新-常见泵的分类及工作原理

新-常见泵的分类及工作原理
新-常见泵的分类及工作原理

第十六章常见泵的分类和工作原理

泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。

第一节泵的分类及在电厂中的应用

一、泵的分类

(一)按照泵的工作原理来分类,泵可分为以下几类

1、容积式泵

容积式泵是指靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。

容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。

按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。

2、叶轮式泵

叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。

根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为:

离心泵(centrifugal pump)

轴流泵(axial pump)

混流泵(mixed-flow pump)

旋涡泵(peripheral pump)

喷射式泵(jet pump)

(二)其它分类

1、泵还可以按泵轴位置分为:

(1)立式泵(vertical pump)

(2)卧式泵(horizontal pump)

2、按吸口数目分为:

(1)单吸泵 (single suction pump)

(2)双吸泵 (double suction pump)

3、按驱动泵的原动机来分:

(1)电动泵(motor pump )

(2)汽轮机泵(steam turbine pump)

(3)柴油机泵(diesel pump)

(4)气动隔膜泵(diaphragm pump

如图16-1 为泵的分类

图16-1 泵的分类二、各种类型泵在电厂中的典型应用

第二节离心泵的理论基础知识

离心泵主要包括两个部分:1.旋转的叶轮和泵轴(旋转部件)。2.由泵壳、填料函和轴承组成的静止部件。正常运行时,叶轮高速旋转,在惯性力的作用下,位于叶轮中心的流体被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳内,在蜗壳内液体的部分动能会转换成静压能。于是较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。同时,叶轮中心由于液体的离开而形成真空,如果管路系统合适,则外界的液体会源源不断地吸入叶轮中心,以满足水泵连续运行的要求。如图16-2所示。

图16-2 离心泵的工作原理

一、离心泵的性能参数

(一)流量指泵在单位时间内能抽出多少体积或质量的水。体积流量一般用m3/min、m3/h 等来表示。

(二)扬程又称水头,是指被抽送的单位质量液体从水泵进口到出口能量增加的数值,除以重力加速度,用H表示,单位是m。

(三)功率是指水泵在单位时间(S)内所作功的大小,单位是KW。水泵的功率可分为有效功率和轴功率。

1、有效功率又称输出功率:指泵内水流实际所得到的功率,用符号P0表示。

2、轴功率:轴功率又称输人功率,是指动力机传给泵轴的功率,用符号P表示。

轴功率和有效功率之差为泵内的损失功率,其大小可用泵的效率来计量。

(四)效率反映了水泵对动力机传来动力的利用情况。它是衡量水泵工作效能的一个重要经济指标,用符号 表示。

(五)转速指泵轴每分钟旋转的次数,用符号n表示,单位是r/min.

(六)汽蚀余量

汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。单位用m标注,用NPSH表示。

二、离心泵的性能曲线

泵的性能曲线,标志着泵的性能。泵各个性能参数之间的关系和变化规律,可以用一组性能曲线来表达。对每一台泵来讲,当一台泵的转速一定时,通过试验的方法,可以绘制出相应的一组性能曲线,即水泵的基本性能曲线。性能曲线一般以流量为横坐标,用扬程、功率、效率和汽蚀余量为纵坐标来绘制曲线。

(一)流量与扬程曲线

图16-3 离心泵的流量与扬程的曲线

如图16-3所示,水泵作为一种通过管道来提升或移动流体的机械。水泵能提升流体到达垂直管道的A点,即流量为零,泵的作功只是与流体的重力与质量相等。(即流体的势能)因此,A点也被称为关断水头(SHUTOFF-HEAD);如果想象转动出水管从A点到F点,则水管变为水平管,则泵出的流体的势能变为零而流量变为最大值。可以看出,调整出水管道的倾斜角度(即调整出水管道的阻力),即可得到我们想要的流量和扬程。

(二)流量与效率曲线

如图16-4所示,离心泵效率曲线可以看作是一条弹道曲线,其效率表现为从其最高效率点(BEP)向两侧下降的变化趋势。即泵的效率随流量的增加而增加,到达高效点后,其效率随着流量的增加而减少。

图16-4泵的流量与效率曲线

(三)流量与功率曲线

一般来讲,离心泵的轴功率随流量的增加而逐渐增加,曲线有上升的特点。(但在一些特殊的泵中,其功率会保持直线甚至会随流量的增加而下降)当流量为零时,轴功率最小。因此,为便于离心泵的启动和防止超载,启动时,应将出水管路上的阀门关闭,启动后再逐渐打开。轴流泵的启动与离心泵相反。如图16-5所示。

图16-5离心泵的流量与功率的曲线

(四)流量与汽蚀余量曲线

NPSHr(the Net Positive Suction Head required)-即泵的必需汽蚀余量,它代表了泵的最低运行要求,如果泵的入口压力未达到规定的NPSHr,则泵就会发生汽蚀不能运行。

离心泵的汽蚀余量曲线一般设计为:当流量从零和高效区之间变化时,其NPSHr几乎是一条直线或有很小的变化,但是通过高效区的范围后,则其NPSHr会以指数变化剧增。如图16-6所示。

图16-6 离心泵的流量与NPSHr的关系

图16-7离心泵的性能曲线

总结:如图16-7为离心泵的性能曲线。

(1)当泵运行在“A”点时,其对应的流量为“Q”,扬程为“H”;此时泵的效率最高,其能耗也在中间水平,同时其必需汽蚀余量也处于将要剧升的边缘。

(2)当泵运行到“B”点时,其流量减少而压头升高。泵运行在高效率区的左边,其效率下降损失增加。但其功率相应减少,NPSHr也相应减少。但是,由于效率的下降和流量的减少,泵开始振动并加热泵内的流体。当热量不能被流体带走时,温度就会升高,达到对应的饱和温度后,液体开始汽化,引起泵的振动和损坏。

(3)当泵运行在“C”点时,其流量增加而压头降低。同时泵的效率也下降。泵的功率会升高甚至会过负荷。而泵的NPSHr迅速增加,离开泵的流量大于进入泵的流量,泵内压力变低,当达到对应压力、温度下的饱和状态时,泵内的液体开始汽化沸腾,泵开始发生汽蚀,引起泵的损坏。如图16-8所示。

图16-8泵的叶轮因汽蚀损坏图

图16-9泵的运行区域图

总之,对于泵的运行来讲,正常运行时泵应运行在“A”区,如图16-9所示。此时泵的效率最高,能耗利用率最好。为了避免泵的损坏,泵的运行要避开“C”“D”区。而可以短时间运行在“B”区。“B”区在“A”区的左边,即在高效区的左边,此时泵的效率较差,损失较多。同时其轴向推力也较大,易造成推力轴承的损坏。所以为了保证泵的运行安全,可以按照泵的相似定律来对泵进行改造或改变泵的转速,以达到在保证泵的安全运行的前提下,满足系统流量和压力的要求。对于运行人员,我们要熟悉泵的运行曲线并熟练地应用它们,只要泵运行在高效区内并很好地作好维护工作,它就能保证安全长期运行。

三、泵在系统中的运行

所有泵的设计都是为了满足系统运行要求的。这个要求即是系统的总动力水头(TDH)(Total Dynamic Head).泵的运行状态随着系统的改变而改变。如系统所需的流量改变,则对应的泵的工作点也会改变,即泵的压头、效率、NPSHr都随着变化。如果变化太大,则就会影响泵的安全经济运行。

(一)系统的总动力水头(TDH)包括以下四个方面:

1.Hs-静压头(the static head)。是指泵送液体的来源和目的地之间的高度差,当泵入口的液体表面位置不同时,其静压头是不同的。

2.Hp-压力水头(the pressure head) 。它表示液体表面的压力之差。

3.Hv-速度水头(the velociyt head)。它表示液体流过系统时的能量消耗。Hv=v2

.式中

2g

v-液体流经管道时的速度。

g-重力加速度。

4.Hf-摩擦水头(friction head).它表示液化流经系统时的摩擦损失。

(1)对于管道:

