概率论史

概率论史
概率论史

数学史――概率论

概率论是研究随机现象数量规律的数学分支.随机现象是指这样一种客观现象:当人们观察它时,所得到的结果不是预先能够确定的,而只是多种可能结果中的一种.研究随机过程的统计特性,计算与过程有关的某些事件的概率,特别是与过程样本轨道有关的问题,是现代概率论的主要课题.

概率论的肇始是在17世纪中叶,但它的起源之一──解决与赌博有关的问题──可追溯到15世纪末.15世纪末至16世纪中期,几位意大利数学家研究了这类问题,1494年,巴乔利提出了关于在某种条件下如何分配赌本的问题,后来,卡尔达诺和塔尔塔利亚也做过类似的计算,不过都未得到正确结果.早期寻求随机事件的概率,除了与赌博问题有关外,还涉及人寿保险、人口出生性别比例等.

到17世纪中叶,由于法国数学家帕斯卡、费马和荷兰数学家惠更斯的加入,使得对上述分配赌本问题的研究成为数学史上一个著名的问题.法国的一位名叫梅累的狂热赌徒向帕斯卡提出了一个困扰他很久(但却对他很有实用价值的)问题.梅累的问题如下:两个赌徒相约赌若干局,谁先赢s 局就算是谁赢.可是当一个赌徒赢a 局(a

使概率论成为数学一个分支的奠基人是瑞士数学家雅科布·伯努利,他考虑到了掷n 粒骰子时所得点数总和等于m 的可能性问题,指出这种场合的数目等于23456()n x x x x x x +++++的展开式中m x 这一项的系数,开了母函数方法的先河.他的重要贡献是建立了概率论中的第一个极限定理,即伯努利大数定律,该定理断言,设事件A 出现的概率P (A )=p (0

0)(→≥?εηp n

P n

其中ε为任一正数.这一结果发表在1713出版的他的遗著《猜度术》中.美国概率史专家海金称此书标志着“概率论漫长的形成过程的终结与数学概率论的开端”.

法国数学家棣莫弗在概率论发展史上有杰出的贡献,他的《机会论》(1718)是早期概率论的重要著作.此外,他在1730年出版的著作《分析杂论》中包含著名的棣莫弗-拉普拉斯定理当12

p q ==时的证明.这一结果后来被法国数学家拉普拉斯推广到一般的p 的形式,这是概率论中基本极限定理之一的原始形式.此外,棣莫弗还推导出关于n !

的渐近公式,即所谓斯特林公式,进一步证明了)1()(p np np n ??η渐近地服从正态分布(德国数学

家高斯在1809年研究误差理论时重新导出正态分布,所以又称高斯分布).1785年,法国数学家孔多塞出版《概率分析的应用》,强调概率计算在实际问题中的应用,特别感兴趣的是在以多数票进行法院判决的分析时的应用.另一位法国自然科学家比丰引入了几何概率的概念,解决了若干相关的问题,他还以最简单的概型为例(掷钱币)作实验来验证大数定律.著名的比丰投针问题还引发了对圆周率π的近似计算.比丰的工作记载于他的著作《或然性算术实验》中.从17世纪产生和发展起来的概率论,至此已初具规模.

概率论进一步发展中的重要步骤与拉普拉斯的工作密切相关.拉普拉斯从1772年开始对事件的概率及机会对策进行深入研究,于1774年正式提出概率的严格定义: 如果每种情形都是等可能的,则一个事件的概率等于有利情形的数目除以所有可能情形的数目.

这实质上就是古典概率的定义,由此使概率论向公理化和公式化方向发展.拉普拉斯在系统总结前人工作的基础上,写出了《概率的分析理论》,于1812年出版.他在该书的序言中,表明了自己关于概率的哲学观.他认为世界的未来完全由它的过去决定,而且只要掌握了世界在任意给定时刻的数学信息,就能预知未来.在该书中,除了明确地给出概率的古典定义外,还证明了上述棣莫弗-拉普拉斯定理的一般形式(即中心极限定理),建立了误差理论和最小二乘法,利用基本理论的结果做人口统计,提供了许多具体概率问题的解答.该书中引入了有力的分析的工具,如差分方程、母函数等,并把由许多数学家和他本人所发展的概率论中的各种类型的问题作了统一的处理.该书中还有许多内容有趣或形式新奇的问题的研讨及统计报告.例如,拉普拉斯指出了,法国邮局因信封上没有地址而无法投递的信件数目在许多年间几乎保持不变.《概率的分析理论》实现了概率论由单纯的组合计算到分析方法的过渡,将概率论推向一个新的发展阶段.

拉普拉斯和高斯等人建立的关于正态分布以及最小二乘法的理论,对于用概率论研究天文观测、大地测量和物理观测的结果起了重大作用.法国的泊松也是概率论发展史上的代表人物之一,他是从法庭审判问题出发来研究概率论的,并作出了重要贡献.他推广了伯努利形式下的大数定律和中心极限定理,他的研究还得到一种重要的描述随机现象的新的分布──泊松分布,这种分布在工业、农业、商业、交通运输、公用事业、医学、军事等许多领域都有应用.泊松的代表著作有《关于案件审判的概率研究》和《打靶射击研究报告》.

