三角形问题的等价类测试用例

三角形问题的等价类测试用例
三角形问题的等价类测试用例

四种可能出现的输出:非三角形、不等边三角形、等腰三角形和等边三角形

可以使用这些输出标识如下所示的输出(值域)等价类:

R1={〈a,b,c〉:有三条边a、b和c的等边三角形}

R2={〈a,b,c〉:有三条边a、b和c的等腰三角形}

R3={〈a,b,c〉:有三条边a、b和c的不等边三角形}

R4={〈a,b,c〉:三条边a、b和c不构成三角形}

四个弱一般等价类测试用例是:

测试用例 a b c 预期输出

WN1 5 5 5 等边三角形

WN2 2 2 3 等腰三角形

WN3 3 4 5 不等边三角形

WN4 4 1 2 非三角形

由于变量a、b和c没有有效区间,则强一般等价类测试用例与弱一般等价类测试用例相同。

考虑a、b和c的无效值产生的以下额外弱健壮等价类测试用例:

测试用例 a b c 预期输出

WR1 -1 5 5 a取值不在所允许的取值值域内

WR2 5 -1 5 b取值不在所允许的取值值域内

WR3 5 5 -1 c取值不在所允许的取值值域内

WR4 201 5 5 a取值不在所允许的取值值域内

WR5 5 201 5 b取值不在所允许的取值值域内

WR6 5 5 201 c取值不在所允许的取值值域内

以下是额外强健壮性等价类测试用例三维立方的一个“角”:

测试用例 a b c 预期输出

SR1 -1 5 5 a取值不在所允许的取值值域内

SR2 5 -1 5 b取值不在所允许的取值值域内

SR3 5 5 -1 c取值不在所允许的取值值域内

SR4 -1 -1 5 a、b取值不在所允许的取值值域内SR5 5 -1 -1 b、c取值不在所允许的取值值域内SR6 -1 5 -1 a、c取值不在所允许的取值值域内SR7 -1 -1 -1 a、b、c取值不在所允许的取值值域内

测试用例编写之等价类划分法

测试用例编写之等价类划分法 一、概念 等价类划分法指把所有可能的输入数据,即程序的输入域分成若干个部分(子集)后,从每个子集中选取少数具有代表性的数据作为测试用例的方法。是一种重要且常用的黑盒测试的测试用例设计方法。 二、等价类划分 等价类可分为两种情况:有效等价类与无效等价类。有效等价类是指:对程序的规格说明是有意义的、合理的输入数据所构成的集合;无效等价类意义与之相反。 三、确定等价类的规则 如何确定等价类,这是使用等价类划分方法的一个重要问题。等价类的划分在很大程度上是试探性的,一般规则如下: 1)如果输入条件规定了取值的范围或取值的个数([0,99]),则可确定一个有效等价类和两个无效等价类(<0 ;[0,99];>99); 2)如果一个输入条件说明了一个“必须成立的”情况(如变量名必须以字母开头),则可划分一个有效等价类(以字母开头)和一个无效等价类(不以字母开头); 3)如果输入条件规定了输入数据的一组可能的值,而且程序是用不同的方式处理每一种值,则可为每一种值划分一个有效等价类,并划分一个无效等价类; 4)如果某个输入条件规定了一个输入值得离合(即离散值),且程序对不同的输入值做不同的处理,那么每个允许的值确定为一个有效等价类,另外还有一个无效等价类。(任意一个不允许输入的值、)例:优、良、中、差,则此时有4个有效等价类和1个无效等价类(非优、良、中、差的值就为无效) 5)如果某个输入条件规定输入数据是整型,那么可以确定3个有效等价类(正整数、零、负整数)和一个无效等价类(非整数)。 6)如果某个输入条件规定处理的对象是表格,那么可确定一个有效等价类(表有1项或多项)和一个无效等价类(空表)。 7)如果能够确知,已划分的某等价类中的各元素在程序中的处理方式是不同的,则应据此将此等价类进一步划分成更小的等价类。 四、建立步骤 根据已列出的等价类表,按以下步骤确定测试用例: 1) 为每个等价类规定一个唯一的编号; 2) 设计一个测试用例,使其尽可能多地覆盖尚未覆盖的有效等价类,重复这一步,最后使得所有的有效等价类都被测试用例所覆盖;

黑盒测试用例设计案例

黑盒测试用例设计案例 【例1】假设现有以下的三角形分类程序。该程序的功能是,读入代表三角形边长的3个整数,判定它们能否组成三角形。如果能够,则输出三角形是等边、等腰或任意三角形的分类信息。图9.11显示了该程序的流程图和程序图。为以上的三角形分类程序设计一组测试用例。 【解】 第一步:确定测试策略。在本例中,对被测程序的功能有明确的要求,即:

(1)判断能否组成三角形; (2)识别等边三角形; (3)识别等腰三角形; (4)识别任意三角形。因此可首先用黑盒法设计测试用例,然后用白盒法验证其完整性,必要时再进行补充。 第二步:根据本例的实际情况,在黑盒法中首先可用等价分类法划分输入的等价类,然后用边界值分析法和猜错法作补充。 等价分类法: 有效等价类 输入3个正整数: (1)3数相等 (2)3数中有2个数相等,比如AB相等 (3)3数中有2个数相等,比如BC相等 (4)3数中有2个数相等,比如AC相等 (5)3数均不相等 (6)2数之和不大于第3数,比如最大数是A

