储量计算方法

储量计算方法
储量计算方法

金属、非金属矿产储量计算方法

邓善德

(国土资源部储量司)

一、储量计算方法的选择

矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似的用规则的几何体来描述或代替真实的矿体,求出矿体的体积。由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法在。比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法),断面法(包括垂直剖面法和水平断面法)及等值线法等,其中以算术平均法、地质块段法、开采块段法和断面法最为常见。现将几种常用的方法简要说明如下。

1.算术平均法

是一种最简单的储量计算方法,其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。

算术平均法应用简便,适用于矿体厚度变化小,工程分布比较均匀,矿产质量及开采条件比较简单的矿床。

2.地质块段法

它是在算术平均法的基础上加以改进的储量计算方法,此方法原理是将一个矿休投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板状体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。各部分储量的总和,即为整个矿体的储量。地质块段法应用简便,可按实际需要计算矿体的不同部分的储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。

地质块段法按其投影方向的不同垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁琐,所以一般不常应用。

3.开采块段法

是以坑道为主要勘探手段的矿床中常用的储量计算方法,由于矿体被坑道切割成大小不同的块段,即将矿体化作一组密集的、厚度和品位一致的平行六面体(即长方形的板状体)。因此实质上开采块段法仍是算术平均法在特定情况下的具体运用。

计算储量时,是根据块段周边的坑道资料,(有时还包括部分钻孔资料)分别计算各块段的矿体面积,平均厚度,平均品位和矿石体重等,然后求得每个块段的体积和矿产储量,各块段储量的总和,即为整个矿体的储量。

开采块段法能比较如实地反映不同质量和研究程度的储量及其

空间的分布情况,块段的划分与开采系统相一致,所以在开发勘探时期广泛被应用。

4.断面法

又称剖面法,是矿床勘探中应用最广的一种储量计算方法。它利用勘探剖面把矿体分为不同块段,除矿体两端的边缘部分外,每一块段两侧各有一个勘探剖面。按矿产质量、开采条件、研究程度等,还可将其划分为若干个小块段,根据块段两侧勘探剖面内的工程资料,块段截面积及剖面间的垂直距离即可分别计算块段的体积和矿产储量,各块段储量的总和,即为矿体或矿床的全部储量。

断面法的特点是借助勘探剖面表现矿体不同部分的产状、形态、构造以及不同质量,不同研究程度和矿产储量的分布情况。按勘探剖面的空间方位和相互关系,断面法又分为水平断面法、垂直平行断面法和不平行断面法。而在垂直断面法中又分为两种:一种是按勘探线为划分块段边界的,这是最常用的一种;而另一种则是以勘探线间平分线为划分块段边界的,又称之为“线储量法“。即每一勘探剖面至相邻两剖面之间二分之一距离的地段,即为该剖面控制的地段,分别计算各块段的储量,然后累加即为矿体或矿床的储量。线储量法主要用于砂矿床的储量计算。

此法之优点是计算简单,适用于任何产状和形状的矿体,但要求所有勘探工程(坑探、钻探)均分布于同一勘探剖面上,其储量计算工作是建立在地质勘探剖面图的基础之上,是应用较广的计算方法。水平断面法是利用水平中段进行储量计算,其计算原理与剖面法相同。

常用于坑道控制的矿体或露天开采的矿床储量计算中。

此外还有几种不常用或应用条件较为狭窄的储量计算方法,它们可以用于资源量的概略计算。适用于地质勘探程度不高,工程分布有限,研究程度不足,只能用于供远景规划的资源计算等。

(1)最近地区法(又称多角形法):其实质是将形状不同的矿体,人为地简化为便于计算体积的多角形柱体。即在储量计算平面图所圈定的矿体范围内以每个勘探工程为中心,按其与各相邻工程的二分之一距离为顶点,将矿体划分为一系列紧密连接的多边形地区。再依据每个多边形地区中心的工程资料分别计算其矿产储量。这种储量计算法不仅不能反映矿体的真实特点,而且计算过程繁琐,在实际工作中很少应用。只有在工程分布不均匀、工程揭露的矿体其厚度、品位相差悬殊、矿体形状极不规则的情况下,为了考虑各工程所影响的权数才采用此方法。多角形顶点的选择,有时也采用内插法以便使计算结果更准确一些。但总的来说,这种方法应用并不广泛。

(2)三角形法:其实质是将形状不规则的矿体,人为地简化为便于计算体积的三棱柱状体。即在储量计算平面图所圈定的矿体范围内,以直接连接各相邻勘探工程,把矿体分为一系列紧密连接的三角形块段,再依据三角形块段顶点的勘探工程资料,分别计算各块段的矿产储量。这种计算方法不仅不能反映矿体的真实特点,而且计算过程繁琐,实际的勘探报告中很少应用。

(3)等高线法:这是层状沉积矿床或岩体中常用的一种储量计算方法。它以矿层顶板等高线图为基础,把矿层分为若干倾角相似的部

分,然后用一定的公式分别计算其体积和储量。等高线法的特点是可以直接反映矿层的产状和埋藏特点,适用于产状和厚度都比较稳定,倾角中等,并有足够勘探工程控制的矿床。

(4) 等值线法:其实质是利用矿体等厚线图或厚度-品位等值线图,把形状复杂的矿体变为一个形状相似,底平面平坦面顶面高低起伏的几何体,然后用一定的公式分别计算各等值线内块段的体积和储量。其优点是可以借助上述图件,形象的表现出矿体形态,有用组分的分布及变化特点,但缺点是制图复杂,特别是含有多种有用组分的矿床,必须按每种组分分别制图,所以实际工作中亦应用不广泛。