继拉普拉斯和泊松之后,由于一些数学家过分强调概率论在伦理科学中的应用,甚至企图以此来阐明“隐蔽着的神的秩序”,又加之理论工具的不够充分和古典概率定义自身的缺陷,使得当时欧洲不少正统的科学家往往把概率论排除在精密科学之外.以切比雪夫为首的俄罗斯概率论学派的贡献逐渐改变了这种局面.从1845年开始,切比雪夫利用微积分的方法,先后对伯努利大数定律和泊松大数定律进行精细的分析和严格的证明.在切比雪夫的一系列研究中,他最早建立并提倡使用的随机变量概念,后来成为概率论与数理统计中最重要的概念.1866年,切比雪夫利用以他的名字命名的不等式,创造了“矩方法”,使许多困难的极限估值问题得到解决.如建立了有关独立随机变量序列的大数定律.随后又建立了有关各阶绝对矩一致有界的独立随机变量序列的中心极限定理.

切比雪夫引出的一系列概念和研究课题为俄国以及后来的苏联数学家继承和发展.马尔可夫对“矩方法”作了补充,圆满地解决了随机变量的和按正态收敛的条件问题.李雅普诺夫则发展了特征函数方法, 1901年,李雅普诺夫利用特征函数的方法,对一类相当广泛的独立随机变量序列,证明了中心极限定理.他还利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布.他的工作引起中心极限定理研究向现代化方向的转变.

继李雅普诺夫之后,辛钦、柯尔莫哥洛夫,以及法国数学家莱维等人在随机变量的极限理论方面做出了重要贡献.由于概率论问题与许多实际问题有着密切的联系,特别是受物理学和技术问题的刺激,人们开始研究随机过程.1905年爱因斯坦和波兰数学家斯莫卢霍夫斯基各自独立地研究了布朗运动,他们用不同的概率模型求解了运动质点的转移密度.

但直到 1923年,美国数学家纳维才利用三角级数首次给出了布朗运动的严格定义,并证明了布朗运动轨道的连续性.1907年马尔可夫在研究相依随机变量序列时,提出了马尔可夫链的概念,1931年由于柯尔莫哥洛夫对这一概念的发展,才奠定了马尔可夫过程的理论基础.1933年,柯尔莫哥洛夫建立了在测度论基础上的概率论公理系统,奠定了现代概率论的基础.1934年,辛钦提出了在时间中均匀进行的平稳过程的相关理论.所有这些关于随机过程的研究,都是通过把概率问题化为微分方程或泛函分析等问题来解决的.从1938年开始,法国数学家莱维系统地研究了布朗运动,他着眼于随机过程的轨道性质,倡导了研究随机过程的一种新方法,即概率方法,取得了一些重要成果.至此,有关独立随机变量序列的极限理论已臻完备.此外,莱维对概率论的重要贡献还在于建立了独立增量过程的一般理论.他于1948年出版的著作《随机过程与布朗运动》是随机过程的一本经典著作.现代概率论的另外两个代表人物是杜布和伊藤清,杜布对鞅进行了系统研究并使之成为随机过程论的一个重要分支,伊藤清定义了对布朗运动的随机积分.经过这些代表人物的工作,概率论走向了新的高峰.

从20世纪50年代开始,概率论得到进一步发展.在此之前,概率论主要把概率问题化为分析问题来解决,解决后再研究其概率含义,研究的重点是极限分布理论以及通过概率分布来研究随机过程.从20世纪50年代起概率论形成了自己的方法──随机分析方法,研究的重点是过程的样本性质.在现代化技术发展的影响下,概率论的理论和应用都有显著的发展,出现了理论概率与应用概率的分化.概率论的发展历史说明了理论与实际之间的密切关系.许多研究方向的提出,归根结底都是有其实际背景的,反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围.目前,理论概率的一些重要分支的研究都很活跃,应用概率的发展也占有特别重要的地位.现在,概率论已被广泛应用于解决工农业生产、军事技术和科学技术中的问题.概率论同其他知识领域相结合产生了很多边缘学科,如生物统计、物理统计学以及统计预报等学科.将概率论方法应用于解决某一类问题又产生了一些新的数学分支,如排队论、信息论、控制论、随机运筹学等.电子计算机的产生和发展,给比较复杂的计算问题提供了有力的工具,为概率论的发展开辟了广阔的领域.总之,现代概率论已经成为一个非常庞大的数学分支.

古典概率

古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形.这时基本空间?由有限个元素组成,其个数记为n.若事件A包含m个基本事件,则定义A的概率P(A)=m/n.这个定义是法国数学家拉普拉斯在1812年出版的《概率的分析理论》一书中首次明确给出的,称之为概率的古典定义.历史上有名的得分问题的解法是应用古典概率的一个典型例子:甲、乙二人各出同样的赌注,用掷硬币作为博弈手段.每掷一次,若正面朝上,甲得1分,乙不得分;若反面朝上,乙得1分,甲不得分.谁先得到事先约定的分数,就赢得全部赌注.当进行到甲还差2分,乙还差3分就分别达到约定分数时,他们因故不能继续赌下去,问这时如何公平分配赌注?计算古典概率,可以用穷举法,但借助于组合计算可以简化计算过程.随着人们遇到问题的复杂程度的增加,基本空间中元素个数的有限性和等可能性暴露出它的弱点,人们针对不同的问题从不同角度计算出不同的概率,从而引进了几何概率和概率的频率定义.