(7)2数之和不大于第3数,比如最大数是B (8)2数之和不大于第3数,比如最大数是C 无效等价类: (9)含有零数据 (10)含有负整数 (11)少于3个整数 (12)含有非整数 (13)含有非数字符 边界值法: (14)2数之和等于第3数 猜错法: (15)输入3个零 (16)输入3个负数 第三步:提出一组初步的测试用例,如下表所示:

第四步:用白盒法验证第三步产生的测试用例的充分性。结果表明,上表中的前8个测试用例,已能满足对被测程序图的完全覆盖,不需要再补充其他的测试用例。

功能测试用例的设计

功能测试用例的设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、实验目的 1.用因果图法分析原因结果,并决策表设计测试用例。 2.使用场景法设计测试用例。 二、实验内容 1. 将三角形问题的可能结果扩展为:一般三角形、等腰三角形、等边三角形、直角三角形、等腰直角三角形和非三角形,考虑用因果图法设计测试用例,给出完整步骤。 2. 有一个在线购物的实例,用户进入一个在线购物网站进行购物,选购物品后,进行在线购买,这时需要使用帐号密码登录,登录成功后,进行付钱交易,交易成功后,生成订购单,完成整个购物过程。使用场景法设计上述问题的测试用例。 三、实验环境 Windows XP系统 四、实验步骤和结果 1. 将三角形问题的可能结果扩展为:一般三角形、等腰三角形、等边三角形、直角三角形、等腰直角三角形和非三角形,用因果图法设计测试用例,给出完整步骤。具体如下: 1)输入的三边分别为a,b,c(斜边) 且a

2. 行在线购买,这时需要使用帐号密码登录,登录成功后,进行付钱交易,交易成功后,生成订购单,完成整个购物过程。使用场景法设计上述问题的测试用例。

(注:在下面的矩阵中,V(有效)用于表明这个条件必须是 VALID(有效的)才可执行基本流,而 I(无效)用于表明这种条件下将激活所需备选流,“n/a”(不适用)表 对生成的所有测试用例重新复审,去掉多余的测试用例,测试用例确定后,对每一个测

五、实验结果和讨论 成功使用因果图法、场景法设计了测试用例。 六、总结 1.因果图法的定义是一种利用图解法分析输入的各种组合情况,从而设计测试用例的方法,它适合于检查程序输入条件的各种组合情况。 2.在事件触发机制中场景法用得最多。在测试一个软件的时候,先确定基本流也就是测试流程中软件功能按照正确的事件流实现的一条正确流程,接着去确定备选流也就是那些出现故障或缺陷的过程,用备选流加以标注。然后可以采用矩阵或决策表来确定和管理测试用例。

三角形测试(测试用例)

三角形测试用例 题目:输入三个数a、b、c分别作为三边的边长构成三角形。通过程序判定所构成的三角形是一般三角形、等腰三角形还是等边三角形时。用等价类划分方法为该程序设计测试用例。 在三角形计算中,要求三角形的三个边长:A B C。 1、当三边不可能构成三角形时提示错误,可构成三角形时计算三角形周长。 2、若是等腰三角形打印“等腰三角形”,若两个等腰的平方和等于第三边平方和,则打印“等腰直角三角形”。 3、若是等边三角形,则打印:“等边三角形”。 4、画出程序流程图并设计一个测试用例。 分析一下: 1、构成三角形的条件:任意两边之和大于第三边; 2、构成等腰三角形的条件:任意两边相等; 3、构成等腰直角三角形的条件:任意两边相等,而且两条边的平方和等于第三边的平方和; 4、构成等边三角形的条件:三条边都相等。 那么用什么样的设计方法进行测试用例的设计呢? 一、等价类划分:三角形三条边A、B、C的数据类型不同 二、边界值分析:由于三角形的边长可以是正整数或正小数,所以就不对长度进行测试,那么边界值分析就不用了 三、因果图法:三角形的三条边数据输入组合 我们看一下三角形的流程图: 注:改正一个小错误,在判断是否是等腰直角三角形中 A的平方=B的平方+C的平方。由于画图时,网络速度问题,导致真或假的值没有标注。 三角形等价类列表 判定类型有效等价类 无效等价类

一般三角形 ((a>0) Λ(b>0) Λ(c>0))Λ (a<=0 V b<=0 V c<=0) Λ (((a+b)>c) V ((a+c)>b) V ((b+c)>a)) (1) (((a+b)<=c) V ((a+c)<=b) V ((b+c)<=a)) (2) 等腰三角形 (1) Λ (a=b V a=c V b=c)(3) (2) V (a!=b Λ b!=c Λ a!=c) (4) 等边三角形 (1) Λ (a=b=c ) (5) (2) V (a!=b!=c)(6) 根据上表组成的测试用例: 三角形等价类测试用例 ID 输入数据覆盖测试用例输出结果 a b c 1 3 4 5 (1) 一般三角形 2 0 4 5 (2) 非(一般)三角形 3 3 0 5 (2) 4 3 4 0 (2) 5 1 4 5 (2) 6 3 8 5 (2) 7 3 2 1 (2) 8 3 3 5 (3) 等腰三角形 9 3 4 3 10 3 4 4 #include void main () {

