动态磁滞回线测量

动态磁滞回线测量
动态磁滞回线测量

清华大学试验报告纸

系别 机械工程系 班级 机械51班 姓名 陈璞做实验日期 2007年3 月30日 教师评定

用示波器测动态磁滞回线

[实验目的]

(1) 了解用示波器测量动态磁滞回线的原理和方法;

(2) 根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽

力Hc的数值;

(3) 进一步学习示波器显示利萨如图形的方法。

[实验原理]

利用示波器测动态磁滞回线的原理电路图如图所示。

将样品制成闭合的环形,其上均匀的绕有磁化线圈N1以及副线圈

N2。交流电压u加载磁化线圈上,线路上串联了一取样电阻R1。将R1两端的电压u1加到示波器的X输入端上。副线圈N2与电阻R2和电容R串联成一回路。电容C两端的电压u c加到示波器的Y输入端上。

1、u1与磁场强度H成正比

设环状样品的平均周长为l,磁化线圈的匝数为N1,磁化电流为i1(注意这是交流电的瞬时值),根据安培环路定律有Hl= N1 i1,即i1= Hl/ N1。而u1= R1 i1,所以可得

式中R1,l和N1皆为常数,可见u1与H成正比。它表明示波器荧光屏上的电子束偏转的大小与样品中的磁场强度成正比。

2、u c(Y输入)在一定条件下与磁感应强度B成正比

设样品的截面积为S,根据电磁感应定律,在匝数为的N2的副线圈中的

感应电动势应为

若副边回路中的电流为i2且电容C上的电量为q,则应有

在上式中已考虑到副线圈匝数N2较小,因而自感电动势可忽略不计。在选定线路参数时,有意将R2与C都选成足够大,使电容C上的电压降u c =q/C比起电阻上的电压降小到可以忽略不计。于是,公式可以近似为将关系式代入得到

不考虑其负号时,两式比较得到

将等式两边对时间积分,由于B和u c都是交变的,积分常数为0。整理后得到

式中、S、和C皆为常数,可见与成正比,也就是说示波器荧光屏上的电子竖直方向偏转的大小与磁感强度成正比。

至此,可以看出,在磁化电流变化的一周期内,示波器的光点将描绘出一条完整的磁滞回线。以后每个周期都重复此工程,结果在示波器的荧光屏上看到一稳定的辞职回线图形。

实际测量中的电路为了使R1上的电压降u1与流过的电流i1二者的瞬时值成正比(相位相同),R1必须是无感或电感很小的电阻。其次为了操作安全和调节方便,在线路中采用了一个隔离降压变压器T,以避免后面的电路元件与220V市电直接相连。调压变压器用来调节输入电压以控制磁化电流i1的大小。在本实验中样品MS是一用冷轧硅钢片制成的C 形铁芯。

前面已说明了示波器荧光屏上可以显示出待测材料动态磁滞回线的原理。但在实验中,还需确定示波器荧光屏上X轴的每一小格代表多少安/米,Y轴的每一小格实际代表多少特斯拉。这就是所谓的标定问题。

3、X轴的标定

R0

T

~220V 200 Y X

R1

标定H的线路图

由于只要用实验发放测出光点沿X轴的偏转大小与电压u1的关系,进

而即可确定H。其中交流电流表A用于测量i10,调节i10使荧光屏上呈现总长度为Lx小格的水平线,它对应于u1的峰峰值,即u1有效值的倍,所以Lx代表。这样每小格所代表的u1的有效值为,可以知道

4、Y轴的标定

R2

T M

~220V C Y X

标定B的线路图

采用书上的电路图,得到沿Y轴光点每偏转1小格所代表的磁感强度B 值为

[实验内容]

(1) 显示和观察动态磁滞回线

如图组装电路。电流表A置于500mA量程。线路接好后请老师检查。

将示波器光点调至荧光屏中心,逐渐增大磁化电流,使磁滞回线上的B值能达到饱和。示波器的X、Y轴的分度值调整至适当位置,使荧光屏上得到典型的美观的回线图形。记住此时的磁化电流I的大小。

(2) 测量动态磁滞回线

先退磁。

将电流调至I,以小格为单位测若干组B、H的坐标值。特别注意回线定点、剩磁与矫顽力三个点的读书。此后,示波器的X、Y轴的分度值绝对不要再改变,以便进行H、B的标定。

