晶体工艺的制备过程

晶体工艺的制备过程
晶体工艺的制备过程

净室

一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。

为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1)。

为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:

1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不

绝地打入洁净室中。

2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,

冷气空调也开多久。

3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋

停滞的机会与时间减至最低程度。

4、所有建材均以不易产生静电吸附的材质为主。

5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。

6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,

均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。

7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污染晶圆,

二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier

channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至

17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,

才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人!

8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮

气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用!

二、晶圆制作

硅晶圆(silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与结晶的程序。

目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky) 拉晶法(CZ法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。晶棒的阻值如果太低,代表其中导电杂质(impurity dopant) 太多,还需经过FZ法(floating-zone) 的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。

辅拉出的晶棒,外缘像椰子树干般,外径不甚一致,需予以机械加工修边,然后以X光绕射法,定出主切面(primary flat) 的所在,磨出该平面;再以内刃环锯,削下一片片的硅晶圆。最后经过粗磨(lapping)、化学蚀平(chemical etching) 与拋光(polishing) 等程序,得出具表面粗糙度在0.3微米以下拋光面之晶圆。(至于晶圆厚度,与其外径有关。)

刚才题及的晶向,与硅晶体的原子结构有关。硅晶体结构是所谓「钻石结构」(diamond-structure),系由两组面心结构(FCC),相距(1/4,1/4,1/4) 晶格常数(lattice constant;即立方晶格边长) 叠合而成。我们依米勒指针法(Miller index),可定义出诸如:{100}、{111}、{110} 等晶面。所以晶圆也因之有{100}、{111}、{110}等之分野。有关常用硅晶圆之切边方向等信息,请参考图2-2。现今半导体业所使用之硅晶圆,大多以{100} 硅晶圆为主。其可依导电杂质之种类,再分为p型(周期表III族) 与n型(周期表V族)。

由于硅晶外貌完全相同,晶圆制造厂因此在制作过程中,加工了供辨识的记号:亦即以是否有次要切面

(secondary flat) 来分辨。该次切面与主切面垂直,p型晶圆有之,而n型则阙如。

{100}硅晶圆循平行或垂直主切面方向而断裂整齐的特性,所以很容易切成矩形碎块,这是早期晶圆切割时,可用刮晶机(scriber) 的原因(它并无真正切断芯片,而只在表面刮出裂痕,再加以外力而整齐断开之。)事实上,硅晶的自然断裂面是{111},所以虽然得到矩形的碎芯片,但断裂面却不与{100}晶面垂直!

以下是订购硅晶圆时,所需说明的规格:项目说明

晶面{100}、{111}、{110} ± 1o

外径(吋) 3 4 5 6

厚度(微米) 300~450 450~600 550~650 600~750(±25)

杂质p型、n型

阻值(Ω-cm) 0.01 (低阻值) ~ 100 (高阻值)

制作方式CZ、FZ (高阻值)

拋光面单面、双面

平坦度(埃) 300 ~ 3,000

三、半导体制程设备

半导体制程概分为三类:(1)薄膜成长,(2)微影罩幕,(3)蚀刻成型。设备也跟着分为四类:(a)高温炉管,(b)微影机台,?化学清洗蚀刻台,(d)电浆真空腔室。其中(a)~?机台依序对应(1)~(3)制程,而新近发展的第(d)项机台,则分别应用于制程(1)与(3)。

由于坊间不乏介绍半导体制程及设备的中文书籍,故本文不刻意锦上添花,谨就笔者认为较有趣的观点,描绘一二!

(一)氧化(炉)(Oxidation)

对硅半导体而言,只要在高于或等于1050℃的炉管中,如图2-3所示,通入氧气或水汽,自然可以将硅晶的表面予以氧化,生长所谓干氧层(dryz/gate oxide)或湿氧层(wet /field oxide),当作电子组件电性绝缘或制程掩膜之用。氧化是半导体制程中,最干净、单纯的一种;这也是硅晶材料能够取得优势的特性之一(他种半导体,如砷化镓GaAs,便无法用此法成长绝缘层,因为在550℃左右,砷化镓已解离释放出砷!)硅氧化层耐得住850℃~ 1050℃的后续制程环境,系因为该氧化层是在前述更高的温度成长;不过每生长出1 微米厚的氧化层,硅晶表面也要消耗掉0.44微米的厚度。

以下是氧化制程的一些要点:

(1)氧化层的成长速率不是一直维持恒定的趋势,制程时间与成长厚度之重复性是较为重要之考量。(2)后长的氧化层会穿透先前长的氧化层而堆积于上;换言之,氧化所需之氧或水汽,势必也要穿透先前成长的氧化层到硅质层。故要生长更厚的氧化层,遇到的阻碍也越大。一般而言,很少成长2微米厚以上之氧化层。

(3)干氧层主要用于制作金氧半(MOS)晶体管的载子信道(channel);而湿氧层则用于其它较不严格讲究的电性阻绝或制程罩幕(masking)。前者厚度远小于后者,1000~ 1500埃已然足够。

(4)对不同晶面走向的晶圆而言,氧化速率有异:通常在相同成长温度、条件、及时间下,{111}厚度≧{110}厚度>{100}厚度。

(5)导电性佳的硅晶氧化速率较快。

(6)适度加入氯化氢(HCl)氧化层质地较佳;但因容易腐蚀管路,已渐少用。

(7)氧化层厚度的量测,可分破坏性与非破坏性两类。前者是在光阻定义阻绝下,泡入缓冲过的氢氟酸(BOE,Buffered Oxide Etch,系HF与NH4F以1:6的比例混合而成的腐蚀剂)将显露出来的氧化层去除,露出不沾水的硅晶表面,然后去掉光阻,利用表面深浅量测仪(surface profiler or alpha step),得到有无氧化层之高度差,即其厚度。

(8)非破坏性的测厚法,以椭偏仪(ellipsometer) 或是毫微仪(nano-spec)最为普遍及准确,前者能同

时输出折射率(refractive index;用以评估薄膜品质之好坏)及起始厚度b与跳阶厚度a (总厚度t = ma + b),实际厚度(需确定m之整数值),仍需与制程经验配合以判读之。后者则还必须事先知道折射率来反推厚度值。

(9)不同厚度的氧化层会显现不同的颜色,且有2000埃左右厚度即循环一次的特性。有经验者也可单凭颜色而判断出大约的氧化层厚度。不过若超过1.5微米以上的厚度时,氧化层颜色便渐不明显。