等价类划分法实例

分析题目中给出和隐含的对输入条件的要求: (1)整数 (2)三个数 (3)非零数 (4)正数 (5)两边之和大于第三边 (6)等腰 (7)等边 如果 a 、 b 、 c 满足条件( 1 ) ~ ( 4 ),则输出下列四种情况之一: 1)如果不满足条件(5),则程序输出为 " 非三角形 " 。 2)如果三条边相等即满足条件(7),则程序输出为 " 等边三角形 " 。 3)如果只有两条边相等、即满足条件(6),则程序输出为 " 等腰三角形 " 。 4)如果三条边都不相等,则程序输出为 " 一般三角形 " 。 列出等价类表并编号 覆盖有效等价类的测试用例: a b c 覆盖等价类号码 3 4 5 (1)--(7) 4 4 5 (1)--(7),(8) 4 5 5 (1)--(7),(9) 5 4 5 (1)--(7),(10) 4 4 4 (1)--(7),(11) 覆盖无效等价类的测试用例: 2. 设有一个档案管理系统,要求用户输入以年月表示的日期。假设日期限定在1990 年1月~2049年12月,并规定日期由6位数字字符组成,前4位表示年,后2位表示月。现用等价类划分法设计测试用例,来测试程序的"日期检查功能 "。(不考虑2月的问题) 1)划分等价类并编号,下表等价类划分的结果

2)设计测试用例,以便覆盖所有的有效等价类在表中列出了3个有效等价类,编号分 别为①、⑤、⑧,设计的测试用例如下: 测试数据期望结果覆盖的有效等价类 200211 输入有效①、⑤、⑧ 3)为每一个无效等价类设计一个测试用例,设计结果如下: 测试数据期望结果覆盖的无效等价类 95June 无效输入② 20036 无效输入③ 2001006 无效输入④ 198912 无效输入⑥ 200401 无效输入⑦ 200100 无效输入⑨ 200113 无效输入⑩ 3.NextDate 函数包含三个变量:month 、 day 和 year ,函数的输出为输入日期 后一天的日期。例如,输入为 2006年3月 7日,则函数的输出为 2006年3月8日。 要求输入变量 month 、 day 和 year 均为整数值,并且满足下列条件: ①1≤month≤12 ②1≤day≤31 ③1920≤year≤2050 1)有效等价类为: M1={月份:1≤月份≤12} D1={日期:1≤日期≤31} Y1={年:1812≤年≤2012} 2)若条件① ~ ③中任何一个条件失效,则 NextDate 函数都会产生一个输出,指明相 应的变量超出取值范围,比如 "month 的值不在 1-12 范围当中 " 。显然还存在着大量的 year 、 month 、 day 的无效组合, NextDate 函数将这些组合作统一的输出: " 无效输入日期 " 。其无效等价类为: M2={月份:月份<1} M3={月份:月份>12} D2={日期:日期<1} D3={日期:日期>31} Y2={年:年<1812} Y3={年:年>2012} 弱一般等价类测试用例 月份日期年预期输出 6 15 1912 1912年6月16 日 强一般等价类测试用例同弱一般等价类测试用例

请写出判断三角形的代码设计用例达到测试效果语句覆盖判定覆盖条件组合覆盖基本路径测试法

请写出判断三角形的代码,设计用例达到测试效果 语句覆盖 判定覆盖 条件组合覆盖 #include void main() { int a, b, c; printf("please enter three integer:"); scanf("%d%d%d", &a, &b, &c); if(0c && a+c>b && c+b>a) { if(a==b && b==c && a==c) //这里可以省掉一个判断 { printf("1是等边三角形"); } else { if(a==b || b==c || a==c) { printf("2是等腰三角形"); } else { if(a*a+b*b==c*c || a*a+c*c==b*b || b*b+c*c==a*a) { printf("3是直角三角形"); } else { printf("4是一般三角形"); } } } } else { printf("5不能组成三角形"); } } else {

printf("6某些边不满足限制"); } } 1.为三角形程序开发判定/条件覆盖和条件组合覆盖的测试用例。 1)判定/条件覆盖 对于第一个判定a>0&&b>0&&c>0 : 条件a>0 取真值记为T1,取假值记为-T1 条件b>0 取真值记为T2,取假值记为-T2 条件c>0 取真值记为T3,取假值记为-T3 对于第二个判定( a+b>c)&&(a+c>b)&&(b+c>a ): 条件a+b>c 取真值记为T4,取假值记为-T4 条件a+c>b 取真值记为T5,取假值记为-T5 条件b+c>a 取真值记为T6,取假值记为-T6

