小体积封装形式;温度测量范围为-55~+125℃;可编程为9~12位A/D转换精度,测温分辨率可达0.0625℃;CPU只需一根埠线就能与诸多DSl8B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DSl8B20非常适合用于远距离多点温度检测系统中。 DSl8B20的管脚排列如图1所示。DQ为数字信号输入/输出端;GND为接地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。DS-l8B20中的温度传感器可完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以O.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07DOH,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 1.2 DSP介绍 这里所用DSP为TMS320F2812,它是美国TI公司新推出的低价位、高性能的16位定点DSP,是专为控制应用系统而设计的,其主频可达150 MHz,本系统中所用晶振为45 MHz,片内集成了外围设备接口,主要起控制和计算作用。 1.3 半导体制冷器简介

实验六 温度传感器校准实验

温度传感器校准实验 一、实验目的 掌握热电偶热电阻温度传感器的使用方法和校准方法 二、实验装置 热电偶温度传感器实验装置主要由恒温水浴、电位差计、热电偶、热电阻、冰点仪、数据采集装置、低电势转换开关和标准玻璃温度计等组成。 三、实验内容 1).了解热电阻测温原理,练习热电阻二三线制接法; 2).做出被校热电阻与标准温度计之间的曲线关系,通过查标准热电阻温度与阻值关系进行 分析; 3).了解热电偶的测温原理、温度补偿方法,练习热电偶连线与测温; 4).做出被校热电偶温度与电势曲线,通过查标准热电偶与电势关系进行分析; 5).练习电位差计测量电势方法,了解校验实验台自动采集原理。 四、操作步骤 采用手动数据采集,操作步骤如下: 1).恒温水浴内加好水,冰瓶内放入冰水混合物。 2).将热电阻与热电偶按上图4所示连好,其中热电偶冷端放入冰瓶,并保证热电偶连线在 冰瓶内10分钟以上。检查热电阻、热电偶的高温探头是否都浸在恒温水浴里。热电偶和热电阻高温探头头部要在同一水平面,以使两者温度尽可能一致。(注意:待需要测量恒温水浴精准温度时,才将温度计插入恒温水浴,以免误操作造成标准温度计损坏。 且标准温度计也要和热电偶、热电阻高温探头在同一水平面)。 3).打开恒温水浴电源,按下“加热”,“水泵”按钮,设定恒温水浴温度,待温度比较稳定 的时候,选择量程适当的标准温度计温度测量出水浴温度,采用电位差计测量各热电偶通道电势,采用万用表测量热电阻的电阻值,并做好记录。 4).实验者根据需要重复步骤3。 5).完成实验时,关闭恒温水浴电源。 6).根据记录的实验数据,进行分析与处理,最终得到不同温度情况下电势与电阻值。 7).应用误差分析理论进行测温结果分析。 六、注意事项 1.实验之前应将加热主体加入适量的水或油。 2.工作环境应无强磁场,温度0~35℃,相对湿度不大于85%。

全面了解数字温度传感器规范

全面了解数字温度传感器规范 为了实现最佳性能并确保系统稳健性,就必须要进行系统监控测量。其中一个必需的典型测量项目就是环境温度。使用简单的数字温度传感器进行该测量将为系统设计人员提供如下保证:组件正常工作,系统处于其性能或校准限值范围内,不会使用户遇到危险。 测量结束后,通常由系统中的微控制器对环境温度进行相应调整。系统监控微控制器可以改变风扇速度、关闭非必要系统进程或使系统智能进入省电模式。系统设计人员需全面正确地了解数字温度传感器规范以设计系统,并就测量结果采取最佳措施。另外,全面了解传感器规范将确保在选择数字温度传感器器件时,可做到权衡得当。 当选择数字温度传感器(也称作串行输出温度传感器)时,应考虑的主要规范包括精度、分辨率、功耗、接口和封装。 精度 数字温度传感器精度表示传感器读数和系统实际温度 之间的误差。在产品说明书中,精度指标和温度范围相对应。通常针对不同温度范围,有数个最高精度指标。对于25~