(二)扩散(炉) (diffusion)

1、扩散搀杂

半导体材料可搀杂n型或p型导电杂质来调变阻值,却不影响其机械物理性质的特点,是进一步创造出p-n 接合面(p-n junction)、二极管(diode)、晶体管(transistor)、以至于大千婆娑之集成电路(IC)世界之基础。而扩散是达成导电杂质搀染的初期重要制程。

众所周知,扩散即大自然之输送现象(transport phenomena);质量传输(mass transfer)、热传递(heat transfer)、与动量传输(momentum transfer;即摩擦拖曳) 皆是其实然的三种已知现象。本杂质扩散即属于质量传输之一种,唯需要在850oC以上的高温环境下,效应才够明显。

由于是扩散现象,杂质浓度C (concentration;每单位体积具有多少数目的导电杂质或载子)服从扩散方程式如下:

这是一条拋物线型偏微分方程式,同时与扩散时间t及扩散深度x有关。换言之,在某扩散瞬间(t固定),杂质浓度会由最高浓度的表面位置,往深度方向作递减变化,而形成一随深度x变化的浓度曲线;另一方面,这条浓度曲线,却又随着扩散时间之增加而改变样式,往时间无穷大时,平坦一致的扩散浓度分布前进!

既然是扩散微分方程式,不同的边界条件(boundary conditions)施予,会产生不同之浓度分布外形。固定表面浓度(constant surface concentration) 与固定表面搀杂量(constant surface dosage),是两种常被讨论的具有解析精确解的扩散边界条件(参见图2-4):2、前扩散(pre-deposition)

第一种定浓度边界条件的浓度解析解是所谓的互补误差函数(complementary error function),其对应之扩散步骤称为「前扩散」,即我们一般了解之扩散制程;当高温炉管升至工作温度后,把待扩散晶圆推入炉中,然后开始释放扩散源(p型扩散源通常是固体呈晶圆状之氮化硼【boron-nitride】芯片,n型则为液态POCl3之加热蒸气) 进行扩散。其浓度剖面外形之特征是杂质集中在表面,表面浓度最高,并随深度迅速减低,或是说表面浓度梯度(gradient) 值极高。

3、后驱入(post drive-in)

第二种定搀杂量的边界条件,具有高斯分布(Gaussian distribution) 的浓度解析解。对应之扩散处理程序叫做「后驱入」,即一般之高温退火程序;基本上只维持炉管的驱入工作温度,扩散源却不再释放。或问曰:定搀杂量的起始边界条件自何而来?答案是「前扩散」制程之结果;盖先前「前扩散」制作出之杂质浓度集中于表面,可近似一定搀杂量的边界条件也!

至于为什么扩散要分成此二类步骤,当然不是为了投数学解析之所好,而是因应阻值调变之需求。原来「前扩散」的杂质植入剂量很快达到饱和,即使拉长「前扩散」的时间,也无法大幅增加杂质植入剂量,换言之,电性上之电阻率(resistivity) 特性很快趋稳定;但「后驱入」使表面浓度及梯度减低(因杂质由表面往深处扩散),却又营造出再一次「前扩散」来增加杂质植入剂量的机会。所以,借着多次反复的「前扩散」与「后驱入」,既能调变电性上之电阻率特性,又可改变杂质电阻之有效截面积,故依大家熟知之电阻公式;其中是电阻长度可设计出所需导电区域之扩散程序。

4、扩散之其它要点,简述如下:

(1)扩散制程有批次制作、成本低廉的好处,但在扩散区域之边缘所在,有侧向扩散的误差,故限制其在次微米(sub-micron) 制程上之应用。

(2)扩散之后的阻值量测,通常以四探针法(four-point probe method)行之,示意参见图2-5。目前市面已

有多种商用机台可供选购。(3)扩散所需之图形定义(pattern)及遮掩(masking),通常以氧化层(oxide)充之,以抵挡高温之环境。一微米厚之氧化层,已足敷一般扩散制程之所需。

(二)微影(Photo-Lithography)

1、正负光阻

微影光蚀刻术起源于照相制版的技术。自1970年起,才大量使用于半导体制程之图形转写复制。原理即利用对紫外线敏感之聚合物,或所谓光阻(photo-resist)之受曝照与否,来定义该光阻在显影液(developer)中是否被蚀除,而最终留下与遮掩罩幕,即光罩(mask)相同或明暗互补之图形;相同者称之「正光阻」(positive resist),明暗互补者称之「负光阻」(negative resist),如图2-6所示。一般而言,正光阻,如AZ-1350、AZ-5214、FD-6400L等,其分辨率及边缘垂直度均佳,但易变质,储存期限也较短(约半年到一年之间),常用于学术或研发单位;而负光阻之边缘垂直度较差,但可储存较久,常为半导体业界所使用。

2、光罩

前段述及的光罩制作,是微影之关键技术。其制作方式经几十年之演进,已由分辨率差的缩影机(由数百倍大的红胶纸【rubby-lith】图样缩影) 技术,改良为直接以计算机辅助设计制造(CAD/CAM)软件控制的雷射束(laser-beam)或电子束(E-beam)书写机,在具光阻之石英玻璃板上进行书写(曝光),分辨率(最小线宽) 也改进到微米的等级。

由于激光打印机的分辨率越来越好,未来某些线宽较粗的光罩可望直接以打印机出图。举例而言,3386dpi 的出图机,最小线宽约为七微米。

3、对准机/ 步进机

在学术或研发单位中之电路布局较为简易,一套电路布局可全部写在一片光罩中,或甚至多重复制。加上使用之硅晶圆尺寸较小,配合使用之光罩本来就不大。所以搭配使用之硅晶圆曝光机台为一般的「光罩对准机」(mask aligner,如图2-7)。换言之,一片晶圆只需一次对准曝光,便可进行之后的显影及烤干程序。但在业界中,使用的晶圆大得多,我们不可能任意造出7吋或9吋大小的光罩来进行对准曝光:一来电子束书写机在制备这样大的光罩时,会耗损巨量的时间,极不划算;二来,大面积光罩进行光蚀刻曝光前与晶圆之对准,要因应大面积精密定位及防震等问题,极为棘手!所以工业界多采用步进机(stepper)进行对准曝光;也就是说,即使晶圆大到6或8吋,但光罩大小还是小小的1~2吋见方,一则光罩制备快速,二则小面积对准的问题也比较少;只是要曝满整片晶圆,要花上数十次「对准→曝光→移位」的重复动作。但即便如此,因每次「对准→曝光→移位」仅费时1秒左右,故一片晶圆的总曝光时间仍控制在1分钟以内,而保持了工厂的高投片率(high through-put;即单位时间内完成制作之硅芯片数。)图2-7 双面对准曝光对准系统(国科会北区微机电系统研究中心)。