教学项目:判断三角形类型程序的测试

教学项目:判断三角形类型程序的测试 需求:(程序的规格说明要求) 有一个程序,用来判断一个三角形的类型。输入三个整数a、b和c分别作为三角形的三条边的边长,通过程序来判断由这三条边构成的三角形类型是等边三角形、等腰三角形、一般三角形还是非三角形(不能构成一个三角形)。用决策表法对该程序进行测试。 分析:等价类划分法和边界值分析方法的局限性 等价类划分法和边界值分析方法比较适合输入变量或输入条件相互独立的情况,但是当输入变量或输入条件相互依赖、相互制约的时候,采用等价类划分法和边界值分析方法是难以描述的,测试效果也很难保障。 在一些数据处理问题当中,某些操作的实施依赖于多个逻辑条件的组合,即:针对不同逻辑条件的组合值,分别执行不同的操作。决策表很适合于处理这类问题。 分析:什么是决策表? 1、决策表也称判定表,是分析和表达多逻辑条件下执行不同操作的情况的工具。 2、决策表能够将复杂的问题按照各种可能的情况全部列举出来,简明并避免遗漏,设计出完整的测试用例集合。 在所有的黑盒测试方法中,基于决策表(也称判定表)的测试是最为严格、最具有逻辑性的测试方法。 知识点:采用决策表法设计测试用例的步骤: (1)列出所有的条件桩和动作桩。 (2)确定规则的个数。 有n个条件(每个条件取真、假值的情况)的决策表有2n个规则。 (3)填入条件项。 (4)填入动作项,得到初始决策表。 (5)简化决策表,合并相似规则(相同动作)。 如果两条或多条规则的动作项相同,条件项只有一项不同,则可以将该项合并,合并后的条件项用符号“-”表示,说明执行的动作与该条件的取值无关,称为无关条件。 (6)根据决策表设计测试用例。 一条规则一个测试用例,排除掉不可能的规则。 解答: (1)列出所有的条件桩和动作桩。 条件桩—列出问题的所有条件。(通常认为列出的条件的先后次序无关紧要) 动作桩—列出问题规定的可能采取的操作。(这些操作的排列顺序没有约束) 运用决策表设计测试用例时,可将条件理解为输入,将动作理解为输出。 分析:这一步是关键,如何得到三角问题的“条件桩”和“行动桩” ? 我们可以通过分析三角问题的处理过程得到: 当判断出a=b=c时,程序输出“等边三角形”。 当判断出a=b或b=c或a=c时,程序输出“等腰三角形”。 当a!=b且b!= c且c!=a时,程序输出“一般三角形” 可以看出程序的输出由a,b,c之间是否相等的关系决定,即a=b?, a=c?, b=c?,这样我们可以把a=b?, a=c?, b=c?当作条件桩,把程序的输出当作动作桩。

三角形问题的等价类测试用例

三角形问题的等价类测试用例 四种可能出现的输出:非三角形、不等边三角形、等腰三角形和等边三角形 可以使用这些输出标识如下所示的输出(值域)等价类: R1={〈a,b,c〉:有三条边a、b和c的等边三角形} R2={〈a,b,c〉:有三条边a、b和c的等腰三角形} R3={〈a,b,c〉:有三条边a、b和c的不等边三角形} R4={〈a,b,c〉:三条边a、b和c不构成三角形} 四个弱一般等价类测试用例是: 测试用例 a b c 预期输出 WN1 5 5 5 等边三角形 WN2 2 2 3 等腰三角形 WN3 3 4 5 不等边三角形 WN4 4 1 2 非三角形 由于变量a、b和c没有有效区间,则强一般等价类测试用例与弱一般等价类测试用例相同。 考虑a、b和c的无效值产生的以下额外弱健壮等价类测试用例: 测试用例 a b c 预期输出 WR1 -1 5 5 a取值不在所允许的取值值域内 WR2 5 -1 5 b取值不在所允许的取值值域内 WR3 5 5 -1 c取值不在所允许的取值值域内 WR4 201 5 5 a取值不在所允许的取值值域内 WR5 5 201 5 b取值不在所允许的取值值域内 WR6 5 5 201 c取值不在所允许的取值值域内以下是额外强健壮性等价类测试用例三维立方的一个“角”: 测试用例 a b c 预期输出 SR1 -1 5 5 a取值不在所允许的取值值域内 SR2 5 -1 5 b取值不在所允许的取值值域内 SR3 5 5 -1 c取值不在所允许的取值值域内 SR4 -1 -1 5 a、b取值不在所允许的取值值域内 SR5 5 -1 -1 b、c取值不在所允许的取值值域内 SR6 -1 5 -1 a、c取值不在所允许的取值值域内 SR7 -1 -1 -1 a、b、c取值不在所允许的取值值域内

软件测试三角形问题

辽宁工程技术大学上机实验报告

一?实验步骤 1) 1. 打开c与C++程序糸统平台,编与有关二角形冋题的相关程序。 2. 对程序进行语句覆盖测试。 3. 对程序进行判定覆盖测试。 4. 对程序进行分支条件测试。 5. 对程序进行分支条件组合测试。 6. 进行用例设计。选择分支覆盖测试的方法进行测试。 二?程序分析 1.程序代码 #in clude<> 2) main() 3) { 4) int A,B,C; 实验5) printf(" 请输入三角形的三条边:"); 分析6) sca nf("%d %d %d",&A,&B,&C); 7) if((A>0&&B>0&&C>0)&&( (A+B)>C&&(A+C)>B&&(B+C)>A)) 8) { 9) if(A==B&&A==C) 10) printf(" 该三角形是等边三角形!\n"); 11) else 12) if((A==B&&B!=C)||(B==C&&B!=A)||(A==C&&A!=B)) 13) printf(" 该三角形是等腰三角形!\n"); 14) else 15) printf(" 该三角形是普通三角形!\n"); 16) } 17) else 18) { 19) prin tf("ERROR!\n"); 20) return mai n();

22) } 2. 程序流程图 根据代码绘制程序流程图,各边编号为 a , b , c , d , e , f 。如图1 3. 分析 程序主要是根据三个整数a , b , c ,构成一个三角形判定三角形的类 型为等边三角形、等腰三角形、普通三角形还是构成不了三角形。 要求输入的三个整数都是正数,三边都是大于等于 1,小于等于100, 且a+b>c,a+c>b,b+c>a,才能进行以后的判断。否则输出“ ERROR!,返回 主程序。重新输入三个整数 a , b , c 。然后判断三角形的类型。如果 a=b