概率的频率定义

在做大量重复试验时,随着试验次数的增加,—个事件出现的频率总在一个固定数值的附近摆动,显示出一定的稳定性.把这个固定的数值定义为事件的概率,就是概率的频率定义.这个定义是奥地利数学家米泽斯于 1919年提出的.从应用角度看,频率定义可以克服等可能性观点不易解决的某些困难,但从理论上讲,这种定义方法也是不够严谨的.概率论的进一步发展,要求人们从古典定义、几何定义、频率定义中吸取能反映规律性的本质

性质,克服它们各自的局限性,抽象出一种合理的定义,把以前各种有实际意义的定义作为特例包含在内,这就是原苏联数学家柯尔莫戈罗夫的概率公理化的定义.

概率论公理化体系

19世纪,几何概率逐步发展起来.但到19世纪末,出现了一些自相矛盾的结果,最典型的就是贝特朗悖论.这反映了几何概率的逻辑基础是不够严密的,同时也说明拉普拉斯关于概率的古典定义带有很大的局限性.虽然到了 19世纪下半叶,概率论在统计物理学中的应用及概率论的自身发展已突破了概率的古典定义,但关于概率的一般定义则始终未能明确化和严格化.这种情况既严重阻碍了概率论的进一步发展和应用,又落后于当时数学的其他分支的公理化潮流. 1900年,德国数学家希尔伯特在国际数学家大会上提出了建立概率论公理化体系的问题.最先从事这方面研究工作的有法国数学家庞加莱、波莱尔及原苏联数学家伯恩斯坦,但他们提出的几种公理体系在数学上都不够严密.到了20世纪30年代,随着大数定律的深入研究,概率论与测度论的联系愈来愈明显.在这种背景下,原苏联数学家柯尔莫哥洛夫子于1933年在他的《概率论基础》一书中首次给出了一套严密的概率论公理体系,得到举世公认.它的出现,是概率论发展史上的—个里程碑,为现代概率论的蓬勃发展打下了坚实的基础.

数学期望

数学期望又称均值,是随机变量按概率的加权平均,表征其概率分布的中心位置.概率论发展初期,研究的问题大多与赌博有关.有一赌者梅累向法国数学家帕斯卡提出一个使他苦恼很久的问题:“两个赌徒相约赌若干局,谁先赢S 局就算赢了,现在赌徒A 赢a 局(a

011111011111

n m n m n m n m m n m n m n C C C C C C ?+?+?+??+?+?+?++++++L L 来分.1657年荷兰数学家惠更斯是从与帕斯卡差不多的理由出发解决了这一问题,即:如果某人在u+v 个等概率的场合中有 u 个场合可赢得α,而有v 个场合可赢得β,则他所期望的收入可用

u v u v

αβ++ 来估计.这是以比帕斯卡更为明显的形式导出的数学期望的概念.

比丰投针问题

这是18世纪法国数学家比丰和勒克莱尔提出的问题,记载于比丰1777年出版的著作《或然性算术实验》中:在一平面上画有一组间距为d 的平行线,将一根长度为)(d l l <的针任意投掷在这个平面上,求此针与任一平行线相交的概率.比丰本人证明了该针与任一平行线相交的概率为d

l p π2=.利用这一公式,可以用概率的方法得到圆周率π的近似值.将这一实验重复进行多次,并记下相交的次数,由此得到p 的经验值,从而可算出π的近似值.1850年,一位叫沃尔夫的人在投掷5000多次之后,得到π的近似值为6159.3;1855年英国人史密斯投掷了3200次,得到的π的近似值为3155.3;另一位英国人福克斯仅投掷了1100次,却得到了精确到三位小数的π值9141.3.以后陆续有人作这种实验,1909年意大利人拉泽里尼投掷了3408次,得到的圆周率精确到6位小数,这在当时被认为是最精

确的.比丰投针问题是第一个用几何形式表达概率问题的例子,它开创了使用随机数处理确定性数学问题的先河,对概率论的发展起到一定作用.

中位数与分位数

设X 是随机变量,同时满足11{}{}22

p X x p X x ≤≥≥≥及二式的实数x 被称为X 的中位数.中位数对于任何随机变量都是存在的,但可能不唯一.它是反映随机变量取值中心的一个数值,在理论和应用上都很有价值.将中位数的概念推广,就得到分位数的概念:给定0<α<1,随机变量X 的上α分位数是指同时满足下列两个条件的数x α:

{}1,{}P X x P X x αααα

≤=?≥= 1x α?又被称为X 的下α分位数.中位数与分位数的概念是英国生物统计学家高尔顿最早提出来的.

正态分布

正态分布是最重要的一种概率分布.1733年法国数学家棣莫弗用!n 的近似公式最早得到了正态分布,作为二项分布的近似.高斯在研究测量误差时从另一个角度导出了它,并研究了正态分布的性质.因此,人们也称正态分布为高斯分布.法国数学家拉普拉斯也研究了它的性质.生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述.一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可认为这个量具有正态分布.从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似,还有一些常用的概率分布是直接由它导出的.