4、光阻涂布

晶圆上微米厚度等级的光阻,是采用旋转离心(spin-coating)的方式涂布上去。光阻涂布机如图2-8所示。其典型程序包括:

(1)晶圆表面前处理(pre-baking):即在150°C下烘烤一段时间。若表面无氧化层,要另外先上助粘剂(primer),如HMDS,再降回室温。换言之,芯片表面在涂敷光阻前要确保是亲水性(hydrophilic)。(2)送晶圆上真空吸附的转台,注入(dispensing)光阻,开始由低转速甩出多余的光阻并均布之,接着以转速数千rpm,减薄光阻至所需厚度。

(3)将晶圆表层光阻稍事烤干定型,防止沾粘。但不可过干过硬,而妨碍后续的曝光显影。

一般光阻涂布机的涂布结果是厚度不均。尤其在晶圆边缘部份,可能厚达其它较均匀部份的光阻3倍以上。另外,为了确保光阻全然涂布到整片晶圆,通常注入光阻的剂量,是真正涂布粘着在晶圆上之数十甚至数百倍,极其可惜;因为甩到晶圆外的光阻中有机溶剂迅速挥发逸散,成份大变,不能回收再使用。

5、厚光阻

德国Karl-Suss公司开发了一种新型的光阻涂布机,称为GYRSET?,如图2-9所示,其卖点在于强调可

减少一半的光阻用量,且得出更均厚的光阻分布。其原理极为单纯:只是在真空转台上加装了跟着同步旋转的盖子。如此一来,等于强迫晶圆与盖子之间的空气跟着旋转,那么光阻上便无高转速差的粘性旋转拖曳作用。故光阻在被涂布时,其与周遭流体之相对运动并不明显,只是离心的彻体力效果,使光阻稳定地、且是呈同心圆状地向外涂布。

根据实际使用显示,GYRSET?只需一般涂布机的55%光阻用量。另外,其也可应用于厚光阻之涂布(厚度自数微米至数百微米不等)。受涂基板也可由晶圆改为任意的工作外型,而不会造成边缘一大部份面积厚度不均的花花外貌。

[注] 厚光阻是新近发展出来,供微机电研究使用的材料,如IBM的SU-8系列光阻,厚度由数微米至100微米不等,以GYRSET?涂布后,经过严格的烘干程序,再以紫外线或准分子雷射(excimer laser) 进行曝光显影后,所得到较深遂的凹状图案,可供进一步精密电铸(electro-forming) 的金属微结构成长填塞。这种加工程序又称为「仿LIGA」制程(poor mans LIGA),即「异步X光之深刻模造术」。

(三)蚀刻(Etching)

蚀刻的机制,按发生顺序可概分为「反应物接近表面」、「表面氧化」、「表面反应」、「生成物离开表面」等过程。所以整个蚀刻,包含反应物接近、生成物离开的扩散效应,以及化学反应两部份。整个蚀刻的时间,等于是扩散与化学反应两部份所费时间的总和。二者之中孰者费时较长,整个蚀刻之快慢也卡在该者,故有所谓「reaction limited」与「diffusion limited」两类蚀刻之分。

1、湿蚀刻

最普遍、也是设备成本最低的蚀刻方法,其设备如图2-10所示。其影响被蚀刻物之蚀刻速率(etching rate) 的因素有三:蚀刻液浓度、蚀刻液温度、及搅拌(stirring) 之有无。定性而言,增加蚀刻温度与加入搅拌,均能有效提高蚀刻速率;但浓度之影响则较不明确。举例来说,以49%的HF蚀刻SiO2,当然比BOE (Buffered-Oxide- Etch;HF:NH4F =1:6) 快的多;但40%的KOH蚀刻Si的速率却比20%KOH慢!湿蚀刻的配方选用是一项化学的专业,对于一般不是这方面的研究人员,必须向该化学专业的同侪请教。一个选用湿蚀刻配方的重要观念是「选择性」(selectivity),意指进行蚀刻时,对被蚀物去除速度与连带对其他材质(如蚀刻掩膜;etching mask,或承载被加工薄膜之基板;substrate ) 的腐蚀速度之比值。一个具有高选择性的蚀刻系统,应该只对被加工薄膜有腐蚀作用,而不伤及一旁之蚀刻掩膜或其下的基板材料。

(1)等向性蚀刻(isotropic etching)

大部份的湿蚀刻液均是等向性,换言之,对蚀刻接触点之任何方向腐蚀速度并无明显差异。故一旦定义好蚀刻掩膜的图案,暴露出来的区域,便是往下腐蚀的所在;只要蚀刻配方具高选择性,便应当止于所该止之深度。

然而有鉴于任何被蚀薄膜皆有其厚度,当其被蚀出某深度时,蚀刻掩膜图案边缘的部位渐与蚀刻液接触,故蚀刻液也开始对蚀刻掩膜图案边缘的底部,进行蚀掏,这就是所谓的下切或侧向侵蚀现象(undercut)。该现象造成的图案侧向误差与被蚀薄膜厚度同数量级,换言之,湿蚀刻技术因之而无法应用在类似「次微米」线宽的精密制程技术!

(2)非等向性蚀刻(anisotropic etching)

先前题到之湿蚀刻「选择性」观念,是以不同材料之受蚀快慢程度来说明。然而自1970年代起,在诸如Journal of Electro-Chemical Society等期刊中,发表了许多有关碱性或有机溶液腐蚀单晶硅的文章,其特点是不同的硅晶面腐蚀速率相差极大,尤其是<111>方向,足足比<100>或是<110>方向的腐蚀速率小一到两个数量级!因此,腐蚀速率最慢的晶面,往往便是腐蚀后留下的特定面。

这部份将在体型微细加工时再详述。

2、干蚀刻

干蚀刻是一类较新型,但迅速为半导体工业所采用的技术。其利用电浆(plasma) 来进行半导体薄膜材料的蚀刻加工。其中电浆必须在真空度约10至0.001 Torr 的环境下,才有可能被激发出来;而干蚀刻采用的气体,或轰击质量颇巨,或化学活性极高,均能达成蚀刻的目的。

