实验二-蒙特卡罗方法计算三维体积

实验二-蒙特卡罗方法计算三维体积
实验二-蒙特卡罗方法计算三维体积

数学与应用数学系201 3 ~201 4 学年第二学期实验报告

(*1冰淇淋锥的体积*)

t1=ParametricPlot3D[{r*Cos[t],r*Sin[t],r^2},{t,0,2Pi},{r,0,1},DisplayFunction Identity];

t2=ParametricPlot3D[{Cos[u]*Sin[v],Sin[u]*Sin[v],1+Cos[v]},{u,0,2Pi},{v,0,Pi/ 2},DisplayFunction Identity];

Show[t1,t2,DisplayFunction$DisplayFunction]

1

0.5

-0.5

-1

2

1.5

1

0.5

-1

-0.5

0.5

1

Graphics3D

p=Complex{};

Do[m=0;

Do[x=2*Random[Real,{0,1}]-1;y=2*Random[Real,{0,1}]-1;z=2*Random[Real,{0,1}]; R1=x^2+y^2;

R2=Sqrt[R1];

If[z R2&& (z-1)^21-R1,m++],{k,1,n}];

AppendTo[p,N[8m/n]],{t,1,10}];

Print[p];

Sum[p[[t]],{t,1,10}]/10

{,,,,,,,,,}

(*1冰淇淋锥的体积*)

x=r*Sin[u]*Cos[v];

y=r*Sin[u]*Sin[v];

z=r*Cos[u]+1;

s=Integrate[r^2*Sin[u],{v,0,2Pi},{u,0,Pi/4},{r,0,2Cos[u]}];

N[s]

(*2体积*)

s1=ParametricPlot3D[{r*Sin[u],r*Cos[u],r},{u,0,2Pi},{r,0,1},DisplayFunction Identity];

t1=ParametricPlot3D[{r*Sin[u],r*Cos[u],1},{u,0,2Pi},{r,0,1},DisplayFunction Identity];

Show[s1,t1,DisplayFunction $DisplayFunction]

1-1-0.500.5

10

0.25

0.5

0.75

1

-1

-0.5

0.5

Graphics3D

(*2体积*)

n=1000;

p=Complex{};

Do[m=0;

Do[x=2*Random[Real,{0,1}]-1;y=2*Random[Real,{0,1}]-1;z=Random[Real,{0,1}];

u=2*Random[Real,{0,1}];

R1=x^2+y^2;

R2=Sqrt[R1];

If[z1&& z R2 && u R1+z^2,m++],{k,1,n}];

AppendTo[p,N[8m/n]],{t,1,10}];

Print[p];

Sum[p[[t]],{t,1,10}]/10

{,,,,,,,,,}

(*2体积*)

s=Integrate[x^2+y^2+z^2,{y,-1,1},{x,-Sqrt[1-y^2],Sqrt[1-y^2]},{z,Sqrt[x^2+y^2 ],1}];

N[s]

(*3体积*)

s=Plot[x-2,{x,1,4},DisplayFunction Identity];

t=Plot[Sqrt[x],{x,1,4},DisplayFunction Identity];

Show[s,t,DisplayFunction$DisplayFunction]

2

1.5

1

0.5

1.52

2.53

3.54

-0.5

-1

Graphics

n=10000;(*3体积*)

p=Complex{};

Do[m=0;

Do[x=4*Random[Real,{0,1}];y=3*Random[Real,{0,1}]-1;z=16*Random[Real,{0,1}]; If[x y^2&& x y+2 &&z x*y^2,m++],{k,1,n}];

AppendTo[p,N[192*m/n]],{t,1,10}];

Print[p];

Sum[p[[t]],{t,1,10}]/10

{,,,,,,,,,}

(*3体积*)

s=Integrate[x*y^2,{x,1,4},{y,x-2,Sqrt[x]}];

N[s]