切比雪夫不等式

若随机变量的数学期望、方差分别为EX 及DX ,则对任何0>ε,成立

2(||)DX P X EX εε

?≥≤ 这一不等式是证明弱大数定律的重要工具.1853年,法国数学家比安内梅在他的论文中已有类似的表述,但直到1867年才由俄国数学家切比雪夫明确叙述和论证.它对随机变量的分布并无特殊要求,仅利用X 的方差来对X 的取值与EX 发生较大偏离的概率作出估计,因而有着较广泛的应用性.关于大数定律的一些定理的证明都直接或间接地用到切比雪夫不等式,如切比雪夫定理、伯努利定理、辛钦定理和马尔可夫定理等.

柯尔莫哥洛夫不等式

设{,1}k X k n ≤≤是相互独立的随机变量,它的数学期望、方差分别为2

0,k k k

EX DX σ==,又1k

k i i S X ==∑,则对任何0>ε,成立不等式 22221111(max ||)n k n k k n k P S ES εσεε≤≤=≥≤=∑.

若k X 还是有界的,即||k X C ≤以概率1成立,则还有

2

21()(max ||)1k k n n

C P S ES εε≤≤+≥≥? 这两个不等式是由原苏联数学家柯尔莫哥洛夫在1928年建立的,它是证明强大数定律的重要工具.

大数定律

大数定律是概率论中讨论随机变量序列的算术平均值向常数收敛的定律.历史上,瑞士数学家雅科布·伯努利在他的《猜度术》中首先证明的“伯努利定理”,就是大数定律最早的形式.大数定律的名称是法国数学家泊松于1837年给出的.大数定律中最重要的一类是讨论独立试验序列的.常见的除了伯努利大数定律外,还有原苏联数学家辛钦于1929年提出的辛钦大数定律;法国数学家博雷尔于1909年给出的博雷尔强大数定律及柯尔莫哥洛夫强大数定律等.大数定律中涉及到的随机变量序列也可以不是相互独立的.特别对于平稳序列,有所谓平稳序列的遍历性,也是一类大数定律.在平稳过程理论中,辛钦和美国数学家伯克霍夫分别建立了有关的遍历定理.

中心极限定理

中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理. 1920年,美国数学家波利亚称这类定理为中心极限定理.历史上最初的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题.1716年前后,棣莫弗和拉普拉斯分别就特殊和一般情形得到棣莫弗—拉普拉斯定理.李雅普诺夫于1900年给出了独立随机变量序列服从中心极限定理的李雅普诺夫条件,建立了李雅普诺夫定理.他最先系统地应用的特征函数方法,后来变成了概率论的基本方法之一.随着特征函数的引入,中心极限定理的研究得到了很快的发展.20世纪 20年代,林德伯格和莱维证明了林德伯格-莱维定理.1935年,林德伯格和费勒又进一步解决了独立随机变量序列的中心极限定理的一般情形,即林德伯格-费勒定理.其结果使长期以来作为概率论中心议题之一的关于独立随机变量序列的中心极限定理得到根本解决.

此后中心极限定理的研究基本上围绕几个方面进行:一是减弱对随机变量独立性的要求,考虑具有某种相依性的随机变量;一是讨论向标准正态密度函数收敛问题及估计收敛的速度问题.

向正态密度函数收敛的问题虽然在概率论的早期工作中就出现了,但是一般性的结

S的密度函数P n(x)果直至20世纪中期才得到.当独立随机变量序列{X n}的标准化部分和*

n

?收敛的问题,被称为局部极限定理.原苏联存在时,讨论P n(x)向标准正态密度函数()x

数学家格涅坚科于1953年对独立同分布情形给出了充分必要条件.在一定假设下,对于独立非同分布情形,由彼得罗夫给出了充分必要条件.

相依随机变量的中心极限定理至今仍是许多学者研究的课题,其中讨论较多的有m 相依随机变量序列、强平稳随机变量序列、鞅、马尔可夫过程及其他泛函,以及各种类型的统计量序列.为了讨论向正态分布收敛的速度,20世纪40年代,先后由贝里及埃森给出了埃森不等式,用它可以精确估计向正态分布收敛时的误差.这方面的研究现今已相当深入.早在20世纪30年代,就开始讨论普遍极限定理,这是独立随机变量和的极限定理的一般提法.到20世纪40年代中期,已—获得较完满的解决.在这方面做出贡献的学者有辛钦、格涅坚科、许宝騄等.

极限定理是概率论的重要内容,也是数理统计的基础之一,其理论成果也比较完美.长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展.同时新的极限理论问题也在实际中不断产生.

条件期望

条件期望是随机变量按条件概率的平均.研究随机事件之间的关系时,在已知某些事件发生的条件下来考虑另一些事件的统计规律是十分重要的.在概率论发展的初期就已引进并应用了简单情形下的条件概率.1933年,原苏联数学家柯尔莫哥洛夫给出了一般情形下的条件概率与条件期望的严格定义,这使概率统计的一些重要内容建立在严密的基础上,例如数理统计中的充分统计量、贝叶斯统计都用到这一概念.马尔可夫过程和鞅论的

整个内容更是离不开对条件概率和条件期望的研究.因而它已成为近代概率论与数理统

计学中的重要的基本概念.

随机过程

随机过程是随时间推进的随机现象的数学抽象.设)

?

(为概率空间,T为指标t的

,

P

f,

集合,如果对每个t T

∈,有定义在?上的实随机变量X(t)与之对应,就称随机变量族X= {X (t),t T

∈}为一随机过程.