干蚀刻基本上包括「离子轰击」(ion-bombardment)与「化学反应」(chemical reaction) 两部份蚀刻机制。偏「离子轰击」效应者使用氩气(argon),加工出来之边缘侧向侵蚀现象极微。而偏「化学反应」效应者则采氟系或氯系气体(如四氟化碳CF4),经激发出来的电浆,即带有氟或氯之离子团,可快速与芯片表面材质反应。

干蚀刻法可直接利用光阻作蚀刻之阻绝遮幕,不必另行成长阻绝遮幕之半导体材料。而其最重要的优点,能兼顾边缘侧向侵蚀现象极微与高蚀刻率两种优点,换言之,本技术中所谓「活性离子蚀刻」(reactive ion etch;RIE) 已足敷「次微米」线宽制程技术的要求,而正被大量使用中。

(四)离子植入(Ion Implantation)

在扩散制程的末尾描述中,曾题及扩散区域之边缘所在,有侧向扩散的误差,故限制其在次微米制程上之应用。但诚如干蚀法补足湿蚀法在次微米制程能力不足一样,此地另有离子植入法,来进行图案更精细,浓度更为稀少精准的杂值搀入。

离子植入法是将III族或IV族之杂质,以离子的型式,经加速后冲击进入晶圆表面,经过一段距离后,大部份停于离晶圆表面0.1微米左右之深度(视加速能量而定),故最高浓度的地方,不似热扩散法在表面上。不过因为深度很浅,一般还是简单认定大部份离子是搀杂在表面上,然后进一步利用驱入(drive-in)来调整浓度分布,并对离子撞击过的区域,进行结构之修补。基本上,其为一低温制程,故可直接用光阻来定义植入的区域。

(五)化学气相沉积(Chemical Vapor Deposition;CVD)

到目前为止,只谈到以高温炉管来进行二氧化硅层之成长。至于其它如多晶硅(poly-silicon)、氮化硅(silicon-nitride)、钨或铜金属等薄膜材料,要如何成长堆栈至硅晶圆上?

基本上仍是采用高温炉管,只是因着不同的化学沉积过程,有着不同之工作温度、压力与反应气体,统称为「化学气相沉积」。

既是化学反应,故免不了「质量传输」与「化学反应」两部份机制。由于化学反应随温度呈指数函数之变化,故当高温时,迅速完成化学反应。换言之,整体沉积速率卡在质量传输(diffusion-limited);而此部份事实上随温度之变化,不像化学反应般敏感。所以对于化学气相沉积来说,如图2-11所示,提高制程温度,容易掌握沉积的速率或制程之重复性。

然而高制程温度有几项缺点:

高温制程环境所需电力成本较高。

安排顺序较后面的制程温度若高于前者,可能破坏已沉积之材料。

高温成长之薄膜,冷却至常温后,会产生因各基板与薄膜间热胀缩程度不同之残留应力(residual stress)。所以,低制程温度仍是化学气相沉积追求的目标之一,惟如此一来,在制程技术上面临之问题及难度也跟着提高。

以下,按着化学气相沉积的研发历程,分别简介「常压化学气相沉积」、「低压化学气相沉积」、及「电浆辅助化学气相沉积」:

1、常压化学气相沉积(Atmospheric Pressure CVD;APCVD)

最早研发的CVD系统,顾名思义是在一大气压环境下操作,设备外貌也与氧化炉管相类似。欲成长之材料化学蒸气自炉管上游均匀流向硅晶,至于何以会沉积在硅晶表面,可简单地以边界层(boundary layer) 理论作定性说明:

当具黏性之化学蒸气水平吹拂过硅芯片时,硅芯片与炉管壁一样,都是固体边界,因着靠近芯片表面约1mm 的边界层内速度之大量变化(由边界层外缘之蒸气速度减低到芯片表面之0速度),会施予一拖曳外力,拖住化学蒸气分子;同时因硅芯片表面温度高于边界层外缘之蒸气温度,芯片将释出热量,来供给被拖住之化学蒸气分子在芯片表面完成薄膜材质解离析出之所需能量。所以基本上,化学气相沉积就是大自然「输送现象」(transport phenomena) 的应用。

常压化学气相沉积速度颇快,但成长薄膜的质地较为松散。另外若晶圆不采水平摆放的方式(太费空间),

薄膜之厚度均匀性(thickness uniformity)不佳。

2、低压化学气相沉积(Low Pressure CVD;LPCVD)

为进行50片或更多晶圆之批次量产,炉管内之晶圆势必要垂直密集地竖放于晶舟上,这明显衍生沉积薄膜之厚度均匀性问题;因为平板边界层问题的假设已不合适,化学蒸气在经过第一片晶圆后,黏性流场立即进入分离(separation) 的状态,逆压力梯度(reversed pressure gradient) 会将下游的化学蒸气带回上游,而一团混乱。

在晶圆竖放于晶舟已不可免之情况下,降低化学蒸气之环境压力,是一个解决厚度均匀性的可行之道。原来依定义黏性流特性之雷诺数观察,动力黏滞系数ν随降压而变小,如此一来雷诺数激增,而使化学蒸气流动由层流(laminar flow) 进入紊流(turbulent flow)。有趣的是紊流不易分离,换言之,其为一乱中有序之流动,故尽管化学蒸气变得稀薄,使沉积速度变慢,但其经过数十片重重的晶圆后,仍无分离逆流的现象,而保有厚度均匀,甚至质地致密的优点。以800oC、1 Torr成长之LPCVD氮化硅薄膜而言,其质地极为坚硬耐磨,也极适合蚀刻掩膜之用(沉积速度约20分钟0.1微米厚。)

3、电浆辅助化学气相沉积(Plasma Enhanced CVD;PECVD)

尽管LPCVD已解决厚度均匀的问题,但温度仍太高,沉积速度也不够快。为了先降低沉积温度,必须寻找另一能量来源,供化学沉积之用。由于低压对于厚度均匀性的必要性,开发低压环境之电浆能量辅助(电浆只能存在于10~0.001 Torr 下),恰好补足低温环境下供能不足的毛病,甚至于辅助之电浆能量效应还高于温度之所施予,而使沉积速率高过LPCVD。以350oC、1 Torr成长之PECVD氮化硅薄膜而言,其耐磨之质地适合IC最后切割包装(packaging) 前之保护层(passivation layer) 使用(沉积速度约5分钟0.1

微米厚。)

PECVD 与RIE 两机台之运作原理极为相似,前者用电浆来辅助沉积,后者用电浆去执行蚀刻。不同之处在于使用不同的电浆气源,工作压力与温度也不相同。

(六)金属镀膜(Metal Deposition)