(3) 标定H和B

[数据处理]

常数记录:

N1 = 400 N2 = 100 S= l = 0.190m M = 0.100H

H(格) H(值)1234567101525 52.5105.1157.6210.1262.7315.2364.3525.4788.11313.5

B(格) B(值) B(格) B(值)08152025.52728.53233.736 00.3650.6850.913 1.154 1.233 1.301 1.461 1.538 1.643 192327303232.53334.53637 0.867 1.050 1.233 1.369 1.461 1.484 1.506 1.575 1.643 1.689

Br = 12格 Br=0.548T

Hc =52.5A/m

Bs = 40格 Bs=1.826T

标定:

I10L x I M0L y 1501710019

2016磁滞回线的测量(实验报告材料)

实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,则相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复交换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几次变化(如H1→- H1→H1→- H1….),这样操作的结果,是在每一个电流下都将得到一条磁滞回线,最后,可得一组逐渐增大的磁滞回线。我们把原点O和各个磁滞回线的顶点a1、a2、….所连成的曲线称为铁磁材料的基本磁化曲线,如图3所示。 图3基本磁化曲线 (二)利用示波器观测铁磁材料动态磁滞回线测量原理 1、示波器显示B—H曲线原理线路 由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要根据磁化过程测定材料部的磁场强度和磁感应强度。因此,测量装置必须具备三个功能: ①提供使样品磁化的可调强度的磁场(磁化场) ②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度 ③可定量显示样品的磁化过程 图4 磁滞回线的测量原理图 图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:首先将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线圈即测量线圈N2匝,由它来跟踪测量与磁化场有一一对应关系的样品的磁感应强度;由示波器

铁磁质动态磁滞回线的测试

铁磁质动态磁滞回线的测试 一.实验目的 1.学会如何用示波器变相地测量非电压量的方法 2.了解用示波法测铁磁物质动态磁滞回线的基本原理 3.了解磁性材料的特性 二.实验原理 1.铁磁质和磁滞 在磁场的作用下,能发变化并能反过来影响磁场的媒质叫做磁介质,磁介质按其磁特性可分为铁磁质和非铁磁质(包括顺磁质和抗磁质)。工艺技术上广泛应用的磁性材料主要是铁磁性材料,铁,钴,镍及其许多合金以及含铁的氧化物(铁氧体)都属于铁磁质。磁化性能(或磁化规律)是指M 与B 之间的依从关系。由于 M U B H -=0 也可以说磁化性能是指M 与H 的关系或B与H的关系。实验易于测量B和H,所以我们用实验来研究B与H的关系。(图8-1)是一个典型的磁化曲线,表示磁化过程中磁化强度与磁场的变化关系。

OS表示对于未磁化的样品施加磁场H,随H增加磁化强度不断增加,当H增加到HS(称为饱和磁场强度)时磁化强度达到饱和强度M S,曲线OS称为起始磁化曲线。这条曲线的显著特点是它的非线性。达到饱和以后,再减小磁场,磁化强度并不是可逆地沿原始的磁化曲线下降,而是沿着图中SR变化,与起始磁化曲线并不重合在R点磁场已减为零,但磁化强度并没有消失。比较曲线OS段与SR段可知,虽然H减少时B也随时减少,但是B的减少“跟不上”H的减少,这种现象叫做磁滞(磁性滞后),B R称为剩磁。当磁场沿相反方向增加-H C到时,磁化才变为零,H C称为矫顽力。继续增加反向磁场到-H S可以使磁化强度将完成如图所示的回线SRCS’R’C’S,称为磁滞回线,上面的磁滞回线是令H从饱和磁化强度H S出发得到的,实际上,从起始磁化曲线上的任一点M(H M