人们对一些特殊的随机过程早有研究.1907年前后,俄国数学家马尔可夫提出并研究一种能用数学分析方法研究自然过程的一般图式,后人称这种图式为马尔可夫链.1923年,美国数学家维纳从数学上定义了布朗运动,后来也称数学上的布朗运动为维纳过程.这种过程至今仍是随机过程的重要研究对象.通常认为,随机过程一般理论的研究于20世纪30年代才开始.1931年,原苏联数学家柯尔莫哥洛夫发表了《概率论的解析方法》;1934年,辛钦发表了《平稳过程的相关理论》.这两篇重要论文为马尔可夫过程和平稳随机过程奠定了理论基础.稍后,法国数学家莱维从样本函数角度研究随机过程,引进一般可加过程并研究了它的样本函数结构,他出版的关于布朗运动与可加过程的两本书中蕴涵着丰富的概率思想.1953年,美国数学家杜布出版的著作《随机过程论》中系统地叙述了随机过程的基本理论.他的工作推动了鞅理论的发展.同一年,日本数学家伊滕清建立了关于布朗运动的随机微分方程理论,定义了对布朗运动的一种随机积分——伊滕积分,为研究马尔可夫过程开辟了新的道路.近年来,由于鞅论的进展人们讨论了关于半鞅的随机微分方程,而流形上的随机微分方程理论正方兴未艾.20世纪60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程一般理论.中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面都做出了较好的工作.

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

概率论的起源与发展

概率论的起源与发展 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。 因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大? 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本? 诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。 参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。 帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。 在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

概率论发展简史

一、概率论发展简史 1(20世纪以前得概率论 概率论起源于博弈问题。15—16世纪,意大利数学家帕乔利(L、Pacioli,1445-1517)、塔塔利亚(N、Tartaglia,1499-1557)与卡尔丹(G、cardano,1501-1576)得著作中都曾讨论过俩人赌博得赌金分配等概率问题.1657年,荷兰数学家惠更斯(C、Huygens,1629-1695)发表了《论赌博中得计算》,这就是最早得概率论著作.这些数学家得著述中所出现得第一批概率论概念与定理,标志着概率论得诞生.而概率论最为一门独立得数学分支,真正得奠基人就是雅格布?伯努利(Jacob Bernoulli,1654-1705)。她在遗著《猜度术》中首次提出了后来以“伯努利定理”著称得极限定理,在概率论发展史上占有重要地位。 伯努利之后,法国数学家棣莫弗(A、de Moivre,1667-1754)把概率论又作了巨大推进,她提出了概率乘法法则,正态分布与正态分布率得概念,并给出了概率论得一些重要结果。之后法国数学家蒲丰(C、de Buffon,1707—1788)提出了著名得“普丰问题”,引进了几何概率.另外,拉普拉斯、高斯与泊松(S、D、Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别就是拉普拉斯,她就是严密得、系统得科学概率论得最卓越得创建者,在1812年出版得《概率得分析理论》中,拉普拉斯以强有力得分析工具处理了概率论得基本内容,实现了从组合技巧向分析方法得过渡,使以往零散得结果系统化,开辟了概率论发展得新时期。泊松则推广了大数定理,提出了著名得泊松分布。

19世纪后期,极限理论得发展称为概率论研究得中心课题,俄国数学家切比雪夫对此做出了重要贡献。她建立了关于独立随机变量序列得大数定律,推广了棣莫弗—拉普拉斯得极限定理。切比雪夫得成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展得进程. 19世纪末,一方面概率论在统计物理等领域得应用提出了对概率论基本概念与原理进行解释得需要,另一方面,科学家们在这一时期发现得一些概率论悖论也揭示出古典概率论中基本概念存在得矛盾与含糊之处。这些问题却强烈要求对概率论得逻辑基础做出更加严格得考察。 2(概率论得公理化 俄国数学家伯恩斯坦与奥地利数学家冯?米西斯(R、von Mises,1883—1953)对概率论得严格化做了最早得尝试。但它们提出得公理理论并不完善。事实上,真正严格得公理化概率论只有在测度论与实变函数理论得基础才可能建立。测度论得奠基人,法国数学家博雷尔(E、Borel,1781-1956)首先将测度论方法引入概率论重要问题得研究,并且她得工作激起了数学家们沿这一崭新方向得一系列搜索。特别就是原苏联数学家科尔莫戈罗夫得工作最为卓著.她在1926年推倒了弱大数定律成立得充分必要条件。后又对博雷尔提出得强大数定律问题给出了最一般得结果,从而解决了概率论得中心课题之一——大数定律,成为以测度论为基础得概率论公理化得前奏。 1933年,科尔莫戈罗夫出版了她得著作《概率论基础》,这就是概率论得一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论得一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公