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡罗方法的应用【文献综述】

文献综述 信息与计算科学 蒙特卡罗方法的应用 在解决实际问题的时候, 为了模拟某一过程, 产生各种概率分布的随机变量和对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题, 我们应该怎么办? 蒙特·卡罗是一种十分有效的求出数值解的方法. 蒙特卡罗法( monte-carlo method )简称M -C 法 通过构造概率模型并对它进行随机试验来解算数学问题的方法. 以计算函数的定积分()()1 0I f x d x =?, ()01f x ≤≤为例, 首先构造一个概率模型: 取一个边长分别为和-的矩形, 并在矩形内随机投点M , 假设随机点均匀地落在整个矩形之内, 当点的掷点数N 充分大时, 则落在图中阴影区内的随机点数与投点总数N 之比M N 就近似等于积分值I . 蒙特卡罗法历史悠久. 1773年法国G.-L.L.von 布丰曾通过随机投针试验来确定圆周率π的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年 J.von 诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一. 蒙特卡罗法的步骤是: 构造实际问题的概率模型; ②根据概率模型的特点, 设计和使用降低方差的各类方法, 加速试验的收敛; ③给出概率模型中各种不同分布随机变量的抽样方法; ④统计试验结果, 给出问题的解和精度估计. 概率模型用概率统计的方法对实际问题或系统作出的一种数学描述. 例如对离散事件系统中临时实体的到达时间、永久实体的服务时间的描述(见离散事件系统仿真方法)就是采用概率模型. 虽然由这些模型所确定的到达时间、服务时间可能与具体某一段时间内实际到达时间、服务时间有出入, 但它是通过多次统计获得的结果, 所以从概率分布的规律来说还是相符的. 概率模型不仅可用来描述本身就具有随机特性的问题或系统, 也可用来描述一个确定型问题. 例如参数寻优中的随机搜索法(见动力学系统参数寻优)就是将参数最优化问题构造为一个概率模型, 然后用随机投点、统计分析的方法来进行搜索.

大学数学实验之蒙特卡洛方法

《数学实验》报告 班级:序号:: 1.问题描述 I、用蒙特卡罗方法计算以下函数在区间上的积分,并改变随机点数 目观察对结果的影响。 (1)y=1/(1+x), 0==0,x1+2x2+2x3<=72,10< =x2<=20,x1-x2=10; (3)f(x,y)=(X.^2+2*(Y.^2)+X.*Y).*exp(-X.^2-Y.^2), abs(x)<1.5,abs(y)<1.5; 2.问题分析与实验过程 I、(1)使用均值估计法 程序: function p=shell1(a,b,n) z=0; x=unifrnd(a,b,1,n); for i=1:n u=(x(i)+1)^(-1); z=z+u; end p=(b-a)*z/n; 运行结果:p=shell1(0,1,1000) p =

0.6975 >> p=shell1(0,1,10000) p = 0.6922 >> p=shell1(0,1,100) p = 0.7001 >> p=shell1(0,1,500) p = 0.6890 结果分析:改变了四次随机点数,结果都趋近于0.69,说明积分值约等于0.69,但是点数越多,值越接近。 I、(2)使用均值估计法 程序: function p=shell2(a,b,n) z=0; x=unifrnd(a,b,1,n); for i=1:n u=(exp(3*x(i)))*sin(2*x(i)); z=z+u; end p=(b-a)*z/n; 运行结果: >> p=shell2(0,2,1000) p = -24.4911 >> p=shell2(0,2,100) p = -43.8720 >> p=shell2(0,2,10000) p = -30.8699 >> p=shell2(0,2,500) p = -23.2955 >> p=shell2(0,2,100000) p =

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

数学建模——蒙特卡洛简介

——蒙特卡洛方法(案例) 蒙特卡罗方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。 它非常强大和灵活,又相当简单易懂,很容易实现。对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法。 它诞生于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率。

第一个例子是,如何用蒙特卡罗方法计算圆周率π。 正方形内部有一个相切的圆,它们的面积之比是π/4。 现在,在这个正方形内部,随机产生10000个点(即10000个坐标对 (x, y)),计算它们与中心点的距离,从而判断是否落在圆的内部。 如果这些点均匀分布,那么圆内的点应该占到所有点的π/4,因此将这个比值乘以4,就是π的值。通过R语言脚本随机模拟30000个点,π的估算值与真实值相差%。 上面的方法加以推广,就可以计算任意一个积分的值。 比如,计算函数 y = x2 在 [0, 1] 区间的积分,就是求出下图红色部分的面积。 这个函数在 (1,1) 点的取值为1,所以整个红色区域在一个面积为1的正方形里面。在该正方形内部,产生大量随机点,可以计算出有多少点落在红色区域(判断条件 y < x2)。这个比重就是所要求的积分值。