Hf=Kf×L

(16-1)100

式中:Kf-每种材料直径管道每一百米的摩擦常数。(可通过查表获得)

L-实际管道的长度

(2)对于阀门和异型件:

Hf=K×Hv

(16-2)100

式中:K-各种阀门及异型件的摩擦常数。(可通过查表获得)

综上所述:总动力水头(TDH)= Hs+ Hp+ Hv+ Hf

(二)泵的工作点

如图16-10所示:当泵在一个系统中正常运行时,泵对液体的耗功与系统对液体的总动力水头(TDH)是相平衡的。但是强调的是,随着系统的变化,如阀门的开闭,由TDH也发生的变化,其平衡就会打破,泵的工作点也就发生了变化。所以在设计之初,我们必须计算好系统的TDH,并选择合适的泵,使总动力水头(TDH)与最高效率点(BEP)相匹配。

图16-10泵的运行曲线

四.泵的相似定律与变转速运行

在电力生产中,变转速的泵随处可见,如由液力偶合器带的给水泵或由小汽轮机接带的水泵、风机等等。特别是近年来变频装置的成熟与普及,使得变速泵的运行越来越多。它可以减少管道的节流损失,更加节能。所以我们应掌握变频泵的运行规律。

(一)泵的相似定律的前提条件:

1.几何相似 — 两台水泵在结构上完全相仿,对应尺寸的比值相同,叶片数、对应角相等;

2.运动相似 — 两台水泵内对应点的液体流动相仿,速度大小的比值相同、方向一致(即速度三角形相似);

3.动力相似 — 两台水泵内对应点的液体惯性力、黏性力等的比值相同

(二) 符合相似条件的两台水泵,以下各式成立:

Q2Q1=n2n1(D2D1

)3 (16-3) H2H1

=(n2n1)2 (D2D1)2 (16-4) P2P1=(n2n1)3(D2D1)5(ρ2ρ1) (16-5)

式中 :

Q1,Q2 — 泵1、泵2的流量;

n1,n2 — 泵1、泵2的泵轴转速;

D1、D2 — 泵1、泵2叶轮外径;

P1,P2 — 泵1、泵2、的轴功率;

ρ1、ρ2 — 泵1、泵2、输送介质的密度

(两相似泵可以近似地认为容积率、水力效率、机械效率相等。)

对于同一台泵来讲,相似定律则可写成:

Q2Q1

=n2n1 (16-6) H2H1=(n2n1

)2 (16-7) P2P1=(n2n1)3

(16-6) 式中:

Q----泵的流量,m 3

/s

H----泵的扬程,m

P----泵的功率,kw

n----泵的转速,r/min

从上式看出,对于变转速泵,其流量的变化与转速的一次方而正比;扬程与转速的二次方成正比;功率与转速的三次方成正比。

当叶轮的直径变化时,流量与直径的三次方成正比;扬程与直径的二次方成正比;功率与直径的五次方成正比。此时也叫切削定律。

当泵转速在20%左右变化时,其效率可认为变化不大。

相似定律同样适用于离心式风机。

(三)泵与风机的曲线群

知道了某一转速下的泵的性能曲线,根据相似定律,我们可以得到不同转速下的泵的性能曲线,也能得到不同叶轮直径下的泵的性能曲线。如图16-11,16-12所示。

图16-11不同直径下泵的特性曲线

图16-12不同转速下泵的性能曲线

五、泵与风机的运行调整

当泵与风机运行在系统中的时候,其主要有两个任务,一个是要满足系统的要求,保证系统所需要的流量和压力。同时为了保证自身的运行安全,需要对泵的运行区域进行设定,防止泵的损坏。主要包括:泵的入口有保证足够的有效汽蚀余量(NPSHa)>必须汽蚀余量(NPSHr);泵应该运行在高效区域内;泵的流量不能小于最小流量;泵的流量不能高于泵的最大流量。而当系统的需求变化时,系统所需的流量、压力发生了变化,为了保证泵的运行安全和满足系统需要,要求我们要对泵的工作点进行调整。

(一)定转速泵的运行调整

如图16-13所示,只需改变泵的性能曲线或者改变系统曲线,就能改变泵的工作点。对于定转速泵来讲,改变泵的性能曲线较难,一般改变系统的曲线来改变泵的工作点。系统的总动力水头(TDH)=静压头(Hs)+压力水头(Hp)+速度水头(Hv)+摩擦水头(Hf).

从上式看出,只要改变四个水头中任意一个,即可改变系统曲线,从而调整泵的工作点。1.调整管道的阀门来调整流量

当运行泵为定转速时,通过调整阀门的开度,即使系统的阻力损失发生变化(即调整了摩擦水头),改变了系统的曲线,从而使泵的工作点发生的转移,流量、压力发生变化。如图16-13所示。系统的流量由Q1调整为Q2,使泵的工作点由a变为b,同时由于阀门的节流损失及泵偏离高效区,使得泵的效率下降,能耗增加。如果继续调小流量的话,还有可能进入泵的最小流量区内,造成泵的汽化,使泵损坏,所以节流调整必须在一定的范围内进行。

同时,对于离心泵来讲,为了防止发生汽蚀,节流调整一般放在泵的出口管道进行研究。因为入口管道节流后,会使泵的有效汽蚀余量NPSHa

图16-13 调整阀门开度后泵性能的变化

2、泵的汽蚀调整,也叫泵的自动调整。即通过改变系统的入口水面的水位,即通过改变静压头(Hs)的方法,也可使泵的工作点转移。

例如:凝结水泵的汽蚀调节就是把水泵出门水门开足,当汽轮机负荷变化(凝汽量相应变化)时,通过凝汽器水位(即凝结水泵的倒灌高度发生变化)来调节泵的出水量,使其和汽轮机的排汽量相平衡

3、改变泵的性能曲线来进行调整。如有的泵与风机可在运行中改变叶片的角度,从而改变了泵与风机的性能曲线,以此也可调整泵与风机的工作点。

4、如果泵的正常工作点远离系统的要求,长期使泵处于低效区甚至影响泵的安全。可以通过切削定律,在泵停运后对泵的叶轮直径进行调整,以期调整泵的工作区到高效区。(二)变转速泵的运行调整。

如图16-14所示,通过调整泵的转速之后,通过相似定律即可得到泵的变转速性能曲线,而系统曲线未发生变化。这样泵的工作点由“a”转移至“c”,实现了泵流量的变化。泵的变转速调整有如下特点:

1.变转速调整没有阀门的节流损失,较为节能。

2.变转速调整由于泵的性能曲线变化,使得泵的工作点脱离高效区不远,效率较高。

3.变转速调整后,根据相似定律,泵的功率与转速的三次方成正比,使泵的功率大大降低。

4.变转速调整可以实现转机的柔性启动,提高的转机的安全性。

5.变转速后的NPSHr大大降低,提高了泵的抗汽蚀能力。

6.变转速泵的调整需要特殊的原动机或电气变频装置,投资较高。甚至会带来振动、轴承

润滑不良等问题。

图16-14 离心泵的变转速调整

六、泵的并联与串联运行

(一)泵的并联运行

为了提高系统运行的灵活性、可靠性及经济性。一般电厂水泵设置两台同样泵与风机为并联运行方式。如凝结水泵、循环水泵、送风机、引风机等。

图16-15泵的并联运行简图

如图16-15,16-16所示,由于并联运行泵的管路是为两台泵运行设计的,当一台泵运行时,其工作点是在泵的性能曲线高效区的右边,易发生汽蚀。即同样压力下,单独运行时其流量会偏大一些。