有量子力学发展史谈一谈物理学研究方法汇总

量子力学理论体系的发展,从二十世纪初开始,经历了半个多世纪,积累了十二项诺贝尔物理学奖的成果才形成的。 德国物理学家普朗克因发现能量子而对物理学的发展做出杰出贡献,荣获1918 年度诺贝尔物理学奖。他 1895 年开始研究热辐射问题,1900 年普朗克在德国物理学会年会上宣读了《关于正常光谱的能量分布定律》的论文。他指出能量在辐射过程中不是连续的,而是如一股股的涓流似的被释放。这股涓流就是量子,而量子的能量只决定于频率 v,即 E=hv,h = 6.63×10 ?34 J ? S,h 为作用量子,后人称之为普朗克常数,作用量子在物理学中是一种崭新的、前所未闻的事物,它要求从根本上修改我们自从牛顿和莱布尼兹在一切因果关系的连续性基础上创立了微积分以来的全部物理概念。真正认识量子论的价值并大大开拓其应用疆界的是爱因斯坦,1905 年提出光量子的概念,成功地解释了光电效应,1913 年玻尔在此基础上又提出了原子结构的量子理论,揭示了原子光谱之谜。于是普朗克的量子理论,标志着一个新的、广阔的物理学科——量子力学的诞生。 德国物理学家爱因斯坦,因发现了光电效应而获 1921 年度诺贝尔73物理学奖,1905 年爱因斯坦发表了论文《关于光的产生和转化的一个启发性观点》,他推广普朗克把能量子的不连续性局限在辐射和吸收过程中,认为光在传播过程中能量也是不连续的,每个光子都有一定的能量,对于频率为 v 的光,其光子能量为 E=hv。光电效应是由于金属中的自由电子吸收了光子能量而从金属中逸出而发生的。这样,爱因斯坦用光量子理论成功地解释了光电效应,并确定了其规律。爱因斯坦光量子理论的重要意义,是使对光的本性认识推进了一大步,历时三个多世纪的波动说和微粒说的争论,被爱因斯坦的光的波粒二象性论点所代替,并为以后其他的微观粒子的波粒二象性的观点打下了坚实的基础。必须指出爱因斯坦对物理学的贡献不仅仅只是正确解释光电效应一方面,他所创立的狭义相对论、广义相对论等是他对人类科学最大的划时代贡献。只是当时决定授予爱因斯坦诺贝尔物理学奖的时候,他的相对论还未被所有科学家承认,物理学界还存在着激烈的争论和巨大的分歧,因此评委会有意回避了相对论的贡献,只是他对理论物理方面的贡献,特别是阐明光电效应的规律而授予他这项荣誉奖励。 丹麦物理学家玻尔因研究原子结构及原子辐射获 1922 年度诺贝尔物理学奖。

概率论发展史

概率论的大厦是建筑在微积分的地基之上的,例如在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间被简化为数集, 概率相 应地由集函数约化为实函数.以函数的观点衡量分布函数)(x f,)(x f的性质是十分良好的: 单调有界、可积、几乎处处连续、几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、概率密度与分布函数的关系、连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础----极限论的地方也非常多, 诸如分布函数的性质、大数定律、中心极限定理等.总之,微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用 0 引言 概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研究的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研究概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。 1 数学分析对概率论的渗透与推动 1933 年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。 1.1 集合论与概率论的公理化体系 由于数学的研究对象一般都是具有某种性质或结构的集合,所以集合论是整个数学体系的基础。集合论是在19 世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系; 又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系; 因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的推动 数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933 年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系[2],统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备

概率论发展简史 (2)

一、概率论发展简史 1(20世纪以前的概率论 概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利 (L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹 (G.cardano,1501-1576)的着作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论着作。这些数学家的着述中所出现的第一批概 率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。他在遗着《猜度术》中首次提出了后来以“伯努利定理”着称的极限定理,在概率论发展史 上占有重要地位。 伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作 了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给 出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788) 提出了着名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松 等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统 的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧 向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了着名的泊松分布。 19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,

量子力学发展史

鬼话连篇:荒诞量子力学 原创2017-01-15小学僧老和山下的小学僧 先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:如果你第 一次学量子力学认为自己懂了,那说明你还没懂。” 为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从认识论'说起吧!中学僧请跳过,直接看后半篇。 人类为了生存,一直试图认识和解释这个世界。最早的认识论”充满了想象,后来逐渐演化成了宗教”,比如上帝创造了万物。过了一阵子,有些人发现这种认识论"不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考世界的本源是什么”、东西为什么往下掉”,如此云云。早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了哲学” 大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。 很长一段时间,大家就是这么靠拍脑袋研究世界。拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是伽利略”。伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是科学”的雏形,所以伽利略很伟大,属于一流伟大”这个范畴。 是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的无知”不是无知。 打个补丁,本文说的科学”是单纯的一门学科,而不是形容词。啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在科学' 就是真理”的代名词,很多地方可以把科学”和合理”两个词互换。你的做法很科学”,你的做法很合理”,这两句话有区别吗?再看英文版:你的做法很Scienee :这可就是语病了。本文说的科学”就是“Scienee, 是—门学科,而不是理:。