用Matlab模拟100万个随机点,结果为。 四、交通堵塞 蒙特卡罗方法不仅可以用于计算,还可以用于模拟系统内部的随机运动。下面的例子模拟单车道的交通堵塞。 根据 Nagel-Schreckenberg 模型,车辆的运动满足以下规则。 当前速度是 v 。 如果前面没车,它在下一秒的速度会提高到 v + 1 ,直到达到规定的最高限速。 如果前面有车,距离为d,且 d < v,那么它在下一秒的速度会降低到 d - 1 。 此外,司机还会以概率 p 随机减速,将下一秒的速度降低到 v - 1 。 在一条直线上,随机产生100个点,代表道路上的100辆车,另取概率 p 为。 左图中,横轴代表距离(从左到右),纵轴代表时间(从上到下),因此每一行就表示下一秒的道路情况。 可以看到,该模型会随机产生交通拥堵(图形上黑色聚集的部分)。这就证明了,单车道即使没有任何原因,也会产生交通堵塞。

蒙特卡罗方法地解地的题目过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

大学数学实验之蒙特卡洛方法

《数学实验》报告 班级:序号:姓名: 1.问题描述 I、用蒙特卡罗方法计算以下函数在区间上的积分,并改变随机点数 目观察对结果的影响。 (1)y=1/(1+x), 0==0,x1+2x2+2x3<=72,10< =x2<=20,x1-x2=10; (3) f(x,y)=(X.^2+2*(Y.^2)+X.*Y).*exp(-X.^2-Y.^2), abs(x)<1.5,abs(y)<1.5; 2.问题分析与实验过程 I、(1)使用均值估计法 程序: function p=shell1(a,b,n) z=0; x=unifrnd(a,b,1,n); fori=1:n u=(x(i)+1)^(-1); z=z+u; end p=(b-a)*z/n; 运行结果:p=shell1(0,1,1000) p =

0.6975 >> p=shell1(0,1,10000) p = 0.6922 >> p=shell1(0,1,100) p = 0.7001 >> p=shell1(0,1,500) p = 0.6890 结果分析:改变了四次随机点数,结果都趋近于0.69,说明积分值约等于 0.69,但是点数越多,值越接近。 I、(2)使用均值估计法 程序: function p=shell2(a,b,n) z=0; x=unifrnd(a,b,1,n); fori=1:n u=(exp(3*x(i)))*sin(2*x(i)); z=z+u; end p=(b-a)*z/n; 运行结果: >> p=shell2(0,2,1000) p = -24.4911 >> p=shell2(0,2,100) p = -43.8720 >> p=shell2(0,2,10000) p = -30.8699 >> p=shell2(0,2,500) p = -23.2955 >> p=shell2(0,2,100000) p =

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.360docs.net/doc/248873975.html, Eric Haskin haskin@https://www.360docs.net/doc/248873975.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

蒙特卡罗实验报告

蒙特卡罗方法 实验一 实验报告 蒙特卡罗方法实验一实验报告 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理

Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 倘若待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。抽样方法有: 直接抽样方法:离散型分布随机抽样方法、连续型分布直接抽样方法;挑选抽样方法;复合抽样方法;随机抽样一般方法:加抽样方法、减抽样方法、乘抽样方法、乘加抽样方法、乘减抽样方法、对称抽样方法、替换抽样方法、多为分布抽样方法、积分抽样方法;随机抽样其他方法:偏倚抽样方法、近似分布抽样方法、近似-修正抽样方法。 三、实验内容 1、安装所需计算工具(MA TLAB 、fortran 、C++等); 2、编写一伪随机数发生器;(如乘加同余a=1366,c=150889,M=714025、a=9301,c=49297,M=233280;乘同余a=16807,M=232 -1;或采用其它方法) 以下内容选取一个采用自编伪随机数发生器进行计算,其余采用工具软件中自带伪随机数发生器进行计算。 3、求解以下区域的面积、体积: 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2、计算22 22 11z x y z x y ?≥+? ?≤+--??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样: 4.1、()() []2 3 321,0,12 f x x x x =+ -∈; 4.2、()() ()[]11,1,21E f x f x x E k E = ?∈+