又称物理镀膜(Physical Vapor Deposition;PVD),依原理分为蒸镀(evaporation) 与溅镀(sputtering) 两种。PVD基本上都需要抽真空:前者在10-6~10-7Torr的环境中蒸着金属;后者则须在激发电浆前,将气室内残余空气抽除,也是要抽到10-6~ 10-7Torr的程度。

一般的机械式抽气帮浦,只能抽到10-3Torr的真空度,之后须再串接高真空帮浦(机械式帮浦当作接触大气的前级帮浦),如:扩散式帮浦(diffusion pump)、涡轮式帮浦(turbo pump)、或致冷式帮浦(cryogenic pump),才能达到10-6 ~10-7Torr的真空程度。当然,不同的真空帮浦规范牵涉到不同原理之压力计、管路设计、与价格。

1、蒸镀

蒸镀就加热方式差异,分为电阻式(thermal coater) 与电子枪式(E-gun evaporator) 两类机台。前者在原理上较容易,就是直接将准备熔融蒸发的金属以线材方式挂在加热钨丝上,一旦受热熔融,因液体表面张力之故,会攀附在加热钨丝上,然后徐徐蒸着至四周(包含晶圆)。因加热钨丝耐热能力与供金属熔液攀附空间有限,仅用于低熔点的金属镀着,如铝,且蒸着厚度有限。

电子枪式蒸镀机则是利用电子束进行加热,熔融蒸发的金属颗粒全摆在石墨或钨质坩埚(crucible) 中。待金属蒸气压超过临界限度,也开始徐徐蒸着至四周(包含晶圆)。电子枪式蒸镀机可蒸着熔点较高的金属,厚度也比较不受限制。

蒸镀法基本上有所谓阶梯覆披(step coverage) 不佳的缺点,如图2-12所示。也就是说在起伏较剧烈的表面,蒸着金属有断裂不连续之虞。另外,多片晶圆的大面积镀着也存在厚度均匀的问题。为此,芯片之承载台加上公自转的机构,便用于上述两问题之改善。

2、溅镀

溅镀虽是物理镀膜的方法,但与蒸发毫无关系。就如同将石头丢入一滩泥沼中,会喷溅出许多泥浆般,溅镀利用氩气电浆,高速冲击受镀靶材(target),因而将靶材表面附近材质喷溅出来,落至晶圆之上。由于

靶材是一整面而不是一点接受轰击,所以喷溅出来的材质,也有可能填塞到芯片表面阶梯死角的部位,而比较没有断线不连续或所谓阶梯披覆的问题。

溅镀也依电浆受激之能量源不同,分为直流(DC) 与射频(RF) 两种。基本上,两种溅镀机都可镀着金属薄膜。但后者特别可以针对非金属薄膜,如压电(piezoelectric) 或磁性材料,具有「绝缘、熔点高、成份复杂、对堆栈方式相当敏感」等智能型薄膜之镀着特征。

3、金属薄膜图形定义

利用光蚀术定义妥之光阻,泡入适当酸液中,可蚀出金属线路,此与蒸镀抑或溅镀并无关连。然而部份金属蚀液是碱液,如铬,早期常用「赤血盐-氢氧化钾」溶液来定义图案,直接用光阻遮掩会失败(还没蚀到底,光阻已经溶散了!),所以必须多蒸着一层金,间接以碘化钾-碘溶液定义出金之图案后,再以金之图案来作掩膜,进行铬的腐蚀(如此之繁复,常使初学者晕头转向,现在已经有铬金属的蚀洗液,如CR-7)。另一个令人更扰人的问题在于:酸液有侧向侵蚀的现象,所以无法制作出次微米之金属线。一般业界已使用垂直度极佳,然而价格极昂之干蚀刻机来解决这个问题(价昂是因为要用到含氯之反应气体,所有管路都要考虑防腐蚀)。但学术研发单位,在没有干蚀刻机情况下,一样可以作出次微米之金属线,这个方法称为「金属剥离或举离法」(lift-off)。

今如图2-13所示,调整芯片镀金属与上光阻的顺序:首先旋敷光阻,以光蚀术将欲镀着金属线路之区域开出窗口(该光罩恰与酸液蚀刻的光罩明暗相反),再进行金属镀着的工作。此时,大部份金属可能都镀着在光阻上。所以金属镀着后,只要将芯片浸入丙酮,在光阻遭有机溶剂溶散之际,其上之金属也跟着被抬离芯片,而只留下没有光阻,也就是原来设计之金属线路。

不过,金属剥离也不是完全没缺点:

1、金属蒸镀,会对芯片产生加温效果,若蒸镀时间较长或厚度较高,有可能烤干光阻,而在最后泡丙酮时,无法掀离金属。

2、光阻开窗时,或多或少会留下一些显影不完全的部份,所以在金属镀着时,并不保证芯片受镀面之清洁状态良好。

3、图2-13 金属蒸镀的「举离」法:(a)光阻曝光(b)显影?金属蒸镀(d)举离,留下金属线路。

光阻边缘必须确保垂直或甚至有侧凹(也是undercut) 的特征,以便金属举离时,不会发生藕断丝连的现象。

单晶硅制备方法

金属1001 覃文远3080702014 单晶硅制备方法 我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 单晶硅,英文,Monocrystallinesilicon。是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。 单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。 单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。 直拉法 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单晶。 直拉法制成的单晶完整性好,直径和长度都可以很大,生长速率也高。所用坩埚必须由不污染熔体的材料制成。因此,一些化学性活泼或熔点极高的材料,由于没有合适的坩埚,而不能用此法制备单晶体,而要改用区熔法晶体生长或其

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

激光晶体项目可行性研究报告

激光晶体项目 可行性研究报告 xxx科技公司

激光晶体项目可行性研究报告目录 第一章项目总论 第二章投资背景及必要性分析第三章项目市场前景分析 第四章产品及建设方案 第五章项目选址科学性分析 第六章项目工程设计研究 第七章工艺说明 第八章项目环境保护分析 第九章项目职业安全管理规划第十章风险应对说明 第十一章节能方案分析 第十二章项目实施安排方案 第十三章投资计划 第十四章项目经济收益分析 第十五章招标方案 第十六章项目总结