图16-16 相同性能泵并联运行时的工作曲线

1.相同性能泵并联运行的特点

(1)两台泵并联运行时,其在同样转速下的流量要较泵单独运行时流量之和较小。(2)对于并联运行系统,当只有一台泵运行时,其易受到汽蚀的威胁,应引起注意。(3)由于泵单独运行时其工作点在BEP的右边,意味着此时泵的功率较大,易引起过负荷,应引起注意。

2.不同性能泵的并联运行特点

不同性能泵并联运行时,出力较低(如变频泵)的泵,则其在启动或者运行中,有可能打不开出口逆止阀,造成泵的流量为零,长期运行会造成泵的汽化而损坏。所以此种情况下运行,系统的总的流量不能太低,并且在启动时,应优先启动出力较低的水泵。

如图16-17所示。

图16-17两台不同性能泵运行曲线

(二)泵的串联运行

图16-18 泵的串联运行

图16-19同性能泵的串联运行性能曲线

有些场合,为了得到较高压力的液体,会使用串联泵运行。同理,对于多级离心泵来讲,也相当于单级泵的串联运行。如图16-19

1.同性能泵的串联运行

(1)如图16-18,串联泵运行后,将得到两倍左右的扬程(但较单独泵运行时扬程的两倍较小);同时流量基本是单独泵运行时的流量(较单独泵运行时的流量较小)。(2)串联泵运行时,如果有一台泵跳闸,由于较高的阻力,易使运行泵工作点左移,泵易造成汽化而损坏。

2.不同性能泵的串联

将不同性能泵的性能曲线迭加,即可得到其运行性能曲线。如图16-20所示,在这种情况下,当流量增加到一定范围,则只有一台泵出力,另一台泵处于相对大流量工况,其NPSHr会剧增,引起泵的汽蚀。

图16-20不同性能泵串联运行性能曲线

3.定速泵与变速泵的串联

图16-21 定速泵与变速泵的串联

如图16-21所示,在一些高压、大流量的场合,为了实现上述目的,常采用定速泵与变速泵相结合的方式上水,如锅炉给水泵。定速泵置于变速泵之前,这样定速泵可以为变速泵提供足够的汽蚀余量,变速泵改变转速为变化的系统提供稳定供水。

4. 变速给水泵的工作区

为了保证给水泵的运行和系统的供水安全,在任何工况下,给水泵应运行在工作区范围内,如图16-22所示,其主要包括六条曲线:

(1)泵的最高转速曲线n max。即泵的机械性能决定的最高转速性能曲线。

(2)泵的最低转速曲线n min。即泵的机械性能决定的最低转速性能曲线。

(3)泵的上限特性曲线。即由不同转速下泵的最小流量点形成的曲线,正常运行时,泵

只能运行在上限特性曲线的右侧。如运行在其左侧,则将使泵的流量不足冷却泵产生的热量,从而引起泵的汽化,造成泵的损坏。目前,为防止在低流量,高压力时泵的工作点落入上限特性曲线之右,设计了泵的再循环管道,当泵的工作点接近上限特性曲线时,再循环管道上的阀门打开,以增加给水流量。当工作点向左远离上限特性曲线后,其阀门关闭。

(4)泵的下限特性曲线。即由不同转速下泵的最大流量点形成的曲线,正常运行时,泵只能运行在下限特性曲线的左侧。如超过下限,则泵的在某一转速下的流量太大,超过了泵的最高效率区范围,使泵效率下降;同时,泵的NPSHr大增,泵易发生汽蚀,造成出力下降和泵的振动等故障。故在泵运行在大流量、低压头工况时,适当关小泵的出口调节阀,抬高泵的出口压力,使泵重新回到工作区内。

(5)系统的最低给水压力Pmin。即变速给水泵还必须满足系统对水压的最低要求,防止系统里的设备出故障。如对于锅炉如果上水压力太低,则会造成水循环的破坏,造成水冷壁的爆破。

(6)系统的最高给水压力Pmax。即变速泵还必须满足系统对水压的最高要求。如对于锅炉来讲,如果压力过高,会造成安全门启动,甚至管道破裂。

图16-22 变速给水泵的工作区

第三节各种泵的设备结构及工作原理

一、离心泵

(一)离心泵的结构

离心泵的结构型式多种多样,分类方式也较多,表16-1中列出了离心泵的基本结构型式,

表16-1离心泵的结构型式

1、单级离心泵

单级离心泵是指只有一级叶轮的离心泵,其主要由以下零部件组成(见图16-23):

(1)泵壳

泵壳有轴向剖分式和径向剖分式两种。大多数单级离心泵的壳体都是蜗壳式的,多

级泵径向剖分壳体一般为环形壳体或圆形壳体。一般蜗壳式泵壳内腔呈螺旋型流道,用以收集从叶轮中流出的液体,并引向扩散管至泵出口。泵壳承受全部的工作压力和液体的热负荷。

(2)叶轮

如图16-23所示,叶轮是唯一的做功部件,泵通过叶轮对液体做功。叶轮的结构型式有闭式、开式、半开式三种。闭式叶轮由叶片、前盖板、后盖板组成。半开式叶轮由叶片和后盖板组成。开式叶轮只有叶片,无前后盖板。闭式叶轮效率较高,开式叶轮效率较低。

图16-23 叶轮的形式

(3)密封环

密封环的作用是防止泵的内泄漏和外泄漏.由耐磨材料制成的密封环,镶于叶轮前后盖极和泵壳上,磨损后可以更换。

(4)轴和轴承

泵轴一端固定叶轮,一端装联轴器。根据泵的大小,轴承可选用滚动轴承和滑动轴承。按作用力方向可分为径向轴承和推力轴承。

(5)轴封

轴封一般有机械密封和填料密封两种。一般泵均设计成既能装填料密封,又能装机

械密封。

单级离心泵结构示意图,如图16-24所示。

常见泵的分类及工作原理

常见泵的分类及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第十六章常见泵的分类和工作原理 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。 第一节泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵 容积式泵是指靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。 容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。 按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵 叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。 根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为: 离心泵(centrifugal pump) 轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类

1、泵还可以按泵轴位置分为: (1)立式泵(vertical pump) (2)卧式泵(horizontal pump) 2、按吸口数目分为: (1)单吸泵 (single suction pump) (2)双吸泵 (double suction pump) 3、按驱动泵的原动机来分: (1)电动泵(motor pump ) (2)汽轮机泵(steam turbine pump) (3)柴油机泵(diesel pump) (4)气动隔膜泵(diaphragm pump 如图16-1 为泵的分类 图16-1 泵的分类 二、各种类型泵在电厂中的典型应用 离心泵凝结水泵、给水泵、闭式水泵、凝补水泵、 定子冷却水泵、定排水泵、炉水循环泵 轴流泵循环水泵 往复泵EH油泵

泵的选型原则、依据和具体操作方式

泵的选型原则、依据和具体操作方式 设计院在设计装置设备时,要确定泵的用途和性能并选择崩型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么? 一、了解泵选型原则 1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 3、机械方面可靠性高、噪声低、振动小。 4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。 5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: a、有计量要求时,选用计量泵 b、扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵. c、扬程很低,流量很大时,可选用轴流泵和混流泵。 d、介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、.螺杆泵) e、介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 f、对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、知道泵选型的基本依据 泵选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等 1、流量是选泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。如设计院工艺设计中能算出泵正常、最小、最大三种流量。选择泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1.1倍作为最大流量。 2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%—10%余量后扬程来选型。 3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c密度d,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,有效气蚀余量计算和合适泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。 4、装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧最低液面,排出侧最高液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。 5、操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS(绝对)、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、泵的位置是固定的还是可移的。 三、选泵的具体操作

水泵的种类与原理及选型

泵的分类、原理及选型 一、泵的类型 1、根据泵的工作原理和结构分:1.叶片泵;2.容积泵;3.其他类型泵 2、根据介质分:清水泵、污水(污物)泵、油泵、耐腐蚀泵、衬氟泵、排污泵等; 3、从使用安装方式分:管道泵、液下泵、潜水泵等。