动态压力测量方法

动态压力风洞实验数据处理软件 使用手册

目录 第一章绪论 (1) 1.1风洞数据采集系统特点 (1) 1.2风洞数据采集系统现状与发展 (2) 1.3本软件主要功能特点 (3) 第二章动态压力测量方法 (5) 2.1 测压导管的传递函数 (5) 2.2 两通道的传递函数 (6) 2.3 不同外径导管传递函数的模值比和相位差 (7) 2.4 动态数据处理技术 (11) 2.5 结论 (12) 第三章动态压力风洞实验数据处理软件的设计与实现 (13) 3.1 软件需求分析 (13) 3.2 软件功能设计 (14) 3.3软件流程设计 (15) 3.4 软件界面设计 (17) 第四章动态压力数据处理系统调试 (24) 4.1 动态线性度检定 (24) 4.2 动态误差限检定 (24)

第一章绪论 1.1风洞数据采集系统特点 风洞是进行空气动力学研究的重要试验装置。风洞试验装置包括测量系统、数据采集系统、模型姿态及控制系统、风速控制系统等。风洞试验中要采集大量的数据,主要有试验模型的升力、阻力、力矩、模型表面压、温度、洞体压力、模型角度等,这些数据依靠热线风速仪、压力扫描阀、应变天平、激光位移计、加速度传感器等进行量测。早期,风洞试验为人工读数和手动方式,试验周期长,数据量大,试验精度低,处理周期长。为了提高风洞试验效率、试验精度及试验水平,从20世纪70年代开始,各风洞逐步引入了数据采集系统。由数据采集系统负责将来自天平或压力传感器等测量系统的电信号转化成数据,通过多通道数据采集板,把传感器送出的模拟信号转化成数字信号送计算机存储。 风洞数据采集系统具有如下特点: (1)高速、高精度、具有强的抗干扰能力 风洞试验数据的精度直接影响到试验对象的空气动力学设计的正确性。风洞数据采集系统应具有高速、高精度、具有强的抗干扰能力。气动力系数中模型的阻尼系数△CX的试验精度要达到0.0001,风洞各参数测量精度要求为总压精度0.07%,静压精度0.07%,总温精度1%,法向力精度0.08%,轴向力精度0.08%,迎角精度0.01%。 目前计算机技术在速度和内存量等方面不断提高,为高速、高精度、多路并行采集以及实时数据传输等创造了必要的条件。单路A/D数据采集系统来分时采集的多路数据采集系统在风洞试验中己成为基本配置,但其不能满足真正的实时、同步采集的要求。并行动态数据采集系统已成为一个基本的发展趋势。它将多路A/D采集电路并行处置,用同一个触发信号同时启动各路A/D进行编码,保证了各路信号采集的严格同步性,对某瞬态时刻各路信号的分析具有十分重要的意义。同时由于不再使用模拟开关,使各路信号间的串模干扰减到了最小,系统精度可获得进一步提高。 (2)采集参数多,点数多

磁化曲线和磁滞回线测量

实验C 磁化曲线和磁滞回线测量 磁性材料应用广泛,扬声器永久磁铁、变压器铁芯、计算机磁盘等都采用磁性材料。铁磁材料分为硬磁和软磁两大类。硬磁材料的剩磁和矫顽力大(102 ~2?104 A/m),可做永久磁铁。软磁材料的剩磁和矫顽力小(102 A/m以下),容易磁化和去磁,广泛用于电机和仪表制造业。磁化曲线和磁滞回线是磁材料的重要特性,是变压器等设备设计的重要依据。 磁滞回线测量可分静态法和动态法。静态法是用直流来磁化材料,得到的B—H曲线称为静态磁磁滞回线。动态法是用交变来磁化材料,得到的B—H曲线称为动态磁滞回线。静态磁滞回线只与磁化磁场的大小有关,磁样品中只有磁滞损耗;而动态磁滞回线不仅与磁化磁场的大小有关,还与磁化场的频率有关,磁样品中不仅有磁滞损耗,还有涡流损耗。因此,同一磁材料在相同大小磁化场下,动态磁滞回线的面积比静态磁滞回线大,损耗大。 本实验采用动态法测量软磁样品的动态磁滞回线和磁化曲线,测量曲线可连续或逐点显示在LCD(液晶)屏上,直观、简便、物理过程清晰。 【实验目的】 1.了解磁滞回线和磁化曲线概念,加深对磁材料矫顽力、剩磁等参数的理解。 2.掌握磁材料磁化曲线和磁滞回线的测量方法,确定B s、B r和H c等参数。 3.探讨励磁电流频率对动态磁滞回线的影响。 【预备问题】 1.为什么测磁化曲线先要退磁? 2.为什么测量磁化曲线要进行磁锻炼? 3.为什么动态磁滞回线的面积比静态磁滞回线大,损耗大? 【实验仪器】 FC10-II型智能磁滞回线实验仪。 【实验原理】 1.铁磁材料的磁化规律 (1) 初始磁化曲线 在强度为H的磁场中放入铁磁物质,则铁磁物质被磁化, 其磁感应强度B与H的关系为:B = μ H,μ为磁导率。对于 铁磁物质,μ不是常数,而是H的函数。如图1所示,当铁 磁材料从H=0开始磁化时,B随H逐步增大,当H增加到 H s时,B趋于饱和值B s,H s称为饱和磁场强度。从未磁化到 饱和磁化的这段磁化曲线OS,称为初始磁化曲线。 图1初始磁化曲线 (2) 磁滞回线