第一章项目总论 一、项目承办单位基本情况 (一)公司名称 xxx科技公司 (二)公司简介 公司始终坚持“服务为先、品质为本、创新为魄、共赢为道”的经营 理念,遵循“以客户需求为中心,坚持高端精品战略,提高最高的服务价值”的服务理念,奉行“唯才是用,唯德重用”的人才理念,致力于为客 户量身定制出完美解决方案,满足高端市场高品质的需求。 公司及时跟踪客户需求,与国内供应商进行了深入、广泛、紧密的合作,为客户提供全方位的信息化解决方案。和新科技在全球信息化的浪潮 中持续发展,致力成为业界领先且具鲜明特色的信息化解决方案专业提供商。 未来公司将加强人力资源建设,根据公司未来发展战略和发展规模, 建立合理的人力资源发展机制,制定人力资源总体发展规划,优化现有人 力资源整体布局,明确人力资源引进、开发、使用、培养、考核、激励等 制度和流程,实现人力资源的合理配置,全面提升公司核心竞争力。鉴于 未来三年公司业务规模将会持续扩大,公司已制定了未来三年期的人才发 展规划,明确各岗位的职责权限和任职要求,并通过内部培养、外部招聘、

竞争上岗的多种方式储备了管理、生产、销售等各种领域优秀人才。同时,公司将不断完善绩效管理体系,设置科学的业绩考核指标,对各级员工进 行合理的考核与评价。 (三)公司经济效益分析 上一年度,xxx(集团)有限公司实现营业收入12046.48万元,同比 增长31.98%(2919.13万元)。其中,主营业业务激光晶体生产及销售收 入为10308.37万元,占营业总收入的85.57%。 根据初步统计测算,公司实现利润总额3315.28万元,较去年同期相 比增长759.91万元,增长率29.74%;实现净利润2486.46万元,较去年同期相比增长320.24万元,增长率14.78%。 上年度主要经济指标

单晶制备方法综述

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程: 维尔纳叶法合成装置

振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。此方法主要用于制备宝石等晶体。 2、提拉法[2] 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 2.1、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 2.2、合成装置和过程 提拉法装置 首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

电池组件生产工艺流程规范标准

电池组件生产工艺 目录 太阳能电池组件生产工艺介绍1 晶体硅太阳能电池片分选工艺规4 晶体硅太阳能电池片激光划片工艺规6 晶体硅太阳能电池片单焊工艺规10 晶体硅太阳能电池片串焊工艺规14 晶体硅太阳能电池片串焊工艺规16 晶体硅太阳能电池片叠层工艺规18 晶体硅太阳能电池组件层压工艺规23 晶体硅太阳能电池组件装框规27 晶体硅太阳能电池组件测试工艺规29 晶体硅太阳能电池组件安装接线盒工艺规31 晶体硅太阳能电池组件清理工艺规33

太阳能电池组件生产工艺介绍 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1流程图: 电池检测——正面焊接—检验—背面串接—检验—敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试—外观检验—包装入库; 2组件高效和高寿命如何保证: 2.1高转换效率、高质量的电池片 2.2高质量的原材料,例如:高的交联度的EVA、高粘结强 度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢 化玻璃等; 2.3合理的封装工艺; 2.4员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷

试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 3太阳电池组装工艺简介: 3.1工艺简介: 在这里只简单的介绍一下工艺的作用,给大家一个感性的认识,具体容后面再详细介绍: 3.1.1电池测试: 由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 3.1.2正面焊接: 是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。 3.1.3背面串接: 背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同

单晶制备方法

直拉法制单晶硅和区熔法晶体生长 第一节概述 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 多晶硅由很多单晶组成的,杂乱无章的。单晶硅原子的排列都是有规律的,周期性的,有方向性。 当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。 采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。例如:DRAM,SRAM,ASIC电路。 采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。在超高压

大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。 直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。根据现有工艺水平,采用直拉法已可生产6`18in (150`450mm)的大直径硅单晶棒。而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径 100`200mm的硅单晶。 区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。 第二节直拉法晶体生长 直拉法: 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单

晶体工艺的制备过程

净室 一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。 为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1)。 为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不 绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久, 冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋 停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外, 均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污染晶圆, 二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至 17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡, 才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮 气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用! 二、晶圆制作 硅晶圆(silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与结晶的程序。 目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky) 拉晶法(CZ法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。晶棒的阻值如果太低,代表其中导电杂质(impurity dopant) 太多,还需经过FZ法(floating-zone) 的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。 辅拉出的晶棒,外缘像椰子树干般,外径不甚一致,需予以机械加工修边,然后以X光绕射法,定出主切面(primary flat) 的所在,磨出该平面;再以内刃环锯,削下一片片的硅晶圆。最后经过粗磨(lapping)、化学蚀平(chemical etching) 与拋光(polishing) 等程序,得出具表面粗糙度在0.3微米以下拋光面之晶圆。(至于晶圆厚度,与其外径有关。) 刚才题及的晶向,与硅晶体的原子结构有关。硅晶体结构是所谓「钻石结构」(diamond-structure),系由两组面心结构(FCC),相距(1/4,1/4,1/4) 晶格常数(lattice constant;即立方晶格边长) 叠合而成。我们依米勒指针法(Miller index),可定义出诸如:{100}、{111}、{110} 等晶面。所以晶圆也因之有{100}、{111}、{110}等之分野。有关常用硅晶圆之切边方向等信息,请参考图2-2。现今半导体业所使用之硅晶圆,大多以{100} 硅晶圆为主。其可依导电杂质之种类,再分为p型(周期表III族) 与n型(周期表V族)。 由于硅晶外貌完全相同,晶圆制造厂因此在制作过程中,加工了供辨识的记号:亦即以是否有次要切面

单晶硅片制作工艺流程

单晶硅电磁片生产工艺流程 ?1、硅片切割,材料准备: ?工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 ?2、去除损伤层: ?硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 ? ? 3、制绒: ?制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 ? 4、扩散制结:

?扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 ? 5、边缘刻蚀、清洗: ?扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。 目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 ? 6、沉积减反射层: ?沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN 作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 ? 7、丝网印刷上下电极: ?电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电