三、泵的工作原理(叶片泵) 1、离心泵的工作原理 水泵开动前,先将泵和进水管灌满水,水泵运转后,在叶轮高速旋转而产生的离心力的作用下,叶轮流道里的水被甩向四周,压入蜗壳,叶轮入口形成真空,水池的水在外界大气压力下沿吸水管被吸入补充了这个空间。继而吸入的水又被叶轮甩出经蜗壳而进入出水管。 离心泵是由于在叶轮的高速旋转所产生的离心力的作用下,将水提相高处的,故称离心泵。 单级双吸离心泵结构原理图: 2、轴流泵的工作原理 轴流泵与离心泵的工作原理不同,它主要是利用叶轮的高速旋转所产生的推力提水。轴流泵叶片旋转时对水所产生的升力,可把水从下方推到上方。 轴流泵的叶片一般浸没在被吸水源的水池中。由于叶轮高速旋转,在叶片产生的升力作用下,连续不断的将水向上推压,使水沿出水管流出。叶轮不断的旋转,水也就被连续压送到高处。 轴流泵的一般特点 (1)水在轴流泵的流经方向是沿叶轮的轴相吸入、轴相流出,因此称轴流泵。 (2)扬程低(1~13米)、流量大、效益高,适于平原、湖区、河网区排灌。 (3)起动前不需灌水,操作简单。 轴流泵结构原理图:

3、混流泵的工作原理 由于混流泵的叶轮形状介于离心泵叶轮和轴流泵叶轮之间,因此,混流泵的工作原理既有离心力又有升力,靠两者的综合作用,水则以与轴组成一定角度流出叶轮,通过蜗壳室和管路把水提向高处。 混流泵结构原理图: 1、前泵盖 2、泵体 3、叶轮螺母 4、叶轮 5、后泵盖 6、机封压盖 7、机械密封组合 8、轴套 9、前轴承压盖 10、托架11、泵轴12、轴承盒13、后轴承压盖 1.输送介质的物理化学性能 四、泵选型条件 输送介质的物理化学性能直接影响泵的性能、材料和结构,是选型时需要考虑的重要因素。{介质名称、介质特性(腐蚀性、磨蚀性、毒性等)、固体颗粒含量及颗粒大小、密度、黏度、汽化压力、气体含量、是否结晶等} 2.工艺参数(选型重要依据) (1)流量Q:工艺装置生产中,要求泵输送的介质量,工艺人员一般应给出正常、最小和最大流量。 泵数据表是上往往只给出泵的正常和额定流量。选泵时,要求额定流量不小于装置的最大流量或取正常流量的1.1~1.15倍。 (2)扬程H:工艺装置所需的扬程值,也称计算扬程。一般要求泵的额定扬程为装置所需扬程的1.05 ~1.1倍。 (3)进口压力Ps和出口压力Pd:进、指泵进出接管法兰处的压力,进出口压力的大小影响到壳体的耐压和轴封的要求。 (4)温度T:泵进口介质温度,一般应给出工艺过程中泵进口介质的正常、最低和最高温度。 (5)装置汽蚀余量NPSHa:有效汽蚀余量 (6)操作状态:操作状态分连续操作和间歇操作两种。 泵的台数和备用率 —般水泵大中型泵站台数以4~8台为宜。中小型泵站以3~6台为宜,小型泵站以2~3台为宜,

水泵选型标准样本

水泵选型原则 就依照用途来选用,重要考虑流量、出水扬程(压力),吸水扬程、安装环境等。 扬程 流量 1、依照装置布置、地形条件、水位条件、运转条件、经济方案比较等多方面因素 2、考虑选取卧式、立式和其他型式(管道式、直角式、变角式、转角式、平行式、垂直式、直立式、潜水式、便拆式、液下式、无堵塞式、自吸式、齿轮式、充油式、充水温式)。卧式泵拆卸装配以便, 3、易管理、但体积大, 4、价格较贵, 5、需很大占地面积;立式泵, 6、诸多状况下叶轮沉没在水中, 7、任何时候可以启动, 8、便于自动盍或远程控制, 9、并且紧凑,10、安装面积小,11、价格较便宜。 3、依照液体介质性质,拟定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵。 安装在爆炸区域泵,应依照爆炸区域级别,采用防爆电动机。 4、振动量分为:气动、电动(电动分为220v电压和380v电压)。 5、依照流量大小,选单吸泵还是双吸泵:依照扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵(空调泵)、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵。 6、拟定泵详细型号,采用什么系列泵选用后,就可按最大流量,放大5%——10%余量后扬程这两个性能重要参数,在型谱图或系列特性曲线上拟定详细型号。

运用泵特性曲线,在横坐标上找到所需流量值,在纵坐标上找到所需扬程值,从两值分别向上和向右引垂线或水平线,两线交点正好落在特性曲线上,则该泵就是要选泵,但是这种抱负状况普通不会很少,普通会碰上下列几种状况: A、第一种:交点在特性曲线上方,这阐明流量满足规定,但扬程不够,此时,若扬程相差不多,或相差5%左右,仍可选用,若扬程相差诸多,则选扬程较大泵。或设法减小管路阻力损失。 B、第二种:交点在特性曲线下方,在泵特性曲线扇状梯形范畴内,就初步定下此型号,然后依照扬程相差多少,来决定与否切割叶轮直径,若扬程相差很小,就不切割,若扬程相差很大,就按所需Q、H、,依照其ns和切割公式,切割叶轮直径,若交点不落在扇状梯形范畴内,应选扬程较小泵。 选泵时,有时须考虑生产工艺规定,选用不同形状Q-H特性曲线。 A、如:要将液位输送到必要维持一定液面高度容器中去, B、此时变稀 C、望量有较大变化,而 D、扬程变化很小, E、为次应选用平坦H-O曲线泵。 F、有如:把石油送到管式加热炉中去, G、若工作中流量变化小, H、则炉管中易产生结焦现象。要避免这种状况, I、但愿但流量略有减小时, J、管中油压力有较大增长,

(完整版)泵与风机的分类及其工作原理

第一章泵与风机综述 第一节泵与风机的分类和型号编制 一、泵与风机的分类 泵与风机是利用外加能旦输送流体的流体机械。它们大量地应用于燃气及供热与通风专业。根据泵与风机的工作原理,通常可以将它们分类如下: (一)容积式 容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或排出流体。按其结构不同,又可再分为; 1.往复式 这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活塞泵(piston pump)等; 2.回转式 机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。 (二)叶片式 叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。通过叶轮的旋转对流体作功,从而使流体获得能量。 根据流体的流动情况,可将它们再分为下列数种: 1.离心式泵与风机; 2.轴流式泵与风机; 3.混流式泵与风机,这种风机是前两种的混合体。 4.贯流式风机。 (三)其它类型的泵与风机 如喷射泵(jet pump)、旋涡泵(scroll pump)、真空泵(vacuum pump)等。 本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、运行、调节和选用方法等知识。由于制冷专业常用泵是以不可压缩的流体为工作对象的。而风机的增压程度不高(通常只有9807Pa或1000mmH2O以下),所以本篇内容都按不可压缩流体进行论述。 二、泵与风机的型号编制 (一)、泵的型号编制 1、离心泵的基本型号及其代号 泵的型式型式代号泵的型式型式代号 单级单吸离心泵IS.B大型立式单级单吸离心泵沅江