等价类的定义

等价类划分 商品之间的等价交换 1、价值规律的基本内容 ①商品生产要遵循商品的价值量由社会必要劳动时间决定——商品的价值量 由生产商品的社会必要劳动时间决定。 ②商品交换要遵循等价交换原则——以价值量为基础,实行等价交换。 2、价值规律表现形式:价格受供求关系影响围绕价值上下波动。 ①价值规律的表现形式也称价值规律的实现形式和发生作用的形式。 ②等价交换是商品交换的一个重要原则。“等价”是指交换双方商品的价值都 要相等,即各自商品所消耗的社会必要劳动时间相等。货币出现以后,商品的价格却由货币来衡量,表现为价格。等价交换也就是要求商品的价格应该与价值相符合,因为价格由价值决定。 ③在现实生活中,价格与价值经常不一致,这是由商品的供求关系的变化引 起的,使价格上涨或下跌;反过来,价格的上涨或下跌也会影响供求关系,使供求趋于平衡,从而使价格接近价值。 ④由于价格与供求之间存在着相互制约的关系,这样就会产生以下情况: 第一:价格的上涨和下跌,都不会距离价值太远,它总是围绕价值上下波动。 第二:从一个较长时间来看,从全社会来看,商品的平均价格还是与它的价值相一致。 ⑤价格围绕价值上下波动表明:社会必要劳动时间决定价值量这一内容,始 终作为一种趋势,作为一个规律在贯彻着。所以,价值规律的表现形式不仅不违背规律,反而正是价值规律的表现形式,而且是唯一的表现形式。价值规律基本内容和表现形式是一致的,价格围绕价值上下波动就是价值规律基本内容的外在表现,价格和价值相符的本质,在实际交换中只能通过价格围绕价值波动这种形式才能实现。价格最终还是由价值决定。 等价类划分 等价类划分法是一种典型的、重要的黑盒测试方法,它将程序所有可能的输入数据(有效的和无效的)划分成若干个等价类。然后从每个部分中选取具有代表性的数据当做测试用例进行合理的分类,测试用例由有效等价类和无效等价类的代表组成,从而保证测试用例具有完整性和代表性。利用这一方法设计测试用例可以不考虑程序的内部结构,以需求规格说明书为依据,选择适当的典型子集,认真分析和推敲说明书的各项需求,特别是功能需求,尽可能多地发现错误。等价类划分法是一种系统性的确定要输入的测试条件的方法。由于等价类是在需求规格说明书的基础上进

测试用例八大设计方法和实例

测试用例设计方法 1等价类划分 1.1 理论知识 等价类划分是一种典型的黑盒测试方法。这一方法完全不考虑程序的内部结构,只依据程序的规格说明来设计测试用例。 等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭示程序中的错误都是等效的。 等价类合理地假设:某个等价类的代表值,与该等价类的其他值,对于测试来说是等价的。 因此,可以把全部的输入数据划分成若干的等价类,在每一个等价类中取一个数据来进行测试。这样就能以较少的具有代表性的数据进行测试,而取得较好的测试效果。 等价类划分是把所有可能的输入数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例.该方法是一种重要的,常用的黑盒测试用例设计方法. 1) 分类: 划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据.取得较好的测试结果.等价类划分可有两种不同的情况:有效等价类和无效等价类. 有效等价类:是指对于程序的规格说明来说是合理的,有意义的输入数据构成的集合.利用有效等价类可检验程序是否实现了规格说明中所规定的功能和性能. 无效等价类:与有效等价类的定义恰巧相反. 设计测试用例时,要同时考虑这两种等价类.因为,软件不仅要能接收合理的数据,也要能经受意外的考验.这样的测试才能确保软件具有更高的可靠性. 2)划分等价类的方法: 下面给出六条确定等价类的原则: ①在输入条件规定了取值范围或值的个数的情况下,则可以确立一个有效等价类和两个无效等价类. ②在输入条件规定了输入值的集合或者规定了“必须如何”的条件的情况下,可确立一个有效

软件测试案例三角形白盒测试

一、核心程序代码 /** 判断三角形的类*/ public class TriangleTestMethod { /** 判断三角形的种类。参数a, b, c 分别为三角形的三边, * 返回的参数值为0 ,表示非三角形; * 为 1 ,表示普通三角形; * 为 2 ,表示等腰三角形; * 为 3 ,表示等边三角形。 */ public static int comfirm( int a, int b, int c) { if ((a + b > c) && (b + c > a) && (a + c > b)) { if ((a == b) && (b ==c)) // 判断为等边三角形 return 3; if ((a == b) || (b == c) || (a == c)) // return 2; else // 判断为普通三角形return 1; } else { // 为非三角形 return 0; } } } // 判断为三角形判断为等腰三角形

、程序流程图 三、测试用例

F6, F7, T8 Case28 a=4, b=3, c=3 2 T1, T2, T3, F4, T5, F6, T7, F8 2 Case29 a=3, b=4, c=5 1 T1, T2, T3, F4, F5, F6, F7, F8 1 Case30 a=3, b=4, c=3 2 T1, T2, T3, F4, F5, F6, F7, T8 2 备注 其他条件组合,无法到达结束 四、程序控制流图 -> a B a == b E F b == c Return 3 Ffet urn 2 Ret ur n 1 K 输入 期望输出 覆盖对象 测试结果 Case31 a=1,b=6,c=7 0 A->D 0 Case32 a=7, b=6, c=1 0 A->B->D 0 Case33 a=1,b=7,c=6 0 A->B->C->D D Return 0 G b == c Ret ur n 2 H 斗 J a == C

