中考数学压轴题专题圆与相似的经典综合题及详细答案

中考数学压轴题专题圆与相似的经典综合题及详细答案
中考数学压轴题专题圆与相似的经典综合题及详细答案

中考数学压轴题专题圆与相似的经典综合题及详细答案

一、相似

1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.

(1)①求证:AP=CQ;②求证:PA2=AF?AD;

(2)若AP:PC=1:3,求tan∠CBQ.

【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,

∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°

∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;

②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,

∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,

由①得△ABP≌△CBQ,∠ABP=∠CBQ

∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,

(本题也可以连接PD,证△APF∽△ADP)

(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,

∵∠ACB=45°,∴∠PCQ=45°+45°=90°

∴tan∠CPQ= ,

由①得AP=CQ,

又AP:PC=1:3,∴tan∠CPQ= ,

由②得∠CBQ=∠CPQ,

∴tan∠CBQ=tan∠CPQ= .

【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可

得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答

案.

2.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。

(1)求证:DC2=CE·AC;

(2)若AE=2EC,求之值;

(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.

【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,

∴,∴DC2=CE·AC;

(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,

DC= k,连接OC,OD,

∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,

∵AB是⊙O的直径,∴在Rt△ACB中,,

∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴

(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,

过C作CG⊥AB于G,

设EC=k,∵∠CAB=30°,∴,

又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,

∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;

(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;

(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。

3.如图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.

(1)填空:点B的坐标为________;

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:;

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值

【答案】(1)

(2)解:存在,理由如下:

∵OA=2,OC=2,

∵tan∠ACO==,

∴∠ACO=30°,∠ACB=60°

①如图(1)中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,

∴∠DCE=∠EDC=30°,

∴∠DBC=∠BCD=60°,

∴△DBC是等边三角形,

∴DC=BC=2,

在Rt△AOC中,

∵∠ACO=30°,OA=2,

∴AC=2AO=4,

∴AD=AC-CD=4-2=2,

∴当AD=2时,△DEC是等腰三角形,

②如图(2)中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,

∴∠ABD=∠ADB=75°,

∴AB=AD=2,

综上所述,满足条件的AD的值为2或2.

(3)①如图,过点D作MN⊥AB于点M,交OC于点N。

∵A(0.2)和C(23 ,0),

∴直线AC的解析式为y=-33x+2,

设D(a,-33a+2),

∴DN=-33a+2,BM=23-a

∵∠BDE=90°,

∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,

∴∠DBM=∠EDN,

∵∠BMD=∠DNE=90°,

∴△BMD~△DNE,

∴DEBD=DNBM=-33a+223-a=33.

②如图(2)中,作DH⊥AB于H。

在Rt△ADH中,

∵AD=x,∠DAH=∠ACO=30°,

∴DH=12AD=12x,AH=AD2-DH2=32x,

∴BH=23-32x,

在Rt△BDH中,BD=BH2+DH2=12x2+23-32x2,

∴DE=33BD=33·12x2+23-32x2,

∴矩形BDEF的面积为y=3312x2+23-32x22=33x2-6x+12,

即y=33x2-23x+43,

∴y=33x-32+3

∵33>0,

∴x=3时,y有最小值3.

【解析】【解答】(1)∵四边形AOCB是矩形,

∴BC=OA=2,OC=AB=,∠BCO=∠BAO=90°,

∴B(, 2)

【分析】(1)根据点A、C的坐标,分别求出BC、AB的长,即可求解。

(2)根据点A、C的坐标,求出∠ACO,∠ACB的度数,分两种情况讨论:①如图(1)中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC;②如图(2)中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,分别求出AD的长,即可求解。

(3)①如图,过点D作MN⊥AB于点M,交OC于点N。利用待定系数法求出直线AC的

解析式,设D(a,-a+2),分别用含a的代数式表示出DN、BM的长,再证明△BMD~△DNE,然后根据相似三角形的性质,得出对应边成比例,即可求解;②如图(2)中,作DH⊥AB于H。设AD=x,用含x的代数式分别表示出DH、BH的长,利用勾股定理求出BD、DE的长再根据矩形的面积公式,列出y与x的函数关系式,求出顶点坐标,即可求解。

4.如图,抛物线与轴交于A,B两点(点B在点A的左侧),与y轴交于点C,顶点为D,其对称轴与轴交于点E,联接AD,OD.