《水泵选型的分类》word版

(本文由三昌泵业网络部整理、仅供参考) 水泵基础知识 1.供水设备:单位时间内输出一定流量、扬程的自动启停的给水装置。 2.消防供水设备:用于消防用途的供水设备。2002年前生产该设备必须有省级消防部门颁发的生产 许可证书或备案登记证书。凡越省际范围销售,必须到拟销售的省份进行审查备案,办理登记入境(省)销售手续。自我国加入WTO后,公安部取消了入境(省)备案手续,不再发放消防产品登记备案证书。消防供水设备企业只要出具国家消防检测单位的检测合格报告,用户在中国消防产品网站http://211.101.148.74/上查阅即可。 3.生活供水设备:用于生活用途的供水设备。 4.生产供水设备:用于生产用途的供水设备。 5.囊式落地膨胀水箱:囊式供水设备在锅炉(换热站)膨胀系统的应用。主要取代高位膨胀水箱, 解决采暖(制冷)系统中的热胀冷缩问题与自动补水问题。 6.农田灌溉系统:供水设备在农田灌溉系统的应用。 7.人工造浪系统:囊式供水设备应用人工造浪系统。 (二)供水设备的种类 根据供水设备的用途可分生活供水设备、生产供水设备、消防供水设备三种。 根据供水设备的原理与构成分成三类。补气式供水设备、囊式供水设备、变频供水设备。 1.补气式供水设备:利用密封罐内空气的可压缩性,调节输水的给水装置,其作用相当于高位水箱 或水塔,由气压罐内压力变化自动控制水泵的工作,当罐内空气压力不足时,能够自动补气增压。 2.囊式供水设备:囊内为水室,罐囊之间为气室,一次充气常年使用,其运行工况是当气压罐内压 力降至用户要求的低限时,压力传感信号通过电控柜开启水泵,自动输水至罐内。当系统压力不

水泵的分类、原理及选型.(优选)

水泵的分类、原理及选型 一泵的类型 1、根据泵的工作原理和结构分: 2、根据介质分: 清水泵、污水(污物)泵、油泵、耐腐蚀泵、衬氟泵、排污泵等; 3、从使用安装方式分: 管道泵、液下泵、潜水泵等。

二、泵的适用范围和特性比较表 三、水泵的工作原理(叶片泵) 1、离心泵的工作原理 水泵开动前,先将泵和进水管灌满水,水泵运转后,在叶轮高速旋转而产生的离心力的作用下,叶轮流道里的水被甩向四周,压入蜗壳,叶轮入口形成真空,水池的水在外界大气压力下沿吸水管被吸入补充了这个空间。继而吸入的水又被叶轮甩出经蜗壳而进入出水管。 离心泵是由于在叶轮的高速旋转所产生的离心力的作用下,将水提相高处的,故称离心泵。

2、轴流泵的工作原理 轴流泵与离心泵的工作原理不同,它主要是利用叶轮的高速旋转所产生的推力提水。轴流泵叶片旋转时对水所产生的升力,可把水从下方推到上方。 轴流泵的叶片一般浸没在被吸水源的水池中。由于叶轮高速旋转,在叶片产生的升力作用下,连续不断的将水向上推压,使水沿出水管流出。叶轮不断的旋转,水也就被连续压送到高处。 *轴流泵的一般特点 (1)水在轴流泵的流经方向是沿叶轮的轴相吸入、轴相流出,因此称轴流泵。 (2)扬程低(1~13米)、流量大、效益高, 适于平原、湖区、河

网区排灌。 (3)起动前不需灌水,操作简单。 混流泵结构原理图:

三、泵选型条件 1.输送介质的物理化学性能 输送介质的物理化学性能直接影响泵的性能、材料和结构,是选型时需要考虑的重要因素。{介质名称、介质特性(腐蚀性、磨蚀性、毒性等)、固体颗粒含量及颗粒大小、密度、黏度、汽化压力、气体含量、是否结晶等} 2.工艺参数(选型重要依据) (1)流量Q:工艺装置生产中,要求泵输送的介质量,工艺人员一般应给出正常、最小和最大流量。 泵数据表是上往往只给出泵的正常和额定流量。选泵时,要求额定流量不小于装置的最大流量或取正常流量的1.1~1.15倍。 (2)扬程H:工艺装置所需的扬程值,也称计算扬程。一般要求泵的额定扬程为装置所需扬程的1.05 ~1.1倍。 (3)进口压力Ps和出口压力Pd:进、指泵进出接管法兰处的压力,进出口压力的大小影响到壳体的耐压和轴封的要求。 (4)温度T:泵进口介质温度,一般应给出工艺过程中泵进口介质的正常、最低和最高温度。 (5)装置汽蚀余量NPSHa:有效汽蚀余量 (6)操作状态:操作状态分连续操作和间歇操作两种。 泵的台数和备用率 —般水泵大中型泵站台数以4~8台为宜。中小型泵站以3~6台为宜,小型泵站以2~3台为宜,

电磁泵的分类与工作原理

电磁泵的分类与工作原理解读 电磁泵是一种技术成熟并且广泛应用的泵类产品,具有结构紧凑,输出压力高,无泄漏,体积小,价格相对低廉,输出流量较小等特点。 电磁泵(electromagnetic pump )利用现代磁力学原理,利用永磁体实现无接触间接传动的一种化工流程泵。利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,与可运动的泵体形成交互作用,带动泵体振动,推动液体输出。 大型电磁泵与结构(图1) 电磁泵主要分为:直流电磁泵和交流电磁泵两大类。直流电磁泵包括传导式电磁泵(平面式和螺旋式)和热电-电磁泵;交流电磁泵包括单相交流电磁泵(平面传导式、环形感应式)和三相交流电磁泵(平面感应式、螺旋感应式、圆形感应式)<直流传导式的工作原理 一般来说直流传导式结构比较简单,它由磁极、电极、泵沟等组成。在定向 恒稳磁场N-S极之间,通过泵沟两侧的电极向液态金属中通入直流电,直流电方

向与磁场方向垂直,按左手定则产生产生电磁力驱动金属溶液流动,改变磁极或

泵阀英才网 pv Jdjob88,com 电极极性可改变流动方向。调节磁场强度或直流电流大小可改变驱动强度 直流无刷电磁泵(图2) 交流传导式电磁泵工作原理 交流传导式电磁泵由电极,铁心,主副线圈和泵沟组成。当主线圈通以工频 交流电时,在铁心的气隙中产生一交变磁场,该交变磁场作用在泵沟内的金属上,同时铁心中产生的交变磁场感应铁心上的副线圈,从,而在副线圈上产生感应电动势,电极及液态金属所组成的回路中便有交流电,在任意瞬间泵沟有效区磁场的方向和通过液态金属的电流方向按左手定则判断所产生的电磁力的方向是一定的,电磁力驱动液态金属在泵沟中定向流动。

新-常见泵的分类及工作原理

第十六章常见泵的分类和工作原理 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。 第一节泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵 容积式泵是指靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。 容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。 按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵 叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。 根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为: 离心泵(centrifugal pump) 轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类 1、泵还可以按泵轴位置分为: (1)立式泵(vertical pump)

(2)卧式泵(horizontal pump) 2、按吸口数目分为: (1)单吸泵 (single suction pump) (2)双吸泵 (double suction pump) 3、按驱动泵的原动机来分: (1)电动泵(motor pump ) (2)汽轮机泵(steam turbine pump) (3)柴油机泵(diesel pump) (4)气动隔膜泵(diaphragm pump 如图16-1 为泵的分类 图16-1 泵的分类二、各种类型泵在电厂中的典型应用

泵的基础知识与水泵选型及空调水泵的变频控制

泵的基础知识与水泵选型及空调水泵的变频控制

泵的基础知识与水泵选型及空调水泵的变频控制泵属于流体机械的一种,流体机械是指以流体为工作介质和能量载体的机 械设备。流体机械根据能量传递的方向不同,可分为原动机(水轮机、汽轮机)和工作机(泵、风机、压缩机)。泵属于工作机,即消耗能量的机械。 从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型 泵的流量每小时则在几十毫升以下;泵的压力可从常压到高 19.61Mpa(200kgf/cm2)以上;被输送液体的温度最低达-200摄氏度以下,最高可达800摄氏度以上。泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。 在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料 制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液 体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。 泵的操作原理、构造及分类 1)工作原理可分为又分为叶片式、容积式和其它形式。 ①叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液 体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力 能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。 ②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周 期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运 动形式又可分为往复泵和回转泵。 ③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流 体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动 时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电 磁力作用下产生流动而实现输送。另外,泵也可按输送液体的性质、驱动方法、 结构、用途等进行分类。