+100℃温度范围来说,±2℃精度是很常见的。Analog Device 公司的ADT75、Maxim公司的DS75、National公司的LM75以及TI的TMP75均具有这种精度节点。但是,还有更高精度的器件。例如,TI的TMP275在120~100℃温度范围内的精度为±0.5℃。 虽然温度精度指标是非常重要的,然而对系统监控应用来说,它并非一定是最为关键的因素。这些应用更重视检测温度变化,而不是确定温度绝对值。 分辨率 数字温度传感器分辨率是描述传感器可检测温度变化细微程度的指标。集成于封装芯片的温度传感器本身就是一种模拟传感器。因此所有数字温度传感器均有一个模数转换器(ADC)。ADC分辨率将决定器件的总体分辨率,分辨率越高,可检测到的温度变化就越细微。 在产品说明书中,分辨率是采用位数和摄氏温度值来表示的。当采用位数来考虑分辨率时,必须多加注意,因为该值可能包括符号位,也可能不包括符号位。此外,该器件的内部电路可能以不同于传感器总体温度范围的值,来确定内部ADC的满量程范围。以摄氏度来表示的分辨率是一种更直接分辨率值,采用该数值可进行设计分析。

温度传感器 程序

第4章系统程序的设计 4.1 系统设计内容 系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、测量序列号子程序、显示数据刷新子程序等。 4.1.1主程序 主程序主要功能是负责温度的实时显示、读出处理DS18B20的测量温度值。主程序流程图如图4-1所示: 开始 初始化 调用显示子程序 读取并显示序列号 显示当前四路 温度 图4-1 主程序流程图 4.1.2读出温度子程序 读出温度子程序的主要功能是读出RAM中的9字节。在读出时须进行CRC 校验,校验有错时不进行温度数据的改写。 读出温度子程序流程图如图4-2所示:

图4-2 读出温度子程序流程图 4.1.3 温度转换命令子程序 温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时,转换时间约为750ms 。在本程序设计中,采用1s 显示程序延时法等待转换的完成。温度转换命令子程序流程图如图4-3所示: 图4-3 温度转换命令子程序流程图 4.1.4计算温度子程序 计算温度子程序将RAM 中读取值进行BCD 码的转换运算,并进行温度值正负的判定。计算温度子程序流程图如图4-4所示: 发DS18B20复位命 发跳过ROM 命令 发温度转换开始命令 结束 开始 复位DS18B20 发跳过ROM 命令 发出温度转换命 转换完毕 复位DS18B20 发匹配ROM 命令 发1个DS18B20序列 读温度值 存入储存器 指向下一个 延时 N Y

图4-4 计算温度子程序流程图 4.1.5 温度数据的计算处理方法 从DS18B20读取出的二进制值必须转换成十进制值,才能用于字符的显示。DS18B20的转换精度为9~12位,为了提高精度采用12位。在采用12位转换精度时,温度寄存器里的值是以0.0625为步进的,即温度值为寄存器里的二进制值乘以0.0625,就是实际的十进制温度值。 通过观察表4-1可以发现,一个十进制与二进制间有很明显的关系,就是把二进制的高字节的低半字节和低字节的高半字节组成一字节,这个字节的二进制化为十进制后,就是温度值的百、十、个位字节,所以二进制值范围是0~F ,转换成十进制小数就是0.0625的倍数(0~15倍)。这样需要4位的数码管来表示小数部分。实际应用不必这么高的精度,采用1位数码管来显示小数,可以精确到0.1℃。 开始 温度零下? 温度值取补码置 “-”标志位 计算小数位温度BCD 值 计算小数位温计算小数位 结束 置“+”标志 N Y

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

浅析数字温度传感器

浅析数字温度传感器 在传感器技术突飞猛进的今天,多家现代传感器企业提供的新型数字温度传感器,与传统温度传感器相比,具有性价比高、性能优越、可靠性高、使用方便、体积小、灵敏度高和控制电路简单等特点。与传统产品相比,新型温度传感器呈现出微型化、高精度、低功耗等发展趋势。完全可以替代传统热敏电阻和电阻式温度检测器。具体来说,数字温度传感器的主要构成包括一个双电流源、一个Δ-ΣA/D转换器、数字逻辑和一个通向数字器件(如与一个微处理器或微控制器连接)的串行接口(如I2C总线、SMBus或SPI)。 新型数字温度传感器原理 数字温度传感器也叫热电偶,是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。热电偶是工业上最常用的温度检测元件之一。其优点是:(1)测量精度高;(2)测量范围广;(3)构造简单,使用方便。 新型数字温度传感器的应用 当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。 新型数字温度传感器的应用范围很广,它不仅广泛应用于寻常百姓的日常生活中,而且也大量用于现代工业生产的自动化控制和生产过程检测控制系统。 当前世界范围内温度传感器正从模拟式向新型数字式、从传统集成式向现代智能化的方向发展。新型数字温度传感器自从二十世纪九十年代中期面世以来,在中国国内也迅猛发展,并迅速在广大人民群众的日常生活中推广应用。