(1)求顶点D的坐标(用含的式子表示);

(2)若OD⊥AD,求该抛物线的函数表达式;

(3)在(2)的条件下,设动点P在对称轴左侧该抛物线上,PA与对称轴交于点M,若△AME与△OAD相似,求点P的坐标.

【答案】(1)解:∵,∴顶点D的坐标为(4,-4m)

(2)解:∵

∴点A(6,0),点B(2,0),则OA=6,∵抛物线的对称轴为x=4,∴点E(4,0),

则OE=4,AE=2,又DE=4m,

∴由勾股定理得:,,

又OD⊥AD,∴,则,解得:,

∵m>0,∴抛物线的函数表达式

(3)解:如图,过点P作PH⊥x轴于点H,

则△APH∽△AME,

在Rt△OAD中,,设点P的坐标为,

当△APH∽△AME∽△AOD时,∵,

∴,即,

解得:x=0,x=6(舍去),∴点P的坐标为;

②△APH∽△AME∽△OAD时,∵,∴,即

解得:x=1,x=6(舍去),∴点P的坐标为;

综上所述,点P的坐标为或 .

【解析】【分析】(1)将抛物线的解析式配成顶点式即可求得顶点D的坐标;

(2)要求抛物线的解析式,只须求出m的值即可。因为抛物线与x轴交于点A、B,所以令y=0,解关于x的一元二次方程,可得点A、B的坐标,则OA、OD、AD均可用含m的代数式表示;因为OD⊥AD,所以在直角三角形OAD中,由勾股定理可得,将OA、OD、AD代入可得关于m的方程,解方程即可得m的值,则抛物线的解析式可求解;

(3)△AME与△OAD中的对应点除直角顶点D、E固定外,其余两点都不固定,所以分两种情况:

①当△AME∽△AOD时,过点P作PH⊥x轴于点H,易得△APH∽△AME∽△AOD,可得相应的比例式求解;

②当△AME∽△OAD时,过点P作PH⊥x轴于点H,易得△APH∽△AME∽△OAD,可得相应的比例式求解。

5.如图,在矩形ABCD中,,,点E是BC边上的点,,连接AE,交于点F.

(1)求证:≌;

(2)连接CF,求的值;

(3)连接AC交DF于点G,求的值.

【答案】(1)证明:∵四边形ABCD是矩形,

∴∠BAD=∠ADC=∠B=90°,AB=CD=4,

∵DF⊥AE,

∴∠AFD=90°,

∴∠BAE+∠EAD=∠EAD+∠ADF=90°,

∴∠BAE=∠ADF,

在Rt△ABE中,

∵AB=4,BE=3,

∴AE=5,

在△ABE和≌△DFA中,

∴△ABE≌△DFA(AAS).

(2)解:连结DE交CF于点H,

∵△ABE≌△DFA,

∴DF=DC=4,AF=BE=3,

∴CE=EF=2,

∴DE⊥CF,

∴∠DCF+∠HDC=∠DEC+∠HDC=90°,

∴∠DCF=∠DEC,

在Rt△DCE中,

∵CD=4,CE=2,

∴DE=2 ,

∴sin∠DCF=sin∠DEC= .

(3)过点C作CK⊥AE交AE的延长线于点K,

∵DF⊥AE,

∴CK∥DF,

∴,

在Rt△CEK中,

∴EK=CE·cos∠CEK=CE·cos∠AEB=2× = ,

∴FK=FE+EK=2+ = ,

∴ = = .

【解析】【分析】(1)由矩形的性质,垂直的性质,同角的余角相等可得∠BAE=∠ADF,在Rt△ABE中,根据勾股定理可得AE=5,由全等三角形的判定AAS可得△ABE≌△DFA.(2)连结DE交CF于点H,由(1)中全等三角形的性质可知DF=DC=4,AF=BE=3,由同角的余角相等得∠DCF=∠DEC,在Rt△DCE中,根据勾股定理可得DE=2 ,根据锐角三角函数定义可得答案.(3)过点C作CK⊥AE交AE的延长线于点K,由平行线的推论知

CK∥DF,根据平行线所截线段成比例可得,在Rt△CEK中,根据锐角三角函数定义可得EK= ,从而求出FK,代入数值即可得出答案.

6.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.

(1)判断直线BD与⊙O的位置关系,并证明你的结论;

(2)若AD:AO=8:5,BC=2,求BD的长.