概率论的发展史

概率论的发展史 摘要:概率论是一门研究随机现象的数学规律的学科。它起源于十七世纪中叶,当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。费马、帕斯卡、惠更斯对这个问题进行了首先的研究与讨论,科尔莫戈罗夫等数学家对它进行了公理化。后来,由于社会和工程技术问题的需要,促使概率论不断发展,隶莫弗、拉普拉斯、高斯等著名数学家对这方面内容进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论公理化随机现象赌博问题 17世纪资本主义经济的发展和文艺复兴运动的兴起,给欧洲数学注入了新的活力,欧洲数学家们开始以前所未有的热情投入到数学科学的研究中去。在这一个世纪里,他们不仅建立起了以解析几何和微积分为代表的变量数学,进一步研究现实世界中的必然现象及其规律,而且还开始了对偶然现象的研究,这就是所谓的概率论。记得大数学家庞加莱说过:“若想预见数学的将来,正确的方法是研究它的历史和现状。” 一、概率论的起源 概率论是一门研究随机现象的数学规律的学科。十分有趣的是,这样一门重要的数学分支,竟然起源于对赌博问题的研究。 1653年的夏天,法国著名的数学家、物理学家帕斯卡(Blaise Pascal,1623——1662)前往浦埃托镇度假,旅途中,他遇到了“赌坛老手”梅累。为了消除旅途的寂寞,梅累向帕斯卡提出了一个十分有趣的“分赌注”的问题。问题是这样的——一次,梅累与其赌友赌掷骰子,每人押了32个金币,并事先约定:如果梅累先掷出三个6点,或其赌友先掷出三个4点,便算赢家。遗憾的是,这场赌注不算小的赌博并未能顺利结束。当梅累掷出两次6点,其赌友掷出一次4点时,梅累接到通知,要他马上陪同国王接见外宾。君命难违,但就此收回各自的赌注又不甘心,他们只好按照已有的成绩分取这64个金币。这下可把他难住了。所以,当他碰到大名鼎鼎的帕斯卡,就迫不及待地向他请教了。然而,梅累的貌似简单的问题,却真正难住他了。虽然经过了长时间的探索,但他还是无法解决这个问题。 1654年左右,帕斯卡与费马在一系列通信中讨论了类似的“合理分配赌金”的问题。该问题可以简化为: 甲、乙两人同掷一枚硬币,规定:正面朝上,甲得一点;若反面朝上,乙得一点,先积满3点者赢取全部赌注。假定在甲得2点、乙得1点时,赌局由于某种原因中止了,问应该怎样分配赌注才算公平合理。 帕斯卡:若在掷一次,甲胜,甲获全部赌注,两种情况可能性相同,所以这两种情况平均一下,乙胜,甲、乙平分赌注。甲应得赌金的3/4,乙得赌金的1/4。 费马:结束赌局至多还要2局,结果为四种等可能情况: 情1234

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

从身边实例探究概率的起源与发展

从身边实例探究概率的起源与发展 ——感悟数学之美,体验智慧飞扬 摘要:从生活中常见的“有奖抽签”入手,引出对概率问题的探索。将概率的发展历程分为四个阶段,分别介绍各个阶段的主要成就及代表人物。最后结合探究概率起源与发展的经历,简要概括个人对数学之美的感悟。 关键词:抽签;概率;起源;发展 生活中我们经常看到这样的情景:街头有人席地设摊,招牌上醒目地写着:“有奖抽签销售”,任何人都可以免费从摊主小布口袋中的20个小球(其中有10个红球,10个蓝球)中摸出10个,除摸得5红5蓝这种情况外,其他各种情况均可马上获得奖金(或实物)。奖金设置如下:摸得10红或10蓝者奖50元;摸得9红1蓝或9蓝1红者奖25元;摸得8红2蓝或8蓝2红者奖5元;摸得7红3蓝或7蓝3红者奖1.5元;摸得6红4蓝或6蓝4红奖0.5元。但摸得5红5蓝者必须用6元钱向摊主购买两双袜子。① 很多路人都会被这“优厚的待遇”所冲昏头脑,心想这种抽签不是明摆着给顾客送钱吗?于是一时窃喜,连忙参加这一看上去稳赚不赔的抽签活动。可是冷静下来想一想,这种免费抽签究竟谁获利呢?摊主究竟是真傻呢还是大智若愚呢?要研究这个问题,就会利用到概率知识。那么什么是概率呢?概率是怎样发展起来的呢?根据笔者所搜集的资料,本文主要从这两方面来探究概率的起源与发展。 概率论是一门从数量侧面研究随机现象规律的数学分支。其理论严谨,应用广泛,发展迅速。从历史发展的角度,概率的发展史大致可分为四个阶段,即方法积累阶段、理论概括阶段、系统整理阶段和公理体系阶段。以下我将分别介绍这四个阶段概率论的发展概况,代表人物,主要成就以及四个阶段之间的理论继承与创新关系。 第一阶段:概率论的萌芽——方法积累阶段 说到概率论的起源,就不得不提到历史上著名的“赌徒的难题”。公元1651年,赌徒德·梅尔向数学家帕斯卡请教一个亲身所遇的“分赌金”问题。问题是这样的:一次德·梅尔和赌友掷骰子,各押赌注32个金币,德·梅尔若先掷出三次“6点”,或赌友先掷出三次“4点”,就算赢了对方。赌博进行了一段时间,德·梅尔已掷出了两次“6点”,赌友也掷出了一次“4点”。这时,德·梅尔奉命要立即去晋见国王,赌博只好中断。那么两人应该怎么分这64个金币的赌金呢? 赌友说,德·梅尔要再掷一次“6点”才算赢,而他自己若能掷出两次“4点”也就赢了。这样,自己所得应该是德·梅尔的一半,即得64个金币的三分之一,而德·梅尔得三分之二。德·梅尔争辩说,即使下一次赌友掷出了“4点”,两人也是秋色平分,各自收回32个金币,何况那一次自己还有一半的可能得16个金币呢?所以他主张自己应得全部赌金的四分之三,赌友只能得四分之一②。 德·梅尔的问题居然把帕斯卡给难住了。他为此苦苦想了三年,终于在1654年悟出了一点儿道理。于是他把自己的想法写信告诉他的好友,当时号称数坛“怪杰”的费尔马,两人对此展开热烈的讨论。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被荷兰科学家惠更斯获悉,他独立地进行了研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌金问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中 ①引自《谁获利?》,论文网,2000年 ②引自《概率发展简史》