智能温度传感器原理及应用

智能温度传感器原理及应用 电气信息学院 一、热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 热电阻的信号连接方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。 目前热电阻的引线主要有三种方式 ○1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合 ○2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。 ○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。

温度传感器温度控制设计

1 系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择 硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS 公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU 连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM 存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS18B20的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故选用此方案。 1.2.2 DS18B20单线智能温度传感器的工作原理 DS18B20温度传感器是美国DALLAS 半导体公司最近推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9-12位的数字值读数方式。 1.2.3 DS18B20单线智能温度传感器的性能特点 ①采用单总线专用技术,既可通过串行口线,也可通过其它I/O 口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位); ②测温范围为-55℃— +125℃,测量分辨率为0.0625℃; ③内含64位经过激光修正的只读存储器ROM ; ④适配各种单片机或系统机; 计算机控制 温 度 信 号 采 集 电 路 温度控制接口电路 继电器控制 与加热电路 继电器控制 与降温电路

温度传感器论文..

温度传感器设计论文题目:基于DS18B20温度传感器的智能测温仪 学院:物理与电子工程学院 专业: 姓名: 学号:

目录 目录------------------------------------------------------------------------------1 摘要------------------------------------------------------------------------------2 一、传感器概诉-------------------------------------------------------------3 1、传感器及温度传感器发展现状-------------------------------------3 2、主要元器件介绍-------------------------------------------------------3 二、课程设计主要内容----------------------------------------------------6 1、课程设计名称----------------------------------------------------------6 2、设计要求、目的及意义----------------------------------------------6 三、设计达到的指标-------------------------------------------------------7 四、传感器设计原理-------------------------------------------------------7 1、三个重要组成部分----------------------------------------------------7 2、DS1802工作原理------------------------------------------------------7 3、DS1802内部结构图---------------------------------------------------8 4、程序流程图--------------------------------------------------------------9 5、proteus仿真原理图----------------------------------------------------9 五、实验过程-----------------------------------------------------------------10 1、前期准备-----------------------------------------------------------------10 2、课程设计过程-----------------------------------------------------------10 3、个人主要工作及遇到问题--------------------------------------------11 六、数据分析与结论--------------------------------------------------------11 七、课程设计总结、思考与致谢-----------------------------------------12 八、参考文献-----------------------------------------------------------------14 九、附录-----------------------------------------------------------------------15

DS18B20温度传感器的控制方法

DS18B20温度传感器的控制方法 DS18B20的初始化: (1)先将数据线置高电平“1”。 (2)延时(该时间要求的不是很严格,但是尽可能的短一点) (3)数据线拉到低电平“0”。 (4)延时750微秒(该时间的时间范围可以从480到960微秒)。 (5)数据线拉到高电平“1”。 (6)延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。 (7)若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。 (8)将数据线再次拉高到高电平“1”后结束。 DS18B20的写操作: (1)数据线先置低电平“0”。 (2)延时确定的时间为15微秒。 (3)按从低位到高位的顺序发送字节(一次只发送一位)。 (4)延时时间为45微秒。 (5)将数据线拉到高电平。 (6)重复上(1)到(6)的操作直到所有的字节全部发送完为止。 (7)最后将数据线拉高。 DS18B20的读操作: (1)将数据线拉高“1”。 (2)延时2微秒。 (3)将数据线拉低“0”。 (4)延时15微秒。 (5)将数据线拉高“1”。 (6)延时15微秒。 (7)读数据线的状态得到1个状态位,并进行数据处理。 (8)延时30微秒。 根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。 表2 ROM指令表

相关文档
最新文档