蒙特卡罗方法及其在中子输运问题中得应用

蒙特卡罗方法及其在中子输运问题中得应用 目录 蒙特卡罗方法及其在中子输运问题中得应用 (1) 1蒙特卡罗方法简介 (3) 1.1蒙特卡罗方法的基本原理 (3) 1.2 蒙特卡罗方法的误差 (4) 2 随机变量的抽样方法 (4) 2.1 直接抽样方法 (5) 2.1.1 离散型随机变量的抽样 (5) 2.1.2 连续型随机变量的抽样 (5) 2.2 挑选抽样法 (5) 2.3 复合抽样法 (6) 3 蒙特卡罗方法模拟中子输运过程 (6) 3.1 源抽样 (6) 3.2 输运距离的抽样 (7) 3.3 碰撞核素的抽样值 (7) 3.4 反应类型的抽样值 (7) 3.5 反应后中子状态的确定 (7) 3.5.1 弹性散射 (7) 3.5.2 非弹性散射 (8) 3.5.3 裂变反应 (8) 4 蒙特卡罗方法的减方差技巧 (8) 4.1 权 (8) 4.2 统计估计法 (9) 4.3 权窗 (10) 5 蒙特卡罗方法求解通量 (10) 5.1 通量的定义 (10) 5.2 点通量的计算 (11) 5.3 面通量的计算 (11) 5.3.1 统计估计法 (11) 5.3.2 加权法 (12) 5.4 体通量的计算 (12) 5.4.1 统计估计法 (12) 5.4.2 径迹长度法 (13) 5.4.3 碰撞密度法 (13) 5.4.4 几种体通量计算方法的比较 (14) 5.5 最终结果的统计 (14) 6 蒙特卡罗方法求解k eff (15) 6.1 有效增值因子k eff的定义 (15) 6.2 蒙特卡罗方法求解k eff (15)

6.2.1 吸收估计法 (15) 6.2.2 碰撞估计法 (15) 6.2.3 径迹长度估计法 (16)

蒙特卡洛方法及其在风险评估中的应用

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失,以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

蒙特卡罗方法的计算程序

关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT 等。这些程序大多经过了多年的发展,花费了几百人年的工作量。除欧洲核子研究中心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都深入到低能领域,并被广泛应用。就电子和光子输运的模拟而言,这些程序可被分为两个系列:1.EGS4、FLUKA、GRANT 2.ETRAN、ITS、MCNP 这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心算法。 ETRAN(for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和电子,能量范围可从1KeV到1GeV。 ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。TIGER研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。 NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)则引进了ETRAN,加入了对电子的模拟。 FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进行了改进。

蒙特卡洛模拟法简介

蒙特卡洛模拟法简介 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 蒙特卡洛模拟法的概念 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。

蒙特卡洛模拟法求解步骤 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。 3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。 在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。 蒙特卡洛模拟法的实例 资产组合模拟: 假设有五种资产,其日收益率(%)分别为 0.02460.0189 0.0273 0.0141 0.0311 标准差分别为 0.95091.4259, 1.5227, 1.1062, 1.0877 相关系数矩阵为 1.0000 0.4403 0.4735 0.4334 0.6855 0.4403 1.00000.7597 0.7809 0.4343 0.4735 0.75971.0000 0.6978 0.4926 0.4334 0.78090.6978 1.0000 0.4289 0.6855 0.43430.4926 0.4289 1.0000 假设初始价格都为100,模拟天数为504天,模拟线程为2,程序如下%run.m

用蒙特卡罗方法计算π值实验报告

本科生实验报告 实验课程蒙特卡罗模拟 学院名称核技术与自动化工程学院专业名称核技术及应用 学生姓名王明 学生学号2017020405 指导教师 邮箱511951451@https://www.360docs.net/doc/248873975.html, 实验成绩 二〇一七年九月二〇一八年一月

实验一、选择一种编程语言模拟出π的值 一、实验目的 1、理解并掌握蒙特卡罗模拟的基本原理; 2、运用蒙特卡洛思想解决实际问题; 3、分析总结蒙特卡洛解决问题的优缺点。 二、实验原理 用蒙特卡洛思想计算π的值分为如下几部: 第一步构建几何原理:构建单位圆外切正方形的几何图形。单位圆的面积为S0=π,正方形的面积S1=4; 第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。分别生产均匀随机数(x,y)二维坐标。X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。 第三步打把结构处理:根据S0/S1=M/N计算出π的值。因此π=4*M/N。 第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百

万个计数。 三、实验内容 1、用matlab编写的实验代码,总计数率为1000。zfx_x=[1,-1,-1,1,1]; zfx_y=[1,1,-1,-1,1]; plot(zfx_x,zfx_y) axis([-3 3 -3 3]); hold on; r=1; theta=0:pi/100:2*pi; x=r*cos(theta); y=r*sin(theta); rho=r*sin(theta); figure(1) plot(x,y,'-') N=1000; mcnp_x=zeros(1,N); mcnp_y=zeros(1,N); M=0; for i=1:N x=2*(rand(1,1)-0.5); y=2*(rand(1,1)-0.5); if((x^2+y^2)<1) M=M+1; mcnp_x(i)=x; mcnp_y(i)=y; end end plot(mcnp_x,mcnp_y,'.') PI1=4*M/N; 2、用matlab绘制的图形

相关文档
最新文档