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

固体表面动态接触角的测定

固体表面动态接触角的测定 一.目的与要求 1.了解固体表面接触角的测量及表面能的计算原理。 2.掌握润湿周长、接触角、表面能的实验测试方法及实验操作。 二.仪器与药品 DCA-150界面分析仪 正己烷(A.R.);无水乙醇(A.R.);二次蒸馏水;聚苯乙烯(Pst)样品 三.基本原理 接触角是表征固体物质润湿性最基本的参数之一,据测量的原理的不同,接触角又可分成平衡接触角和动态接触角(dynamic contact angle),动态接触角(包括前进接触角(advancing contact angle)和后退接触角(receding contact angle)两种。 早在20世纪初期,Wilhelmy测试液体表面张力及接触角的方法:将一定的待测液体装在特定容器中,尽可能垂直固定悬挂的铂金板,升起液面至刚好与铂金板的下边缘相接触,此时铂金板受到液面向下的拉力即为液体的表面张力r r = F w / (L·cosθ) (1) r-液体表面张力(Dyn /cm);F w —吊片所受的力(Dyn);L—润湿周长(cm);θ—接触角(°); 由于绝大多数的液体对于°铂金是完全润湿的,即接触角θ为0°,所以只要知道润湿周长,就可从(1)式很方便计算得到液体的表面张力 1.平衡接触角 又叫静态接触角,根据Wilhelmy理论,只要将待测固体加工成规定尺寸的片状样品,然后垂直悬挂与已知表面张力的液面接触,同样可以依据(1)计算得到液体在固体表面的平衡接触角。 2.动态接触角 Wilhelmy法:如图2依据Wilhelmy理论,把样品板插入到液体中然后抽出来,通过测量样品板受力变化计算得到液体在固体表面的动态接触角的大小。

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

物理实验报告2_用示波器测动态磁滞回线

实验名称:用示波器测动态磁滞回线 实验目的: a .研究铁磁材料的动态磁滞回线 b .了解采用示波器测动态磁滞回线的原理; c .利用作图法测定磁性材料的饱和磁感应强度s B 、剩磁r B 、矫顽力c H 的值。 实验仪器: V252双踪示波器、自耦变压器、隔离变压器、互感器毫安表、电容等。 实验原理和方法: 铁磁材料除了具有高的导磁率外,另一重要的特点就是磁滞。当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。 如右图所示,曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 增加,称为磁化曲线。当H 增加到某一值S H 时,B 的增加速度将极其缓慢。和前段曲线相比,可看成B 不再增加,即达到磁饱和。当磁性材料磁化后,如H 减小,B 将不沿原路返回,而是沿另外一条曲线r A 下降。如果H 从S H 变到-S H ,再从-S H 变回S H ,B 将随H 变化而形成一条磁滞回线。其中当H = 0时,r B B =。r B 称为剩余磁感应强度。要使磁感应 强度为零,就必须加一反向磁场-c H ,c H 称为矫顽力。按一般分类,矫顽力小的称为软磁材料,大的称为硬磁材料。必须注意的是:反复磁化(S S S H H H →-→)的开始几个循环内,每次循环的回路才相同,形成一个稳定的磁滞回线。只有经过“磁锻炼”后所形成的磁滞回线,才能代表该材料的磁滞性质。 由以上可知,要测定材料的磁滞回线,需要根据磁化过程测定材料内部的磁场强度H 及其相应的磁感应强度B 。 磁性材料的磁滞回线能较全面地反应该材料的磁特性,譬如剩磁r B 、矫顽力c H 等。因此,实用上常常借助磁滞回线来粗略了解材料的磁特性。测量磁滞回线的基本线路图如下图所示:

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告 铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。2测定样品的基本磁化曲线作H 曲线。3测定样品的Hc、Br、Bm和 Hm?6?1Bm等参数。4测绘样品的磁滞回线。【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。其特征是在外磁场作用下能被强烈磁化故磁导率很高。另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。交流电压u加在磁化线圈上线路中串联了一取样电阻R1。将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。副线圈n与电阻R2和电容C串联成一回路。电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。下面我们来说明为什么这样的电路能够显示和测量磁滞回线。

示波器观测动态磁滞回线

示波器观测动态磁滞回线 一、用示波器观测动态磁滞回线简介: 1. 实验原理。 参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。 2. 测量电路。 3. 相关公式 1R 1 1N H R u =l 2C 2R C B N S u = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。 对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 4. 名词术语: 1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。 对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。 2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回

线。它是相对于原点对称的闭合曲线。(样品测量前需要先磁中性化) 3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0B M H μ=?随H 的增大不再增大,由这样的循环变化磁化场得到的 磁滞回线称为饱和磁滞回线。 饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。 饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。 饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。 4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接 起来的曲线。(样品测量前需要先磁中性化) 5) 起始磁导率i μ:磁导率μ定义为0B H μμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00 B lim H μμ→=。 6) 可逆磁导率r μ:当一个直流磁场H 和一个很弱的交变磁场h 同时作用在铁磁材料上时,直流磁场H (也称为直流偏磁场)使铁磁材料偏离磁中性化状态,h 引起磁感应强度B 的交流变化b 。当h 0→ 时,由h 产生的退化磁滞回线(即一条斜线)的斜率与0μ的比值称为可逆磁导率r μ,即00 lim r h b h μμΔ→Δ=Δ,其中h Δ和b Δ分别是h 和b 的变化范围。r μ是H 的函数,一般H 越大,r μ越小。 二、实验内容: 1. 观测样品1(铁氧体)的饱和磁滞回线。 1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =,调节励磁电流大小 及示波器的垂直、水平位移旋钮,在示波器显示屏上调出一个相对于坐标原点对称的饱和磁滞回线。在回线的上半支上,从-B S 到B S 选取9个以上测量点(其中必须包括S B ,B 0=,H 0=三个点),测量各点的H 和B 。根据测量的数据在坐标纸上画出饱和磁滞回线。给出S B ,r B ,C H 的测量值。 2) 保持1R ,R 2C 不变,测量并比较f =50Hz 和150Hz 时的r B 和C H 。

透析动态几何问题思考角度与分析方法

透析动态几何问题思考角度与分析方法 【摘要】以运动的观点来探索几何图形部分规律的问题称之为动态几何问题,本文主要通过动点问题和动线问题来分析解决动态几何存在的问题。 【关键词】几何问题;几何图形;动态几何;动点问题;动线问题;动图问题 以运动的观点来探索几何图形部分规律的问题称之为动态几何 问题,其特点是图形中的某个元素(点、线段、角等)或整个几何图形按某种规律运动,图形的各个元素在运动变化的过程中互相依存、和谐统一,体现了数学中的“变”与“不变”及由简单到复杂、由特殊到一般的辩证思想,它集代数与几何、概率统计等众多知识于一体,渗透了分类讨论、转化、数形结合、函数、方程等重要数学思想方法,问题具有开放性、综合性,近几年来,从中考考题上看,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力,更重要的是考查探索创新能力。 解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。