三角形问题的等价类测试用例

四种可能出现的输出:非三角形、不等边三角形、等腰三角形和等边三角形 可以使用这些输出标识如下所示的输出(值域)等价类: R1={〈a,b,c〉:有三条边a、b和c的等边三角形} R2={〈a,b,c〉:有三条边a、b和c的等腰三角形} R3={〈a,b,c〉:有三条边a、b和c的不等边三角形} R4={〈a,b,c〉:三条边a、b和c不构成三角形} 四个弱一般等价类测试用例是: 测试用例 a b c 预期输出 WN1 5 5 5 等边三角形 WN2 2 2 3 等腰三角形 WN3 3 4 5 不等边三角形 WN4 4 1 2 非三角形 由于变量a、b和c没有有效区间,则强一般等价类测试用例与弱一般等价类测试用例相同。 考虑a、b和c的无效值产生的以下额外弱健壮等价类测试用例: 测试用例 a b c 预期输出 WR1 -1 5 5 a取值不在所允许的取值值域内 WR2 5 -1 5 b取值不在所允许的取值值域内 WR3 5 5 -1 c取值不在所允许的取值值域内 WR4 201 5 5 a取值不在所允许的取值值域内 WR5 5 201 5 b取值不在所允许的取值值域内 WR6 5 5 201 c取值不在所允许的取值值域内

以下是额外强健壮性等价类测试用例三维立方的一个“角”: 测试用例 a b c 预期输出 SR1 -1 5 5 a取值不在所允许的取值值域内 SR2 5 -1 5 b取值不在所允许的取值值域内 SR3 5 5 -1 c取值不在所允许的取值值域内 SR4 -1 -1 5 a、b取值不在所允许的取值值域内SR5 5 -1 -1 b、c取值不在所允许的取值值域内SR6 -1 5 -1 a、c取值不在所允许的取值值域内SR7 -1 -1 -1 a、b、c取值不在所允许的取值值域内

等价类划分法实例教学文案

等价类划分法实例

1.某程序规定:"输入三个整数 a 、 b 、 c 分别作为三边的边长构成三角形。通过程序 判定所构成的三角形的类型,当此三角形为一般三角形、等腰三角形及等边三角形时,分别作计算… "。用等价类划分方法为该程序进行测试用例设计。(三角形问题 的复杂之处在于输入与输出之间的关系比较复杂。) 分析题目中给出和隐含的对输入条件的要求: (1)整数(2)三个数(3)非零数(4)正数 (5)两边之和大于第三边(6)等腰(7)等边 如果 a 、 b 、 c 满足条件( 1 ) ~ ( 4 ),则输出下列四种情况之一: 1)如果不满足条件(5),则程序输出为 " 非三角形 " 。 2)如果三条边相等即满足条件(7),则程序输出为 " 等边三角形 " 。 3)如果只有两条边相等、即满足条件(6),则程序输出为 " 等腰三角形 " 。 4)如果三条边都不相等,则程序输出为 " 一般三角形 " 。 列出等价类表并编号

覆盖有效等价类的测试用例: a b c 覆盖等价类号码 3 4 5 (1)--(7) 4 4 5 (1)--(7),(8)

4 5 5 (1)--(7),(9) 5 4 5 (1)--(7),(10) 4 4 4 (1)--(7),(11) 覆盖无效等价类的测试用例: 2.设有一个档案管理系统,要求用户输入以年月表示的日期。假设日期限定在1990年 1月~2049年12月,并规定日期由6位数字字符组成,前4位表示年,后2位表示月。现用等价类划分法设计测试用例,来测试程序的"日期检查功能"。(不考虑2月的问题) 1)划分等价类并编号,下表等价类划分的结果 输入等价类有效等价类无效等价类

等价类边界值综合练习题-万年历

练习题:万年历查询软件,要求用户输入以年月日表示的日期,然后系统会换算出该日期的农历表示法及相关黄历信息。假设日期限定在1900年1月1日~2049年12月31日,并规定日期由8位数字字符组成,前4位表示年,中间2位表示月,最后2位表示日期。其中4、6、9、11月只有30天,平年的2月份只有28天,闰年的2月份有29天。 (备注:为简化处理,本题在进行用例设计时,不必考虑对平年、闰年的判断)

一、先用等价类划分法设计测试用例,来测试程序的"日期检查功能"。1)划分等价类并编号,下表等价类划分的结果 2)设计测试用例覆盖所有的有效等价类,设计的测试用例如下: 3)为每一个无效等价类设计一个测试用例,设计结果如下:

4)测试用例举例: 5)存在的问题: 1、在对2月、大月、小月的无效日期进行用例选择时,日期没有取到边界上,如果程序忘记了对2月份的日期进行特殊判断,而是粗略写成所有的日期都必须小于等于28,那么用例9、用例10并不能发现错误。 2、在对大月、小月进行用例选择时,按照等价类的思想,从集合{1、 3、5、7、8、10、 12}和{4、6、9、11}中任意挑选了中间数据,感觉令人不够放心。 6)解决办法: 二、结合边界值方法进行用例设计。 首先还是利用等价类的方法进行用例设计,然后看看哪些边界值已经被覆盖到

了,最后再针对没有被覆盖的边界值补充测试用例。 设计测试用例覆盖等价类和边界值

可以再补充1月31日、11月30日的测试用例,因为1月是大月的第一个月,11月是小月的最后一个月,也可以算是边界值。 设计测试用例覆盖无效等价类:

等价类测试案例

等价类划分 等价类划分法是一种典型的、重要的黑盒测试方法,它将程序所有可能的输入数据(有效的和无效的)划分成若干个等价类。然后从每个部分中选取具有代表性的数据当做测试用例进行合理的分类,测试用例由有效等价类和无效等价类的代表组成,从而保证测试用例具有完整性和代表性。利用这一方法设计测试用例可以不考虑程序的内部结构,以需求规格说明书为依据,选择适当的典型子集,认真分析和推敲说明书的各项需求,特别是功能需求,尽可能多地发现错误。 由于等价类是在需求规格说明书的基础上进行划分的,并且等价类划分不仅可以用来确定测试用例中的数据的输入输出的精确取值范围,也可以用来准备中间值、状态和与时间相关的数据以及接口参数等,所以等价类可以用在系统测试、集成测试和组件测试中,在有明确的条件和限制的情况下,利用等价类划分技术可以设计出完备的测试用例。这种方法可以减少设计一些不必要的测试用例,因为这种测试用例一般使用相同的等价类数据,从而使测试对象得到同样的反映行为。对于等价类我们从以下几个方面讨论它的划分方法。 有效等价类划分 有效等价类指对于程序规格说明来说,是合理的、有意义的输入数据构成的集合。利用有效等价类可以检验程序是否实现了规格说明预先规定的功能和性能。有效等价类可以是一个,也可以是多个,根据系统的输入域划分若干部分,然后从每个部分中选取少数有代表性数据当做数据测试的测试用例,等价类是输入域的集合。 无效等价类划分 无效等价类和有效等价类相反,无效等价类是指对于软件规格说明而言,没有意义的、不合理的输入数据集合。利用无效等价类,可以找出程序异常说明情况,检查程序的功能和性能的实现是否有不符合规格说明要求的地方。 等价类划分的方法有 按区间划分。 按数值划分。 按数值集合划分。 按限制条件或规划划分。 按处理方式划分。 等价类划分的原则如下:

实验二 等价类划分法测试用例设计与执行

实验二 实验的目的和要求: 目的: (1)掌握等价类划分方法的步骤; (2)扩宽测试思维; 要求:能够用等价类划分的思想设计测试用例 实验内容: 问题陈述: 简单版本:三角形问题接受三个整数a、b和c作为输入,用作三角形的边。程序的输出是由这三条边确定的三角形类型:等边三角形、等腰三角形、不等边三角形或非三角形。改进版本:三角形问题接受三个整数a、b和c作为输入,用作三角形的边。整数a、b和c必须满足以下条件: c1:1<=a<=200 c4: a

为“非三角形”。如果三条边相等即满足条件(7),则程序输出为“等边三角形”。如果只有两条边相等、即满足条件(6),则程序输出为“等腰三角形”。如果三条边都不相等,则程序输出为“一般三角形”。

二、设计测试用例

import java.io.*; class sanj{ public static int a,b,c; public static void main(String arg[]) throws IOException{ try{ BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in)); //接收键值System.out.println("输入三边值,每个值输入后回车"); System.out.println("请输入:"); a=Integer.valueOf(stdin.readLine()); b=Integer.valueOf(stdin.readLine()); c=Integer.valueOf(stdin.readLine()); }catch(IOException e){ System.out.println("出现异常!"); System.exit(0); } if(a+b

测试一个三角形的用例怎么写

测试一个三角形的用例怎么写? 浏览次数:1450次悬赏分:0|解决时间:2011-2-23 10:50 |提问者:军小晴 面试的时候,面试官问我:“测试一个三角形的用例怎么写?”,我当时晕了,回答了几个特殊情况,感觉他不太满意,具体的该怎么回答呢? 最佳答案 一、等价类划分:三角形三条边A、B、C的数据类型不同 二、边界值分析:由于三角形的边长可以是正整数或正小数,所以就不对长度进行测试,那么边界值分析就不用了 三、因果图法:三角形的三条边数据输入组合 我们看一下三角形的流程图: 我们再分析一下三角形的等价类: 有效等价类: 输入3个正整数或正小数: 1、两数之和大于第三数,如A0) (1) (B>0) (2) (C>0) (3) (A+B>C) (4) (B+C>A) (5) (C+A>B) (6) (A<=0) (7) (B<=0) (8) (C<=0) (9) (A+B<=C) (10) (B+C<=A) (11) (C+A<=B) (12) 是否是等腰三角形

(A=B) (13) (B=C) (14) (C=A) (15) (A!=B)and(B!=C)and(C!=A) (16) 是否是等腰直角三角形: (A=B)and(A^2+B^2=C^2) (17) (B=C)and(B^2+C^2=A^2) (18) (C=A)and(C^2+A^2=B^2) (19) 是否是等边三角形: (A=B)and(B=C)and(C=A) (20) (A!=B) (21) (B!=C) (22) (C!=A) (23) 三角形测试用例: 序号[A,B,C] 覆盖等价类输出 1 [3,4,5] (1)(2)(3)(4)(5)(6) 是三角形 2 [0,1,2] (7) 非三角形 3 [1,0,2] (8) 非三角形 4 [1,2,0] (9) 非三角形 5 [1,2,3] (10) 非三角形 6 [1,3,2] (11) 非三角形 7 [3,1,2] (12) 非三角形 8 [3,3,4] (1)(2)(3)(4)(5)(6)(13) 等腰三角形 9 [3,4,4] (1)(2)(3)(4)(5)(6)(14) 等腰三角形 10 [3,4,3] (1)(2)(3)(4)(5)(6)(15) 等腰三角形 11 [2√2,2√2,4] (1)(2)(3)(4)(5)(6)(17) 等腰直角三角形 12 [4,2√2,2√2] (1)(2)(3)(4)(5)(6)(18) 等腰直角三角形 13 [2√2,4,2√2] (1)(2)(3)(4)(5)(6)(19) 等腰直角三角形 14 [3,4,5] (1)(2)(3)(4)(5)(6)(16)(20)(22)(23)(24) 是三角形 15 [3,3,3] (1)(2)(3)(4)(5)(6)(16)(21) 等边三角形 16 [,,,] 无效等价类错误提示 17 [-3,4,5] 无效等价类错误提示 18 [a,3,@] 无效等价类错误提示 19 [3,4] 无效等价类错误提示