水泵的种类与原理及选型精编

水泵的种类与原理及选 型精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

泵的分类、原理及选型 一、泵的类型 1、根据泵的工作原理和结构分:1.叶片泵;2.容积泵;3.其他类型泵 2、根据介质分:清水泵、污水(污物)泵、油泵、耐腐蚀泵、衬氟泵、排污泵等; 3、从使用安装方式分:管道泵、液下泵、潜水泵等。 二、泵的适用范围和特性比较表

三、泵的工作原理(叶片泵) 1、离心泵的工作原理 水泵开动前,先将泵和进水管灌满水,水泵运转后,在叶轮高速旋转而产生的离心力的作用下,叶轮流道里的水被甩向四周,压入蜗壳,叶轮入口形成真空,水池的水在外界大气压力下沿吸水管被吸入补充了这个空间。继而吸入的水又被叶轮甩出经蜗壳而进入出水管。

离心泵是由于在叶轮的高速旋转所产生的离心力的作用下,将水提相高处的,故称离心泵。 单级双吸离心泵结构原理图: 2、轴流泵的工作原理 轴流泵与离心泵的工作原理不同,它主要是利用叶轮的高速旋转所产生的推力提水。轴流泵叶片旋转时对水所产生的升力,可把水从下方推到上方。 轴流泵的叶片一般浸没在被吸水源的水池中。由于叶轮高速旋转,在叶片产生的升力作用下,连续不断的将水向上推压,使水沿出水管流出。叶轮不断的旋转,水也就被连续压送到高处。 轴流泵的一般特点 (1)水在轴流泵的流经方向是沿叶轮的轴相吸入、轴相流出,因此称轴流泵。 (2)扬程低(1~13米)、流量大、效益高,适于平原、湖区、河网区排灌。

(3)起动前不需灌水,操作简单。 轴流泵结构原理图: 3、混流泵的工作原理 由于混流泵的叶轮形状介于离心泵叶轮和轴流泵叶轮之间,因此,混流泵的工作原理既有离心力又有升力,靠两者的综合作用,水则以与轴组成一定角度流出叶轮,通过蜗壳室和管路把水提向高处。 混流泵结构原理图:

水泵选型参考

水泵如何选型和計算 1、根据装置的布置、地形条件、水位条件、运转条件、经济方案比较等多方面 素 2、考虑选择卧式、立式和其它型式(管道式、直角式、变角式、转角式、平行式、垂直式、直立式、潜水式、便拆式、液下式、无堵塞式、自吸式、齿轮式、充油式、充水温式)。卧式泵拆卸装配方便,易維修、但体积大、价格较贵,、需很大占地面积;立式泵,很多情况下叶轮淹没在水中,任何时候可以启动,便于自动或远程控制,結構紧凑 ,安装面积小 ,价格较便宜。 3、根据液体介质性质,确定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵。安装在爆炸区域的泵,应根据爆炸区域等级,采用防爆电动机。 4、振动量分为:气动、电动(电动分为 220v 电压和 380v 电压)。 5、根据流量大小,选单吸泵还是双吸泵:根据扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵(空调泵)、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵。 6、确定泵的具体型号,采用什么系列的泵选用后,就可按最大流量,放大5%——10%余量后的扬程这两个性能主要参数,在型谱图或系列特性曲线上确定具体型号。 利用泵特性曲线,在横坐标上找到所需流量值,在纵坐标上找到所需扬程值,从两值分别向上和向右引垂线或水平线,两线交点正好落在特性曲线上,则该泵就是要选的泵,但是这种理想情况一般不会太多,通常会碰上下列几种情况: A、第一种:交点在特性曲线上方,这说明流量满足要求,但扬程不够,此时,若扬程相差不多,或相差 5%左右,仍可选用,若扬程相差很多,则选扬程较大的泵。或设法减小管路阻力损失。 B第二种:交点在特性曲线下方,在泵特性曲线扇状梯形范围内,就初步定下此型号,然后根据扬程相差多少,来决定是否切割叶轮直径,若扬程相差很小,就不切割,若扬程相差很大,就按所需 Q、H、,根据其ns和切割公式,切割叶轮直径,若交点不落在扇状梯形范围内,应选扬程较小的泵。 选泵时,有时须考虑生产工艺要求,选用不同形状 Q-H 特性曲线。 A、如:要将液位输送到必须维持一定液面高度的容器中去,此时变稀流量有较大的变 化,而扬程变化很小,为次应选用平坦 H-O 曲线的泵。 B、又如:把石油送到管式加热炉中去,若工作中流量变化小,且炉管中易产生结焦现 象。要避免这种情况,希望但流量略有减小时,管中油的压力有较大增加,使刚要形成的焦疤被较高液流压力冲刷掉,这时,宜选用 Q-H 曲线较为徒降的油泵。 7、泵型号确定后,对水泵或输送介质的物理化学介质近似水的泵,需再到有关产品目录或样本上,根据该型号性能表或性能曲线进行校改,看正常工作点是否

液压泵的工作原理和分类

液压泵的工作原理和分类 液压泵的工作原理 泵是一种能量转换装置,把电动机的旋转机械能转换为液压能输出。液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图2-l所示的是一单柱塞液压泵的工作原理图.图中柱塞2装在缸体3中形成一个密封容积a,柱塞在弹簧4的作用下始终压紧在偏心轮1上。原动机驱动偏心轮1旋转使柱塞2作往复运动,使密封容积a的大小发生周期性的交替变化。当a 由小变大时就形成部分真空,使油箱中油液在大气压作用下,经吸油管顶开单向阀6进入油腔a而实现吸油;反之,当a由大变小时,a腔中吸满的油液将顶开单向阀5流入系统而实现压油。这样液压泵就将原动机输入的机械能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。 非容积式泵主要是指离心泵,产生的压力一般不高。 2.液压泵的特点 (1)具有若干个密封且又可以周期性变化的空间。泵的输出流量与此空间的容积变化量和单位时间内的变化次数成正比,与其他因素无关。 (2)油箱内液体的绝对压力必须恒等于或大于大气压力。这是容积式液压泵能吸入油液的外部条件。因此为保证液压泵能正常吸油,油箱必须与大气相通,或采用密闭的充亚油箱。 (3)具有相应的配流机构。将吸液箱和排液箱隔开,保证液压泵有规律地连续吸排液体。 吸油时,阀5关闭,6开启;压油时,阀5开启,6关闭。 常用的容积式泵有: 齿轮泵、叶片泵、柱塞泵(径向,轴向)、螺杆泵等。 液压泵的基础标准:

压力分级:0-25(低)25-80(中)80-160(中高)160-320(高压)>320(超高压)流量分级:4 6 10 16 25 40 63 100 250 二、液压泵的主要性能参数 1、压力 (1)工作压力液压泵实际工作时的输出压力称为工作压力。工作压力取决于外负载的大小和排油管路上的压力损失,而与液压泵的流量无关。 (2)额定压力液压泵在正常工作条件下,按试验标准规定连续运转的最高压力称为液压泵的额定压力。 (3)最高允许压力在超过额定压力的条件下,根据试验标准规定,允许液压泵短暂运行的最高压力植,称为液压泵的最高允许压力。 2、排量和流量 (1)排量V液压泵每转一周,由其密封容积几何尺寸变化计算而得的排出液体的体积叫液压泵的排量。排量可以调节的液压泵称为变量泵;排量不可以调节的液压泵则称为定量泵. (2)理论流量是指在不考虑液压泵的泄漏流量的条件下,在单位时间内所排出的液体体积。如果液压泵的排量为V,其主轴转速为n,则该液压泵的理论流量qt为qt=Vn 式中V为液压泵的排量(m3/r),n为主轴转速(r/s) (3)实际流量qt液压泵在某一具体工况下,单位时间内所排出的液体体积称为实际流量,它等于理论流量qt减去泄漏和压缩损失后的流量ql,即 q=qt一ql (4)额定流量qn在正常工作条件下,该试验标准规定(如在额定压力和额定转速下)必须保证的流量。 3、功率和效率