有关动态问题主要要有三类:动点问题、动线问题、动图问题。题型一:点动型 点动型就是在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。 解决此类动点几何问题常常用的是“类比发现法”,也就是通过对两个或几个相类似的数学研究对象的异同进行观察和比较,从一个容易探索的研究对象所具有的性质入手,去猜想另一个或几个类似图形所具有的类似性质,从而获得相关结论。类比发现法大致可遵循如下步骤:①根据已知条件,先从动态的角度去分析观察可能出现的情况。②结合某一相应图形,以静制动,运用所学知识(常见的有三角形全等、三角形相似等)得出相关结论。③类比猜想出其他情况中的图形所具有的性质。 例1:(1)如图①,当点m在点b左侧时,请你判断en与mf有怎样的数量关系?点f是否在直线ne上?都请直接写出结论,不必证明或说明理由; (2)如图②,当点m在bc上时,其它条件不变,(1)的结论中en与mf的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由; (3)若点m在点c右侧时,请你在图③中画出相应的图形,并判断(1)的结论中en与mf的数量关系是否仍然成立?若成立?请

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

实验38 磁性材料磁滞回线测定

大学物理实验教案 实验名称:磁性材料磁滞回线测定 1 实验目的 1)了解用示波器测量动态磁滞回线的原理和方法; 2)了解磁性材料的基本磁化特性; 3)掌握磁化曲线和磁滞回线的测量方法; 4)进一步熟悉数字示波器的使用。 2 实验仪器 DM-1型磁滞回线测试仪 数字示波器 微型计算机 3 实验原理 磁性材料在工程、电力、信息、交通等领域有着广泛的应用,测定磁滞回线是电磁学中的一个重要内容,是研究和应用磁性材料最有效的方法之一。 铁磁物质具有保持原先磁化状态的性质,铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。这是铁磁物质的一个重要特征。 铁磁材料被磁化后,磁场强度H 减小时,磁感应强度B 的不沿原曲线变化,当磁场强度H 减少到零时,磁感应强度B 仍保留一定的数值,这称之为剩磁r B 。继续减小磁场强度H ,当H 达到某一负值时,磁感应强度B 变为零,此时的磁场强度H 称为矫顽力C H 。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示。当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线(如图38-1所示),它表示铁磁材料的一个基本特征。它的形状、大小,均有一定的实用意义。比如材料的磁滞损耗就与回线面积成正比磁滞回线所包围的面积表示在铁磁物质通过一个磁化循环过程中所消耗的能量,叫做磁滞损耗。 当从初始状态H =0、B =0开始改变磁场强度H ,在磁场强度H 从小到大的单调增加过程中,不同磁化电流所对应的磁滞回线正顶点的连线叫基本磁化曲线。 退磁方法,从理论上分析,要消除剩磁r B ,只要通一反向电流,使外加磁场刚好等于铁磁材料的矫顽力C H 就可以了,但是通常不知道矫顽力C H 的大小,所以无法确定所通反向电流的大小。我们可以从磁滞回线中得到启示,如果是铁磁材料磁化达到饱和,然后不断改变磁化电流的方向,与此同时逐渐减小磁化电流,一直减小到零,这样就可以达到退磁的目的。 图 38 –1磁滞回线 利用示波器测动态磁滞回线的原理电路如图38-2所示。将样品制成闭合的环形,其上均匀地绕以磁化线圈1N 及副线圈2N 。交流电压1u 加在磁化线圈上,线路中串联了一取样电阻1R 。将1R 两端地电压1u 加到示波器的X 输入端上。副线圈2N 与电阻2R

动态接触角及接触角滞后的测量

动态接触角及接触角滞后性的测量 用座滴法测量动态接触角有二种基本的方法: 1) 加液/减液法 就是在形成液滴后,再继续以很低的速度往液滴加入液体,使其体积不断增大。开始时,液滴与固体表面的接触面积并不发生变化,但接触角渐渐增大。当液滴的体积增大到某一临街值时,液滴在固体表面的三相接触线发生往外移动,而在发生移动前瞬间的接触角,被称为前进角。在此之后,接触角基本保持不变。 反之如果从一形成的液滴不断地以很低的速度把液体移走,使其体积减小。开始时,液滴与固体表面的接触面积也并不发生变化,但接触角渐渐减小。当液滴的体积减小到一定值时,液滴在固体表面的固/液/气三相接触线开始往里移动。在发生这一移动前夕的 接触角,就是后退角。在此之后,接触角也应基本保持不变。 1)加液/减液法测量前进/后退接触角 在运用这一方法时,必须注意以下几点: ?体积变化的速度应足够低,尽量保证液滴在整个过程有足够的时间来松弛,使得测量能在准平衡下进行。 ?由于这一过程中一般都有针头/毛细管的卷入以加入/移走液体,针头/毛细管的直径一定要(与液滴相比)足够小,使液体在针管/毛细管外壁上的润湿不会对液滴在固体表面的接触角产生影响。这一点尤其是对后退角的测量更为突出,否则测得的值将严重偏离真实值。 ?同样由于过程中针头/毛细管的卷入,使得液滴一般不再呈现中心轴对称,也不再能被看作是圆或椭圆的一部分,所以基于Young-Laplace或圆或椭圆方程式的计算方法都将遇到困难,带来较大误差。此时一般使用广义切线法,但此方法往往对少量的背景噪音较敏感。