三角形测试(测试用例)

. 三角形测试用例 题目:输入三个数a、b、c分别作为三边的边长构成三角形。通过程序判定所构成的三角 形是一般三角形、等腰三角形还是等边三角形时。用等价类划分方法为该程序设计测试用 例。 在三角形计算中,要求三角形的三个边长:ABC。 1、当三边不可能构成三角形时提示错误,可构成三角形时计算三角形周长。 2、若是等腰三角形打印“等腰三角形”,若两个等腰的平方和等于第三边平方和,则打印“等腰直角三 角形”。 3、若是等边三角形,则打印:“等边三角形”。 4、画出程序流程图并设计一个测试用例。 分析一下: 1、构成三角形的条件:任意两边之和大于第三边; 2、构成等腰三角形的条件:任意两边相等; 3、构成等腰直角三角形的条件:任意两边相等,而且两条边的平方和等于第三边的平方和; 4、构成等边三角形的条件:三条边都相等。 那么用什么样的设计方法进行测试用例的设计呢? 一、等价类划分:三角形三条边A、B、C的数据类型不同 二、边界值分析:由于三角形的边长可以是正整数或正小数,所以就不对长度进行测 试,那么边界值分析就不用了 三、因果图法:三角形的三条边数据输入组合 我们看一下三角形的流程图: 注:改正一个小错误,在判断是否是等腰直角三角形中A的平方=B的平方+C的平方。由于画图时,网络速度问题,导致真或假的值没有标注。 三角形等价类列表 判定类型有效等价类 无效等价类

word教育资料

. 一般三角形((a>0) Λ(b>0) Λ(c>0))Λ (a<=0Vb<=0Vc<=0) Λ (((a+b)>c)V((a+c)>b)V((b+c)>a))(1) (((a+b)<=c)V((a+c)<=b)V((b+c)<=a))(2) 等腰三角形(1) Λ(a=bVa=cVb=c)(3) (2) V(a!=bΛb!=c Λa!=c)(4) 等边三角形(1) Λ(a=b=c)(5) (2)V(a!=b!=c)(6) 根据上表组成的测试用例: 三角形等价类测试用例 ID输入数据覆盖测试用例输出结果 abc 1 345 (1) 一般三角形 2 045 (2) 非(一般)三角形 3 305 (2) 4 340 (2) 5 145 (2) word教育资料

测试用例设计方法——等价类划分法

对等价类划分法的感悟 (2016/2/21-2016/2/28)来北京的第一周感觉时间过得好快,新鲜、刺激、充实。在本周内我注重学习了等价类划分法,并结合该方法完成了一个现金管理系统的基版测试。该系统主要包括结算账户管理、账务处理、多级账簿、资金归集、资金池等功能。其中账务处理业务中主要包含三个子业务分别是:现金存入业务处理、现金支出业务处理、账务查询。多级账簿业务主要涉及到多级账簿的开通、开设和注销等功能。 在这个项目中我主要负责现金存入模块的测试用例的设计以及执行。首先是基本功能的实现也就是输入框、选择框等功能是否能够实现,其次针对需求验证其非功能点即可输入字符串的类型以及长度进行验证。在对这些数据类型和字符串的验证中我主要运用了边界值法和等价类划分法。 例如:等价类划分法的使用 在填写现金存入的账单中我们主要输入收款人账号、币种、收款人户名、收款账簿编号、交易金额等项内容。其中收款人账号主要有三种状态无效账号、已注销账号、和有效账号。币种主要有01、02、03 以及其他无效类型。收款人户名主要有存在和不存在两种状态。收款账簿编号主要有有效账簿编号和无效账簿编号两种状态。交易金额主要有输入负数、0、大于0三种类型的选择。

依据这些条件,将各项输入要素划分为有效等价类和无效等价类,效果如下图所示: 等价类划分法的要义: 1)为每一个等价类规定一个唯一的编号; 2)设计一个新的测试用例,使其尽可能多地覆盖尚未被覆盖地有效等价类,重复这一步,直到所有的有效等价类都被覆盖为止; 3)设计一个新的测试用例,使其仅覆盖一个尚未被覆盖的无效等价类,重复这一步,直到所有的无效等价类都被覆盖为止。则测试用例的设计为: a3 b1 c1 d1 e2、a3 b2 c1 d1 e3、a3 b3 c1 d1 e2 a1 b1 c1 d1 e2、a2 b1 c1 d1 e2 a1 b1 c2 d1 e2 a1 b1 c2 d2 e2 a1 b1 c2 d2 e1 因此,等价类划分法优点就凸显了了出来,即测试某等价类的代

相关文档
最新文档