【答案】(1)解:BD是⊙O的切线;

理由如下:∵OA=OD,∴∠ODA=∠A

∵∠CBD=∠A,∴∠ODA=∠CBD,

∵∠C=90°,∴∠CBD+∠CDB=90°,

∴∠ODA+∠CDB=90°,∴∠ODB=90°,即BD⊥OD,

∴BD是⊙O的切线

(2)解:设AD=8k,则AO=5k,AE=2OA=10k,

∵AE是⊙O的直径,∴∠ADE=90°,

∴∠ADE=∠C,

又∵∠CBD=∠A,∴△ADE∽△BCD,

∴,即,

解得:BD= .所以BD的长是

【解析】【分析】(1)由等腰三角形的性质和已知得出∠ODA=∠CBD,由直角三角形的性质得出∠CBD+∠CDB=90°,因此∠ODA+∠CDB=90°,得出∠ODB=90°,即可得出结论;(2)设AD=8k,则AO=5k,AE=2OA=10k,由圆周角定理得出∠ADE=90°,△ADE∽△BCD,

得出对应边成比例,即可求出BD的长.

7.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.

(1)求证:OD⊥BE.

(2)若DE= ,AB=6,求AE的长.

(3)若△CDE的面积是△OBF面积的,求线段BC与AC长度之间的等量关系,并说明理由.

【答案】(1)证明:连接AD,

∵AB是直径,

∴∠AEB=∠ADB=90°,

∵AB=AC,

∴∠CAD=∠BAD,BD=CD,

∴,

∴OD⊥BE;

(2)解:∵∠AEB=90°,

∴∠BEC=90°,

∵BD=CD,

∴BC=2DE=2 ,

∵四边形ABDE内接于⊙O,∴∠BAC+∠BDE=180°,

∵∠CDE+∠BDE=180°,

∴∠CDE=∠BAC,

∵∠C=∠C,

∴△CDE∽△CAB,

∴,即,∴CE=2,

∴AE=AC-CE=AB-CE=4

(3)解:∵BD=CD,

∴S△CDE=S△BDE,

∵BD=CD,AO=BO,

∴OD∥AC,

∵△OBF∽△ABE,

∴,∴S△ABE=4S△OBF,

∵,

中考数学二模试题分类汇编——圆的综合综合附答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90° 在△COF中, ∵∠OFC+∠OCF=90°, ∴∠HBC=∠OFC=∠AFH, 在△AEH和△AFH中,

∵ AFH AEH AHF AHE AH AH ∠=∠ ? ? ∠=∠ ? ?= ? , ∴△AEH≌△AFH(AAS), ∴EH=FH; (3)由(1)易知,∠BMT=∠BAC=60°, 作直径BG,连CG,则∠BGC=∠BAC=60°, ∵⊙O的半径为4, ∴CG=4, 连AG, ∵∠BCG=90°, ∴CG⊥x轴, ∴CG∥AF, ∵∠BAG=90°, ∴AG⊥AB, ∵CE⊥AB, ∴AG∥CE, ∴四边形AFCG为平行四边形, ∴AF=CG=4. 【点睛】 本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键. 2.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,55△AFG的面积.

(新)中考数学--选择题压轴题(含答案)

题型一选择题压轴题 类型一选择几何压轴题 1?如图,四边形ABCD是平行四边形,ZBCD=I20o , AB = 2, BC = 4,点E是直线BC上的点,点F是直线CD上的点,连接AF, AE, EF,点M, N分别是AF, EF 的中点,连接MW则MN的最小值为() 2.如图,四边形ABCD是菱形,对角线AC与BD交于点0, AB = 4, AC = 2√TT,若直线1满足:①点A到直线1的距离为2;②直线1与一条对角线平行;③直线1与菱形ABCD的边有交点,则符合题意的直线1的条数为() 3?如图,在四边形ABCD 中,AD/7BC, AB=CD, AD = 2, BC = 6, BD = 5.若点P 在四边形ABCD的边上,则使得APBD的面积为3的点P的个数为() -√3 (第2(第3