2) 倾斜板(tilting plate)法 将一足够大体积的液滴置于待测的样品表面后,把样品表面朝一方缓慢、不断地倾 斜。当开始时液滴不发生移动,而只是其中的液体由后方向前方转移,使得前方的接触角不断增大,而后方的不断缩小。当倾斜到一定角度时,液滴开始发生滑动。发生滑动 前夕液滴的前角就是前进角,后角则为后退角。 2)倾斜板(tilting plate)测量前进/后退/起始滚动角 倾斜板法有二种实现方法: ?整体倾斜法:将整套测量仪置于摇篮状的倾斜架上,让包括摄像机,光学镜头,样品台,样品和光源等组件的整套仪器同时倾斜。这种构造和操作的主要优点在于:液滴相对于摄像机和光学镜头在整个过程中保持相对不倾斜,这样软件开发上就不必特殊处理,计算比较容易。而其缺点也很为明显:仪器越大、样品越大/越重,所需要的倾斜架也越大,显得很笨重;由于仪器上的所有东西都跟着一起倾斜,使得有些液体会倒出来,同时使得在倾斜作态无法加液产生液滴,也即液滴必须在倾斜前已经被置于样品表面。 ?局部倾斜法:只倾斜样品台和其上面的样品包括可能已放置上去的液滴,其它的所有部件均不倾向,保持不动。这样做法的优点显而易见,可以避免上面提到的所有缺点,使得仪器精巧,硬件制造成本降低,也能容许在任何倾斜角度下加液形成新液滴,或往已经形成的液滴加入液体。但其也对软件的开发提出了新的挑战,增加了不少难度和复杂性。

磁滞回线的测量(实验报告记录)()

磁滞回线的测量(实验报告记录)()

————————————————————————————————作者:————————————————————————————————日期: 2

实验名称:用示波器观测铁磁材料的动态磁滞回线 姓名学号班级 桌号教室基础教学楼1101 实验日期2016年月日节 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成! 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共15页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁化曲线 石家庄铁道大学物理实验中心第4页共15页

石家庄 铁道大学物理实验中心 第5页 共15页 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现B H B ~H H μB ~H S f d e

经纬仪测角原理及动态测角精度

经纬仪测角原理及动态测角精度 瞿惠 (大学精密机械工程系 200072) 摘要:现代经纬仪具有实时测量、高精度、自动跟踪监控和易于图像再现等优点。根据光电经纬仪的工作状态, 其测量误差又可以分为静态误差和动态误差。本文研制了测量用旋转靶标,靶标即可以提供以一定角速度或角加速度运动的空间仿真目标,又能够记录目标的实时空间位置,以靶标记录的数据为真值,光电经纬仪跟踪目标所测量的数据与真值比较,可得到光电经纬仪的动态测角精度。 关键词: 经纬仪;动态测角精度;旋转靶标 Angle measuring principle and dynamic angle precision of Theodolite Quhui (Department of Precision Mechanical Engineering, Shanghai University, Shanghai 200072) Abstract: Modern theodolite has many advantages, such as real - time measurement , high accuracy, auto - tracking monitoring and easy image reconstruction . According to working status of the theodolite, its measuring error can be divided into static state error and dynamic state error .Rotary target was established, and it was used to test dynamic angle precision of photoelectric theodolite in laboratory ,Simulation aim was provided and space positions of aim were real—time recoded by target.The aim can move as definite angle speed or as max angle acceleration.Data of target was considered as real—Value of aim.Test date of photoelectric theodolite was compared with it.and the dynamic angle precision was obtained. Key words: theodolite;dynamic angle precision;rotary target. 1 引言 经纬仪是采用电视测量技术,具有自动跟踪和实时测量功能的光电测量设备,主要用于飞机、轮船、星体等特种试验场空间目标运动轨迹的测量。动态测角精度是指光电经纬仪在规定的角速度和角加速度运动状态下,实时测量的目标空间指向值与真值之差,是衡量光电经纬仪最重要的技术指标之一。长期以来,光电经纬仪的动态测角精度一直在外场,通过实测某一飞行目标并与其它高精度设备比对的方法进行验证。由于外场试验受气候、费用、时间等条件的限制,无法经常进行,因此,研究室测量方法和测量设备是非常必要和急需的. 2 电子经纬仪的测角原理 一般来说,我们将电子经纬仪的测角原理分为增量式和绝对式两种。增量式基于光栅莫尔条纹原理,其最终读数在仪器回转过程中形成,往往有一个最大回转速度的限制。绝对式基于码盘原理,