概率论发展简史及应用

理化生教学与研究386 2013赵?璇?钟?莹 概率论发展简史及应用 概率论发展简史及应用 赵 璇 钟 莹 (沈阳师范大学) 一、概率论的起源 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷色子(又名骰子)是他们常用的一种赌博方式。利用色子赌博的方式可谓五花八门。很自然,赌徒们最关心的就是:如何在赌博中不输! 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族公子哥儿——德·梅尔,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅尔问题。随后法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决一些如“分赌注问题”、“赌徒输光问题”等。 到了18、19世纪,随着科学文明的发展,人类面临和要解决的问题也越来越多。后来,人们注意到之前为解决赌博问题而提出的那些方法不仅仅可以用在解决赌博问题上,还可以应用于人口统计、误差理论、产品检验和质量控制等。到后来原先的古典概型已不足以解决这诸多领域中了,人们迫切需要新的理论去解决更多的问题。也就在这时期,作为使概率论成为数学的一分支的的奠基人,瑞士数学家伯努利,建立了概率论中第一个极限定理(即伯努利大数定律),阐明了事件发生的频率稳定于它的概率。 概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫(Markov)提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦(Khinchine)又提出一种在时间中均匀进行着的平稳过程理论。 20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫(Kolmogorov)1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。 二、概率论的发展 现在,概率论与以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及工农业生产等诸多领域中都起着不可或缺的作用。 数学家们通过大量的同类型随机现象的研究,从中揭示出概率论某种确定的规律,而这种规律性又是许多客观事物所具有的,所以概率论应用也随之扩宽了。众所周知,接种牛痘是增强机体抵抗力、预防天花等疾病的有效方法,然而,当牛痘开始在欧洲大规模接种之际,它的副作用引起了人们的争议。为了探求事情的真相,伯努利家族的另一位数学家丹尼尔·伯努利根据大量的统计数据,应用概率论的方法,得出了接种牛痘能延长人的平均寿命三年的结论,从而消除了人们的恐惧与怀疑。直观地说,卫星上天、宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报、考古研究等更离不开概率论与数量统计;电子技术的发展、人口普查及教育等同概率论与数理统计也是密不可分的。 根据概率论中用投针试验估计π值思想产生的蒙特卡罗方法,借助电子计算机这一工具,使这种方法在核物理、表明物理等学科的研究中起着重要的作用。概率论理论严谨,应用广泛,这一数学分支正日益受到人们的重视,以后将会随着科学技术的发展而得到发展。 三、概率论在现代社会发展中的应用 概率论进入其他科学领域的趋势在不断发展。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中都起着不可替代的作用。下面简略介绍一下概率论本身在现代的应用情况。 物理方面,放射性衰变、粒子计数器等问题的研究,都要用到泊松过程和更新理论。化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题、自动催化反应等一些连锁反应的动力学模型,都要以生灭过程(马尔柯夫)来描述。许多服务系统,如电话通信、购货排队等等,都可用一类概率模型来描述。在社会科学领域,特别是经济学中研究最优决策和经济的稳定增长等问题,也大量采用概率论方法。同时它对各种应用数学如统计学、运筹学、生物学、经济学和心理学的数学化起着中心作用。 概率论已获得当今社会的广泛应用,正如拉普拉斯所说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”概率已成为日常生活的普通常识的今天,对现实生活中的概率问题进行研究就更显得十分重要。“在过去半个世纪中, 概率论从一个较小的、孤立的课程发展成为一个与数学许多其它分支相互影响, 内容宽广而深入的学科。” 因此,我们必须把概率论作为必备工具, 是科学研究与应用的需求。 现在,概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。 四、结论 本文就概率论的发展简介,具体从他的起源、发展、理论基础及其进一步发展作出了详细的论述。从而得知;概率论是一门研究随机现象中的数量规律的科学。随机现象在自然界和人类生活中无处不在,随着人类社会的进步,科学技术的发展,经济全球华的日益快速进程,概率论在众多领域内扮演着重要的角色。在实际生活中尤为广泛的应用。 摘?要:概率论是一门研究随机现象的数学规律的学科,已有300余年的历史。它起源于十七世纪中叶,当时数学家们首先思考概率论的问题,却是来自赌博的问题。德梅雷、帕斯卡、费尔马等人首先对这个问题进行了研究与讨论,后来伯努利提出了大数定律,高斯和泊松进一步的推理论证。由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论;发展;应用 参考文献: [1] 刘秀芳.概率论基础[M].北京.科学出版社. 1982 [2] 杨振明.概率论[M].北京.科学出版社. 1999 [3] 张景中.趣味随机问题[M].北京.科学出版社 [4] 孙荣恒.应用概率论[M].北京.科学出版社 [5] 茆诗松 程依明 濮晓弄.北京.概率论与数理统计[M].高等教育出版社.2004