4?如图,点M是矩形ABCD的边BC, CD上的动点,过点B作BN丄AM于点P,交

矩形ABCD 的边于点N,连接DP.若AB=4, AD = 3,则DP 的长的最小值为( ) A. √T3-2 5?如图,等腰直角三角形ABC 的一个锐角顶点A 是。()上的一个动点,ZACB= 90° ,腰AC 、斜边AB 分别交Oo 于点E, D,分别过点D, E 作OO 的切线,两线 交于点F,且点F 恰好是腰BC 上的点,连接O C, ()D, OE.若Θ0的半径为2,则 OC 的长的最大值为( ) 6.如图,在矩形ABCD 中,点E 是AB 的中点,点F 在AD 边上,点M, N 分别是 CD, BC 边上的动点?若AB=AF 二2, AD 二3,则四边形EFMN 周长的最小值是( ) 7.如图,OP 的半径为1,且点P 的坐标为(3, 2),点C 是OP 上的一个动点, 点A, B 是X 轴上的两点,且OA=OB, AC 丄BC,则AB 的最小值为( ) √TT √T3 C. √5+l +√13 √2+2√5 ÷√5 √2+1 O B (第5 (第6 (第7(第8

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA , OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形, AOB 60∠∴=,

1 ACB AOB 302 ∠∠∴==, 故答案为30; ()2①如图2,连接AO 并延长交 O 于D ,连接BD , AD 为O 的直径, AD 10∴=,ABD 90∠=, 在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3 tan ADB BD 4 ∠∴= =, C ADB ∠∠=, C ∠∴的正切值为3 4 ; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E , AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=, ABC 11 S AB CE 692722 ∴=?=??=; Ⅱ、当AC AB 6==时,如图4,

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

圆的综合复习测试题

图 3 图6 《圆》综合复习测试题 一、选择题(本题有10小题,每小题3分,共30分) 1.图1是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) (A )内含 (B )相交 (C )相切 (D )外离 2.如图2,点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=?,则A C B ∠ 的度数是( ) (A )18° (B )30° (C )36° (D )72° 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( ) (A )相切 (B )内含 (C )外离 (D )相交 4.如图3,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o ,则∠C 的度数是( ) (A )50o (B )40o (C )30o (D )25o 5.边长为2的等边三角形的外接圆的半径是( ) (A) 3 3 (B) 3 (C)2 3 (D)2 3 3 6.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( ) (A)3 8 cm (B) 3 16cm (C)3cm (D) 3 4cm 7.如图5,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin∠APO 等于( ) (A)5 4 (B)5 3 (C)3 4 (D)4 3 8.如图6,AB 是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) (A)10 (B)8 (C)6 (D)4 9.如图7,扇形纸扇完全打开后,外侧两竹条AB,AC 夹角为120 ,AB 的长为30cm ,贴纸部分 BD 的长为20cm ,则贴纸部分的面积为( ) 图1 O C B A 图2 P O A · 图5

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

数学中考数学压轴题(讲义及答案)附解析

一、中考数学压轴题 1.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s . (1)a =______cm ,b =______cm ; (2)t 为何值时,EP 把四边形BCDE 的周长平分? (3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2. 2.在平面直角坐标系中,抛物线2 4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且 :3:4??=ABC BCE S S . (1)求点A ,点B 的坐标; (2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式. 3.如图1,抛物线2 (0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式; (2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标. (3)如图3,点M 的坐标为( 3 2 ,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

九年级《圆》综合测试题含答案

九年级《圆》测试题 (时间90分钟,满分100分) 一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只 有一项是符合题目要求的,请选出来) 1.如图,点A B C ,,都在⊙O 上,若34C =o ∠, 则AOB ∠的度数为( ) A .34o B .56o C .60o D .68o 2.已知两圆的半径分别为6和8,圆心距为7, 则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切 3.如图,圆内接正五边形ABCD E 中,∠ADB =( ). A .35° B .36° C .40° D .54° 4.⊙O 中,直径AB =a , 弦CD =b ,,则a 与b 大小为( ) A .a >b B .a <b C .a ≤b D . a ≥b 5.如图,⊙O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A .40° B .55° C .65° D .70° 6.边长为a 的正六边形的面积等于( ) A . 2 4 3a B .2a C . 2 2 33a D .233a 7.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方 向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的 方向折向行走。按照这种方式,小华第五次走到场地边缘时 处于弧AB 上,此时∠AOE =56°,则α的度数是( ) A .52° B .60° C .72° D .76° 8.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( ) O C B A (第1题图) O A F C E (第5题图) E A B C D (第3题图) (第7题图)