动态磁滞回线测量

清华大学试验报告纸 系别 机械工程系 班级 机械51班 姓名 陈璞做实验日期 2007年3 月30日 教师评定 用示波器测动态磁滞回线 [实验目的] (1) 了解用示波器测量动态磁滞回线的原理和方法; (2) 根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽 力Hc的数值; (3) 进一步学习示波器显示利萨如图形的方法。 [实验原理] 利用示波器测动态磁滞回线的原理电路图如图所示。 将样品制成闭合的环形,其上均匀的绕有磁化线圈N1以及副线圈 N2。交流电压u加载磁化线圈上,线路上串联了一取样电阻R1。将R1两端的电压u1加到示波器的X输入端上。副线圈N2与电阻R2和电容R串联成一回路。电容C两端的电压u c加到示波器的Y输入端上。 1、u1与磁场强度H成正比 设环状样品的平均周长为l,磁化线圈的匝数为N1,磁化电流为i1(注意这是交流电的瞬时值),根据安培环路定律有Hl= N1 i1,即i1= Hl/ N1。而u1= R1 i1,所以可得 式中R1,l和N1皆为常数,可见u1与H成正比。它表明示波器荧光屏上的电子束偏转的大小与样品中的磁场强度成正比。 2、u c(Y输入)在一定条件下与磁感应强度B成正比 设样品的截面积为S,根据电磁感应定律,在匝数为的N2的副线圈中的

感应电动势应为 若副边回路中的电流为i2且电容C上的电量为q,则应有 在上式中已考虑到副线圈匝数N2较小,因而自感电动势可忽略不计。在选定线路参数时,有意将R2与C都选成足够大,使电容C上的电压降u c =q/C比起电阻上的电压降小到可以忽略不计。于是,公式可以近似为将关系式代入得到 不考虑其负号时,两式比较得到 将等式两边对时间积分,由于B和u c都是交变的,积分常数为0。整理后得到 式中、S、和C皆为常数,可见与成正比,也就是说示波器荧光屏上的电子竖直方向偏转的大小与磁感强度成正比。 至此,可以看出,在磁化电流变化的一周期内,示波器的光点将描绘出一条完整的磁滞回线。以后每个周期都重复此工程,结果在示波器的荧光屏上看到一稳定的辞职回线图形。 实际测量中的电路为了使R1上的电压降u1与流过的电流i1二者的瞬时值成正比(相位相同),R1必须是无感或电感很小的电阻。其次为了操作安全和调节方便,在线路中采用了一个隔离降压变压器T,以避免后面的电路元件与220V市电直接相连。调压变压器用来调节输入电压以控制磁化电流i1的大小。在本实验中样品MS是一用冷轧硅钢片制成的C 形铁芯。 前面已说明了示波器荧光屏上可以显示出待测材料动态磁滞回线的原理。但在实验中,还需确定示波器荧光屏上X轴的每一小格代表多少安/米,Y轴的每一小格实际代表多少特斯拉。这就是所谓的标定问题。 3、X轴的标定 R0 T ~220V 200 Y X R1 标定H的线路图 由于只要用实验发放测出光点沿X轴的偏转大小与电压u1的关系,进

相关文档
最新文档