单晶材料的制备

单晶材料的制备 High Pressure ResearchVol. 24 No. 4 December 2004 pp. 481 – 490 PREPARATION AND SINGLE-CRYSTAL STRUCTURE OF A NEW HIGH-PRESSURE MODIFICATION OF BaAl2Si2 SHOJI YAMANAKA MASUO KAJIYAMA SADASIVAN N. SIVAKUMAR and HIROSHI FUKUOKA Department of Applied Chemistry Graduate School of Engineering Hiroshima University Higashi-Hiroshima 739-8527 JapanA ternary element mixture of Ba Al and Si in a molar ratio of 1 : 2 : 2 was arc-melted and treated under a high-pressure and high-temperature condition of 5 GPa at 1200 8C. X-ray structural analysis was performed on thesingle crystal obtained by this treatment. The crystal was found to be a new high-pressure modication ofBaAl2Si2 and isotypic with layer structured ThCr2Si2 in the space group I4/mmm. The crystal obtained by thesimple arc-melting also had the same structure high-pressure phase. The low-pressure phase a-BaAl2Si2 wasprepared by annealing the arc-melted sample at 1200– 1000 8C. The single crystals of the a-phase werealso obtained which crystallized in the space group Cmcm. This structure was closely related to the structure ofa-BaAl2Ge2 space group Pnma. It is interesting to note that BaAl2Si2 has a pressure induced polymorphwhereas BaAl2Ge2 has a temperature dependent dimorphism.Keywords: Silicide High pressure Synthesis Clathrate BaAl2Si2 Phase transitionINTRODUCTIONIn a series of studies on the synthesis of new silicon clathrate compounds containing bariumand

材料制备技术 复习题

《材料制备技术》复习题 1.形变退火再结晶的驱动力是什么? 2.什么样的材料适合用形变退火再结晶法制备单晶材料? 3.适合用于形变退火再结晶法制备单晶的形变方法有哪些? 4.简述形变退火法制备单晶的工艺过程。 5.从能力守恒原理讨论直拉法晶体生长中如何控制晶体直径? 6.从熔体中生长单晶常用的方法有哪些? 7.简述定向凝固法制备单晶的工艺过程。 8.简述区域熔化法制备单晶的工艺过程。 9.比较定向凝固法和区域熔化法制备单晶的异同点和优缺点。 10.什么叫Brigman法? 11.什么叫改进的Brigman法? 12.什么叫PVD? 13.什么叫CVD? 14.简述直流溅射发制备薄膜的工艺过程。 15.简述溅射机制。 16.什么叫闪蒸法?为什么要用闪蒸法? 17.什么叫双蒸法?为什么要用双蒸法? 18.什么是离子镀?为什么要用离子镀? 19.什么是高频溅射?为什么要用高频溅射? 20.什么叫磁控溅射?为什么要用磁控溅射? 21.在单晶材料制备中,都有一个提升设备。对这个提升设备有什么基本要求? 22.什么是蒸发源?有哪些蒸发源种类? 23.对蒸发源材料有什么要求? 24.对定向凝固中用的坩埚有什么要求? 25.液相-固相平衡生长中选晶原理是什么?有哪些选晶方法和结构? 26.在单晶材料制备时,希望熔体中有非均匀形核点吗? 27.在非晶材料制备中,希望熔体中有非均匀形核点吗? 28.液态急冷法制备非晶态材料的原理是什么? 29.什么样的合金容易形成非晶态好合金? 30.合金粘度对非晶态形成有什么影响? 31.简述液态急冷法制备非晶材料的工艺。 32.简述几种液态急冷法制备非晶态材料的具体方法。 33.液态急冷法制备非晶材料对所用的极冷板有什么要求? 34.如何制备大块非晶材料? 35.液态急冷法制备非晶材料中的临界冷却速度指的是什么? 36.临界冷却速度和非晶形成能力之间是什么关系? 37.非晶态材料有哪些特性? 38.什么叫玻璃化元素? 39.什么叫晶化温度?它和非晶态材料的稳定性之间什么关系? 40.什么叫玻璃化转变温度?它和非晶态形成能力什么关系?

单晶制备

单晶制备的常用方法 溶剂, 单晶, 冰箱, 橡胶, 制备 有以下两种方法较常用: 1) 挥发溶剂法: 将纯的化合物溶于适当溶剂或混和溶剂。(理想的溶剂是一个易挥发的良溶剂和一个不易挥发的不良溶剂的混和物。)此溶液最好稀一些。用氮/氩鼓泡除氧。容器可用橡胶塞(可缓慢透过溶剂)。为了让晶体长得致密,要挥发得慢一些,溶剂挥发性大的可置入冰箱。大约要长个几天到几星期吧。 2) 扩散法: 在一个大容器内置入易挥发的不良溶剂(如戊烷、已烷),其中加一个内管,置入化合物的良溶剂溶液。将大容器密闭,也可放入冰箱。经易挥发溶剂向内管扩散可得较好的晶体。时间可能比挥发法要长。另外如果这一化合物是室温反应得到,且产物比较单一,溶解度较小,可将反应物溶液分两层放置,不加搅拌,令其缓慢反应沉淀出晶体。容易结晶的东西放在那里自己就出单晶,不容易结晶的怎么弄也是不出。好象不是想做就能做出来的。首先看一下产物的溶解度,将产物抽干后用良性溶剂溶解成饱和溶液(如用二氯甲烷),然后加入相同体积的不良性溶剂,若产物不稳定应在惰性气体的保护下进行操作,完成后置于冰箱中冷冻至单晶析出,或直接用惰性气体鼓泡直至单晶析出。(应缓慢。 3) 还可以这样: 在大烧杯里放一个小烧杯,小烧杯里放良溶剂和要结晶的物质,大烧杯里放易挥发的不良溶剂,把大烧杯密封,放于室温即可。 4) 还可以这样: 在比色管中先用一种溶剂溶解产物,在慢慢地加入另一种溶解性小的溶剂,密封,会较快长出晶体. 5) 讨论 晶体的生长是一个动力学过程,由化合物的内因(分子间色散力偶极力及氢键)与外因(溶剂极性、挥发或扩散速度及温度)决定。晶体的培养实质是一个饱和溶液的重结晶过程,使溶液慢慢饱和的方法(如溶液挥发、不良溶剂的扩散及温度的降低)都可。如1)所言,

2020年半导体级刻蚀用单晶硅材料行业分析报告

2020年半导体级刻蚀用单晶硅材料行业分析报告 2020年2月

目录 一、半导体级刻蚀用单晶硅材料简介 (4) 二、半导体级单晶硅材料行业情况 (5) 1、半导体材料:半导体产业的发展基石 (5) 2、半导体硅材料:半导体制造中的核心原材料之一,技术壁垒高 (6) 3、刻蚀用单晶硅材料 (8) 三、神工股份:全球刻蚀用单晶硅材料供应优势企业 (9) 1、专注单晶硅材料领域,产品质量优异 (9) (1)产品质量优异,达到国际先进水平 (10) (2)掌握刻蚀工序核心材料,示范半导体材料国产替代 (11) (3)下游客户优质且稳定 (11) 2、业绩稳定增长,盈利持续攀升 (13) (1)主营收入与净利润均实现较快增长 (13) (2)毛利率、净利率处于高位,费用率低于同行业公司 (13) 3、半导体级硅单晶抛光片项目前景可期 (15)