常见泵的分类及工作原理

常见泵的分类及工作原理 泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵容积式泵是指靠工作部件的运动造成工作容积周 期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵叶轮式泵是靠叶轮带动液体高速回转而把机械能 传递给所输送的液体。根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为:离心泵(centrifugal pump)轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类 1、泵还可以按泵轴位置分为:(1)立式泵(vertical pump) (2)卧式泵(horizontal pump) 2、按吸口数目分为:(1)单吸泵(single suction pump) (2)双吸泵(double suction pump) 3、按驱动泵的原动机来分:(1)电动泵(motor pump ) (2)汽轮机泵(steain turbine pump) (3)柴油机泵(diesel pump)(4)

气动隔膜泵(diaphi'^m pump如图16—1为泵的分类图16-1泵的分类 二、各种类型泵在电厂中的典型应用离心泵凝结水泵、给水泵、闭式水泵、凝补水泵、定子冷却水泵、定排水泵、炉水循环泵轴流泵循环水泵往复泵EII油泵齿轮泵送风机液压油泵、磨煤机液压油泵、引风机电机润滑油泵螺杆泵空预器导向轴承油泵、空预器支撑轴承油泵、空侧交流密封油泵喷射泵主机润滑油系统射油器、射水抽气器水环式真空泵水环式真空泵第二节离心泵的理论基础知识离心泵主要包括两个部分: 1、旋转的叶轮和泵轴(旋转部件)。 2、由泵壳、填料函和轴承组成的静止部件。正常运行时,叶 轮高速旋转,在惯性力的作用下,位于叶轮中心的流体被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳内,在蜗壳内液体的部分动能会转换成静压能。于是较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。同时,叶轮中心由于液体的离开而形成真空,如果管路系统合适,则外界的液体会源源不断地吸入叶轮中心,以满足水泵连续运行的要求。如图16-2所示。图16-2 离心泵的工作原理 一、离心泵的性能参数 (一)流量指泵在单位时间内能抽出多少体积或质量的水。体积流量一般用m3/min. m3/h等来表示。 (二)扬程又称水头,是指被抽送的单位质量液体从水泵进

泵的分类及工作原理

泵的分类及工作原理 一、泵的分类 1.按工作原理分 2.按产生的压力分 泵按产生的压力分为:低压泵:压力在2MPa 以下;中压泵:压力在2~6MPa;高压泵:压力在6MPa 以上。 二、泵的工作原理 1.离心式泵工作原理 离心式泵的工作原理是,叶轮内的液体受到叶片的推动而与叶片共同旋转。由旋转而产生的离心力﹐使液体由中心向外运动﹐并获得动能增量。在叶轮外周﹐液体被甩出至蜗卷形流道中。由于液体速度的减低﹐部分动能被转换成压力能﹐从而克服排出管道的阻力不断外流。叶轮吸入口处的液体因向外甩出而使吸入口处形成低压(或真空)﹐与吸入池液面形成压差,因而吸入池中的液体在液面压力(通常为大气压力)作用下源源不断地压入叶轮的吸入口﹐形成连续的抽送作用。

离心泵的结构:

双吸泵结构图:

2.轴流式泵工作原理. 轴流式泵的工作原理是,旋转叶片的挤压推进力使流体获得能量,升高其压能和动能,其结构如图所示。叶轮1 安装在圆筒形泵壳3 内,当叶轮旋转时,流体轴向流人,在叶片叶道内获得能量后,沿轴向流出。轴流式泵适用于大流量、低压力,电厂中常用作循环水泵。 3.往复泵工作原理 现以活塞式为例来说明其工作原理,如图所示。 活塞泵主要由活塞1在泵缸2内作往复运动来吸人和排除液体。当活塞l 开始自极左端位置向右移动时,工作室3 的容积逐渐扩大,室内压力降低,流体顶开吸水阀4,进入活塞1 所让出的空间,直至活塞1 移动到极右端为止,此过程为泵的吸水过程。当活塞1 从右端开始向左端移动时,充满泵的流体受挤压,将吸水阀4 关闭,并打开压水阀5 而排出,此过程称为泵的压水过程。活塞不断往复运动,泵的吸水与压水过程就连续不断地交替进行。此泵适用于小流量、高压力,工厂中常用作加药泵。 4.齿轮泵工作原理 齿轮泵具有一对互相啮合的齿轮,主动齿轮固定在主动轴上,轴的一端伸出壳外由原动机驱动,另一个齿轮(从动轮)装在另一个轴上,齿轮旋转时,液体沿吸油管进入到吸人空间,沿上下壳壁被两个齿轮分别挤压到排出空间汇合(齿与齿啮合前),然后进入压油管排出。

水泵的分类

水泵的分类,原理及选型 一、水泵的分类 水泵一般多以泵的结构和作用原理来分类,有时根据需要也按使用部门、用途、动力类型和泵的水力性能等进行分类。 (1)按使用部门分有农业用泵(农用泵)、工作用泵(工业泵)和特殊用泵等。 (2)按用途分有水泵、砂泵、泥浆泵、污水泵、污物泵、井用泵、潜水电泵、喷灌泵、家用泵、消防泵等。 (3)按动力类型分有手动泵、畜力泵、脚踏泵、风力泵、太阳能水泵、电动泵、机动泵、水轮泵、内燃水泵、水锤泵等。 (4)按工作原理分有离心泵、混流泵、轴流泵、旋涡泵、射流泵、容积泵(螺杆泵、活塞泵、隔膜泵)、链条泵、电磁泵、液环泵、脉冲泵等。 二、水泵的工作原理 (一)离心泵的工作原理及特点 1、离心泵的工作原理 水泵开动前,先将泵和进水管灌满水,水泵运转后,在叶轮高速旋转而产生的离心力的作用下,叶轮流道里的水被甩相四周,压入蜗壳,叶轮入口形成真空,水池的水在外界大气压力下沿吸水管被吸入补充了这个空间。继而吸入的水又被叶轮甩出经蜗壳而进入出水管。由此可见,若离心泵叶轮不断旋转,则可连续吸水、压水,水便可源源不断地从低处扬到高处或远方。综上所述,离心泵是由于在叶轮的高速旋转所产生的离心力的作用下,将水提相高处的,故称离心泵。 2、离心泵的一般特点 (1)水沿离心泵的流经方向是沿叶轮的轴向吸入,垂直于轴向流出,即进出水流方向互成90°。 (2)由于离心泵靠叶轮进口形成真空吸水,因此在起动前必须相泵内和吸水管内灌注引水,或用真空泵抽气,以排出空气形成真空,而且泵壳和吸水管路必须严格密封,不得漏气,否则形不成真空,也就吸不上水来。 (3)由于叶轮进口不可能形成绝对真空,因此离心泵吸水高度不能超过10米,加上水流经吸水管路带来的沿程损失,实际允许安装高度(水泵轴线距吸入水面的高度)远小于1 0米。如安装过高,则不吸水;此外,由于山区比平原大气压力低,因此同一台水泵在山区,特别是在高山区安装时,其安装高度应降低,否则也不能吸上水来。 (二)轴流泵的工作原理及特点 1、轴流泵的工作原理 轴流泵与离心泵的工作原理不同,它主要是利用叶轮的高速旋转所产生的推力提水。轴流泵叶片旋转时对水所产生的升力,可把水从下方推到上方。 轴流泵的叶片一般浸没在被吸水源的水池中。由于叶轮高速旋转,在叶片产生的升力作用下,连续不断的将水向上推压,使水沿出水管流出。叶轮不断的旋转,水也就被连续压送到高处。 2、轴流泵的一般特点 (1)水在轴流泵的流经方向是沿叶轮的轴相吸入、轴相流出,因此称轴流泵。 (2)扬程低(1~13米)、流量大、效益高,适于平原、湖区、河网区排灌。 (3)起动前不需灌水,操作简单。