中考数学选择题压轴题汇编

年中考数学选择题压轴题汇编

————————————————————————————————作者:————————————————————————————————日期: 2

3 2017年中考数学选择题压轴题汇编(1) 1.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组()213220y y y a +?->???-≤? 的解集为y 2<-,则符合条件的所有整数a 的和为( ) A .10 B .12 C . 14 D .16 【答案】A 【解析】①解关于x 的分式方程,由它的解为正数,求得a 的取值范围. 2411a x x +=-- 去分母,得2-a =4(x -1) 去括号,移项,得 4x =6-a 系数化为1,得x = 64a - ∵x 0>且x≠1,∴64a -0>,且64 a -≠1,解得a 6<且a≠2; ②通过求解于y 的不等式组,判断出a 的取值范围. ()213220y y y a +?->???-≤? 解不等式①,得y 2<-; 解不等式②,得y ≤a ; ∵不等式组的解集为y 2<-,∴a 2≥-; ③由a 6<且a≠2和a 2≥-,可推断出a 的取值范围26a -≤<,且a≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A . 2.(2017内蒙古赤峰)正整数x 、y 满足(2x -5)(2y -5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .26 【答案】A , 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)

中考数学二轮复习中考数学压轴题知识点及练习题附解析(1)

一、中考数学压轴题 1.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF = 1 3 ,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图1,在平面直角坐标系中,抛物线239 334 y x x = --x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点 C . (1)过点C 的直线5 334 y x = -x 轴于点H ,若点P 是第四象限内抛物线上的一个动

点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值: (2)如图2, 将ABC ?绕点B 顺时针旋转至A BC ''?的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连 接AE C E '、, 将AC E ?'沿直线C E '翻折为A C E ?'', 是否存在点E , 使得BAA ?'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由. 4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ; (3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由. 5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

2019年中考数学压轴题精选例题及答案解析

一.解答题(共30小题) 1.(顺义区)如图,直线l 1:y=kx+b平行于直线y=x﹣1,且与直线l 2 : 相交于点P(﹣1,0). (1)求直线l 1、l 2 的解析式; (2)直线l 1 与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运 动,到达直线l 2上的点B 1 处后,改为垂直于x轴的方向运动,到达直线l 1 上的 点A 1处后,再沿平行于x轴的方向运动,到达直线l 2 上的点B 2 处后,又改为垂 直于x轴的方向运动,到达直线l 1上的点A 2 处后,仍沿平行于x轴的方向运动,… 照此规律运动,动点C依次经过点B 1,A 1 ,B 2 ,A 2 ,B 3 ,A 3 ,…,B n ,A n ,… ①求点B 1,B 2 ,A 1 ,A 2 的坐标; ②请你通过归纳得出点A n 、B n 的坐标;并求当动点C到达A n 处时,运动的总路径 的长? 2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=. (1)求直线AC的解析式; (2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.

3.(资阳)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1=﹣4x+190,y 2=5x ﹣170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求. (1)求该商品的稳定价格和稳定需求量; (2)当价格为45(元/件)时,该商品的供求关系如何?为什么? 4.(哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式; (2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值. 5.(桂林)如图已知直线L :y=x+3,它与x 轴、y 轴的交点分别为A 、B 两点. (1)求点A 、点B 的坐标. (2)设F 为x 轴上一动点,用尺规作图作出⊙P,使⊙P 经过点B 且与x 轴相切于点F (不写作法,保留作图痕迹). (3)设(2)中所作的⊙P 的圆心坐标为P (x ,y ),求y 关于x 的函数关系式. (4)是否存在这样的⊙P,既与x 轴相切又与直线L 相切于点B ?若存在,求出圆心P 的坐标;若不存在,请说明理由.

郴州数学圆 几何综合专题练习(解析版)

郴州数学圆几何综合专题练习(解析版) 一、初三数学圆易错题压轴题(难) 1.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G. (1)如图1,求证:GD=GF; (2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小; (3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长. 【答案】(1)见解析;(2)∠ADF=45°;(3)1810 . 【解析】 【分析】 (1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°; (3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】 解:(1)证明:∵DE⊥AB ∴∠BED=90° ∴∠A+∠ADE=90° ∵∠ADC=90° ∴∠GDF+∠ADE=90° ∴∠A=∠GDF ∵BD BD ∴∠A=∠GFD

九年级数学圆的综合的专项培优练习题(含答案)含详细答案

九年级数学圆的综合的专项培优练习题(含答案)含详细答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED. (1)求证:DE是⊙O的切线; (2)若tan A=1 2 ,探究线段AB和BE之间的数量关系,并证明; (3)在(2)的条件下,若OF=1,求圆O的半径. 【答案】(1)答案见解析;(2)AB=3BE;(3)3. 【解析】 试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

相关文档
最新文档