半导体级刻蚀用单晶硅材料简介。半导体级单晶硅材料是集成电路产业链中重要的基础材料,按照其应用领域划分,主要可分为芯片用单晶硅材料和刻蚀用单晶硅材料。芯片制造工艺繁多复杂,其中薄膜沉积、光刻、刻蚀是芯片制造三个主要工艺环节,刻蚀用单晶硅材料主要应用于加工制成刻蚀用单晶硅部件,刻蚀用单晶硅部件是晶圆制造刻蚀环节所需的核心耗材。 半导体单晶硅材料行业情况。半导体材料行业作为半导体产业的直接上游,是半导体行业技术进步的基石。半导体材料主要应用于晶圆制造与封装,根据SEMI 统计,2018年全球半导体材料销售额达519亿美元,其中半导体制造材料市场规模322 亿美元,封装材料市场规模197亿美元。半导体硅材料产业规模占半导体制造材料规模的30% 以上,是半导体制造中最为重要的原材料。 神工股份:全球刻蚀用单晶硅材料供应优势企业。公司主要从事半导体级单晶硅材料的研发、生产和销售,单晶硅材料是晶圆制造刻蚀环节必须的核心耗材。公司目前已成功进入国际先进半导体材料产业链体系,根据公司招股说明书披露,2018年公司在全球刻蚀用单晶硅材料市场占有率达到13%-15%,是业界领先的集成电路刻蚀用单晶硅材料供应商。公司经过多年的技术积累,突破并优化了多项关键技术,构建了较高的技术壁垒。目前公司所拥有的无磁场大直径单晶硅制造技术、固液共存界面控制技术、热场尺寸优化工艺等技术已处于国际先进水平。 根据公司招股说明书披露,财务数据方面:公司营业收入从2016

光子晶体制备的四种方法。

光子晶体是一种人造微结构,它的晶格尺寸与光波的波长相当,是晶体晶格尺寸的1000倍。光子晶体的制作具有相当大的难度,根据适用的波长范围,制作技术也不同。此外,还需要引入缺陷态,因此,制作过程往往需要采用多种技术才能完成。 1.精密加工法 Ames实验室证实了金刚石结构的光子晶体具有很大的带隙后, Yablonovitch等人便采用活性离子束以打孔法制造了第一块具有完全光子带隙(photonic band gap, PBG)的三维光子晶体。他们采用反应离子束刻蚀技术在一块高介电常数的底板表面以偏离法线35.26°的角度从3个方向钻孔,各方向的夹角为120°。但是,当孔钻得较深,并彼此交叉时,孔会产生位置偏离,从而影响其周期性结构。 Ho等提出了木堆结构(Woodp ile Structure) ,即用介电柱的多层堆积形成完全带隙的介电结构。Ozbay等用铝棒堆积成Woodpile结构,其缺点是工艺比较繁琐,且结构的周期准确性难以保证。Ozbay等又发展了逐层叠加结构(Layer- by-layer Structure) ,即先制造出各向异性的二维Si/SiO2 层状结构,然后以Woodp ile结构的周期结构形式进行逐层叠加,即四层形成一个周期。通过层叠 法和半导体工艺的结合,使得设计出的光子晶体具有禁带宽、带隙可达到红外及近红外区的优点。由于是以半导体工业成熟的技术为基础,精密加工法是制备光子晶体最为稳定可靠的方法。然而其工艺复杂、造价昂贵,并且受现有半导体技术水平的限制,若要制备更小波长尺度的三维光子晶体、晶体掺杂以及缺陷引入等方面却存在着很大的挑战。 2.胶体晶体法 早在1968年, Kriger等人就发现了由乳液聚合得到的聚苯乙烯胶乳(50~500nm)在体积分数超过35%时出现蛋白石特有的颜色。蛋白石是一种具有不完全带隙的光子晶体,其独有的颜色是由可见光的布拉格衍射产生的。由于胶体晶体的晶格尺寸在亚微米级量级,它可望成为制造近红外及可见光波段三维光子晶体的一条有效途径。 在溶液中,胶体颗粒小球表面带有电荷,在适当的电荷密度和颗粒浓度下,通过静电力相互作用,小球自组织生长成周期性结构,形成胶体晶体。在毛细容器中,利用胶粒与带电玻璃器壁的静电力相互作用。当胶粒体积分数较高时,胶体悬浮颗粒以面心立方( FCC)点阵堆积; 当体积分数较低时,倾向于体心立方(BCC)点阵堆积,晶体的密排面平行于器壁表面。 目前,已经制备的胶体晶体多为聚苯乙烯乳胶体系和二氧化硅胶体颗粒体系。遗憾的是它们不具备高的介电比和合适的网络拓扑结构,因而并不能产生完全光子带隙。为了提高介电比,可以将胶体晶体小心脱水,得到紧密堆积的蛋白石结构。 3.反蛋白石结构法 反蛋白石结构是指低介电系数的小球(通常为空气小球)以面心立方密堆积结构分布于高介电系数的连续介质中,这种结构将有望产生完全能隙。1997年Velev等人首先用经阳离子表面活性剂CTAB浸泡过的聚苯乙烯颗粒形成的胶体晶体为模 板,合成了含三维有序排列的空气球的二氧化硅反蛋白石材料。主要采用模板法,具体操作为:以颗粒小球所构成的紧密堆积结构为模板,向小球间隙填充高介电常数的Si, Ge, TiO2等材料,然后通过煅烧、化学腐蚀等方法将模板小球除去,得到三维空间的周期结构。Vlasov等人

半导体材料

摘要本文重点对半导体硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。 关键词半导体材料量子线量子点材料光子晶体 1半导体材料的战略地位 上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。 2几种主要半导体材料的发展现状与趋势 1硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸的Si单晶已实现大规模工业生产,基于直径

为12英寸硅片的集成电路技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料,低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,非凡是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。 2GaAs和InP单晶材料 GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐

单晶制备方法综述概要

课程论文 题目单晶材料的制备方法综述 学院材料科学与工程学院专业材料学 姓名刘聪 学号S150******** 日期2015.11.01 成绩

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程:

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

相关文档
最新文档