四寸水泵的简单介绍及选型

四寸水泵的简单介绍及选型 一、水泵的分类 水泵一般多以泵的结构和作用原理来分类,有时根据需要也按使用部门、用途、动力类型和泵的水力性能等进行分类。 (1)按使用部门分有农业用泵(农用泵)、工作用泵(工业泵)和特殊用泵等。 (2)按用途分有水泵、砂泵、泥浆泵、污水泵、污物泵、井用泵、潜水电泵、喷灌泵、家用泵、消防泵等。 (3)按动力类型分有手动泵、畜力泵、脚踏泵、风力泵、太阳能水泵、电动泵、机动泵、水轮泵、内燃水泵、水锤泵等。 (4)按工作原理分有离心泵、混流泵、轴流泵、旋涡泵、射流泵、容积泵(螺杆泵、活塞泵、隔膜泵)、链条泵、电磁泵、液环泵、脉冲泵等。 二、水泵的工作原理 (一)离心泵的工作原理及特点 1、离心泵的工作原理 水泵开动前,先将泵和进水管灌满水,水泵运转后,在叶轮高速旋转而产生的离心力的作用下,叶轮流道里的水被甩相四

周,压入蜗壳,叶轮入口形成真空,水池的水在外界大气压力下沿吸水管被吸入补充了这个空间。继而吸入的水又被叶轮甩出经蜗壳而进入出水管。由此可见,若离心泵叶轮不断旋转,则可连续吸水、压水,水便可源源不断地从低处扬到高处或远方。综上所述,离心泵是由于在叶轮的高速旋转所产生的离心力的作用下,将水提相高处的,故称离心泵。 2、离心泵的一般特点 (1)水沿离心泵的流经方向是沿叶轮的轴向吸入,垂直于轴向流出,即进出水流方向互成90°。 (2)由于离心泵靠叶轮进口形成真空吸水,因此在起动前必须相泵内和吸水管内灌注引水,或用真空泵抽气,以排出空气形成真空,而且泵壳和吸水管路必须严格密封,不得漏气,否则形不成真空,也就吸不上水来。 (3)由于叶轮进口不可能形成绝对真空,因此离心泵吸水高度不能超过10米,加上水流经吸水管路带来的沿程损失,实际允许安装高度(水泵轴线距吸入水面的高度)远小于10米。如安装过高,则不吸水;此外,由于山区比平原大气压力低,因此同一台水泵在山区,特别是在高山区安装时,其安装高度应降低,否则也不能吸上水来。 (二)轴流泵的工作原理及特点 1、轴流泵的工作原理 轴流泵与离心泵的工作原理不同,它主要是利用叶轮的高速

水泵原理详细介绍

上一篇/ 下一篇 2008-07-02 23:43:00 / 个人分类:技术文献 查看( 1132 ) / 评论( 6 ) / 评分( 0 / 0 ) 水泵原理详细介绍 借动力设备和传动装置或利用自然能源将水由低处升至高处的水力机械。广泛应用于农田灌溉、排水以及农牧业、工矿企业、城镇供水、排水等方面。用于农田排灌、农牧业生产过程中的水泵称农用水泵,是农田排灌机械的主要组成部分之一。 类型 根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量,主要有活塞泵、柱塞泵、齿轮泵、隔膜泵、螺杆泵等类型。叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。潜水电泵的泵体部分是叶片泵。其他类型的水泵有射流泵、水锤泵、内燃水泵等,分别利用射流水锤和燃料爆燃的原理进行工作。水轮泵则是水轮机与叶片泵的结合。上述各类水泵中以下列各式较具代表性。 离心泵是利用离心力的作用增加水体压力并使之流动的一种泵。由泵壳、叶轮、转轴等组成。动力机带动转轴,转轴带动叶轮在泵壳内高速旋转,泵内水体被迫随叶轮转动而产生离心力。离心力迫使液体自叶轮周边抛出,汇成高速高压水流经泵壳排出泵外,叶轮中心处形成低压,从而吸入新的水流,构成不断的水流输送作用。叶轮具有逆旋转方向弯曲的叶片,其结构型式有封闭式、半封闭式和敞开式3种,农用的多为封闭式叶轮,叶片两侧由圆盘封闭。泵体沿出水管方向逐渐扩张成蜗壳形。水流自叶轮一面吸入的称单吸离心泵,自叶轮两面吸入称双吸离心泵。为增加扬程,可将多个叶轮装在同一轴上成为多级离心泵。由前一叶轮排出的水进入后一叶轮的进水口,增压后再从后一叶轮排出,因而叶轮数愈多,压力愈高。有的离心泵带有能自动排除吸水管和泵体内空气的装置,在起动前无需向泵体灌水,称自吸离心泵,但其效率常低于一般离心泵。 离心泵在农田排灌和农牧业供水中应用最广。多用于扬程高而流量小的场合。单级离心泵的扬程为5~125米,排出的流量均匀,一般为6.3~400米3/小时,效率约可达86~94%。 轴流泵

泵的种类和工作原理

泵的种类和工作原理 泵按结构的分类及工作原理 泵的分类 水泵的标准所牵涉的产品种类也非常多,有离心泵、计量泵、螺杆泵、往复泵、水轮泵、潜水泵、油泵、清水泵、试压泵、旋涡泵、低温泵、真空泵、罗茨泵、分子泵、齿轮泵、泥浆泵、耐腐蚀泵、深井泵、水环泵、混流泵、轴流泵、锅炉给水泵、液下泵、注水泵、化工流程泵、不堵式泵、无泄漏泵、塑料泵、消防泵等等,还有很多。其名称有些是按泵的常规分类方法划分的如叶片泵、容积泵等,有些则是按用途划分的如污水泵、卫生泵等,有些名称则比较随意如扩散泵、液氮泵等。只要有此类产品的生产,有制定标准的需求,通过一定的申请、批准手续就可能产生一个新的标准,但有时内容也有相当的交叉、重复。就国内和国外的标准而言,则国内的标准数量多于国外的标准。总的来说,像离心泵这样应用广泛,产品生产历史长久的泵类标准比较多(离心泵相关标准的总数达到100多个),而像无泄漏泵这种迅速发展起来的新型泵类标准则比较少。现着重介绍泵按结构的分类及工作原理 (一)容积式 分类往复式回转式

基本原理借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如:活塞泵齿轮泵,螺杆泵 (二)叶片式 叶片式泵与风机的主要结构是可旋转、带叶片的叶轮和固定的机壳。通过叶轮旋转对流体作功,从而使流体获得能量。根据流体的流动情况,可将它们再分为下列数种: 分类离心式轴流式混流式贯流式 基本原理叶轮高速旋转时产生的离心力使流体获得能量 旋转叶片的挤压推进力使流体获得能量,升高其压能和动能离心式和轴流式的混合体原理同离心式 ,如:中央空调用离心风机中央空调或冷库用轴流式送水泵混流送水泵家用空调室内风机 泵与风机的工作原理 一、离心式泵与风机的工作原理 叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。叶轮装在一个螺旋形的外壳内,当叶轮旋转时,流体轴向流入,然后转90度进入叶轮流道并径向流出。叶轮连续旋转,在叶轮入口处不断形成真空,从而使流体连续不断地被泵吸入和排出。

相关文档
最新文档