(5)类比法:其实质是应用类比的原理,概略地计算矿产储量的方法。它根据已经勘探或开采的矿床的资源,来求出矿区单位面积内所有的矿产储量,然后将其推及到地质条件相类似的新发现地区,估算出全部矿化面积内可能有的矿产储量(严格说应当是资源量)。

这种方法,只用在区域矿产远景评价或矿床远景评价时,用来估算区域的地质储量(资源量)或矿床远景储量(资源量)。对某些地质构造极为复杂,矿化极不均匀的矿床,如水晶矿床和某些稀有金属矿床等,用一定的公式计算矿体单位面积(1m2或100m2)的矿产产出率(吨或千克),也属于一种简单统计法。

二、工业指标

工业指标,是在当前的技术经济条件下,工业部门对矿产质量和开采条件所提出的要求,也是评价工业矿床价值,圈定矿体和计算储量所依据的基本参数。在市场经济条件下,工业部门所使用的矿产储

量工业指标是依据市场规律变化而相应变化的。而国家为了统计全国矿产资源总量,以分析资源供需形势而使用的工业指标则需求相对稳定的,这是一个矛盾。这个矛盾在未来的储量管理改革中就有可能形成两套不同用途的工业指标。一种是国家用于宏观决策的指导性(参考)工业指标,另一种则是企业行为的微观条件下的工业指标。

提供矿山建设设计用的地质报告采用的工业指标(包括多种矿种共生或伴生的综合工业指标),是根据国家的各项技术经济政策、资源情况、开采和加工的技术水平,结合国家当前和长远的需要,由地质勘探单位提出有关地质资料和对工业指标的初步意见,经设计部门进行技术经济论证的基础上,由矿山企业确定。

一般固体矿产的工业指标主要包括边界品位,工业品位,有害组分最大允许含量,最低可采厚度,最低工业米百分值,夹石剔除厚度,以及剥离系数等。此外还可针对某些矿产的特殊情况和要求,提出其他项目的工业指标。矿产的参考工业指标只用在普查找矿、详细普查、或初步勘探阶段,作为矿床评价和储量估算时参考。

(一)矿石质量方面的要求

1.边界品位,又称边际品位,是工业部门对固体矿产提出的一项质量指标。它是指在储量计算圈定矿体时,对每个样品有用组分提出的最低质量要求,它是区分岩石和矿石的一个最低品位界限。

就单工程而言,位于矿体厚度边界线以内的第一个样品,其有用组分的含量一般应大于或等于边界品位。

边界品位一般是按当前经济技术水平、国民经济对该矿种的需求

以及矿石质量的特点等综合因素来确定的。对于需要选矿的有色金属矿产来说边界品位一般是尾矿品位的1.5至2倍以上。在市场经济条件下,边界品位的确定,往往取决于矿产品(精矿)价格与采选(冶)总成本之间的平衡点,即不盈利,又不亏本的品位值。

边界品位的第二个用途是划分平衡表内与平衡表外矿石的界线,如果按边界品位圈定的矿休,经处理后,其平均品位仍达不到最低工业品位的要求,则对高于边界品位而又低于最低工业品位的矿石,划为平衡表外矿石;反之,若平均品位高于最低工业品位,则称之平衡表内的矿石。新的《固体矿产资源/储量分类》取消了“表内”、“表外”储量代之为“经济的”、“次经济的”储量,大致可与原“表内”及“表外”储量相对应,但新的储量分类,包括内容更全面、更广泛,不仅仅单指“品位”而言(请参阅《固体矿产资源/储量分类》)。

2.最低工业品位或最低可采工业品位

它是工业上可以利用的矿段或矿体的最低平均品位,是区分利用(表内)储量和暂不能利用(表外)储量的标准之一。一般是指单项工程所揭露的单个矿段中有用组分的最低平均品位而言。有些特殊矿种,也同时下达矿段最低平均品位或者矿体(床)最低平均品位,目的是确保矿山开采后能有较好的经济效益。

最低工业品位的确定,决定矿床的采选技术条件,国民经济资源的需求程度以及现有的技术水平和经济条件,在技术上可行和经济上合理的前提下,最大限度、充分合理地利用矿产资源。工业指标最低的计算取决于矿产品(精矿)价格与采选(冶)总成本和略有盈余的平

衡点。其略有盈余一般是指同类产品的最低社会平均利润值。因此,矿山企业的工业指标在市场经济条件下是一个随社会经济因素制约而引起的变量,不应当也不可能一成不变,企事业应当推广先进的储量计算技术,实行微机化动态管理,才能适应社会的需求。

3.矿石品级的划分

主要是根据有益、有害组分的含量或某些矿石的物理性能,以及不同用途的要求,把矿石划分为不同品级,如贫矿、富矿、一级品、二级品等。因此,在地质勘查工作中查清不同矿石品级的分布,对于保证矿产资源的合理开采和利用是十分重要的。

4.有害杂质平均允许含量

矿段或矿体内矿产品质量和加工生产过程中有所影响的有害成分的最大允许含量,是衡量矿石质量和利用性能的重要标志。对于一些直接用来冶炼或加工利用的富矿和一些非金属矿,如耐火材料、熔剂原料等更是一项重要的要求。

5.伴生有益成分

与主要有益组分相伴生的,在加工利用或开采生产过程中可以回收的或对产品质量有益的成分。综合评价伴生有益组分,可以提高矿床的价值,有时还可适当降低对重要有益组分的要求。因此,在地质勘探中查清伴生有益组分的含量及赋存状态,具有相当重要的意义。

原全国储委储发[1995]38号文关于“调整规范要求,改革储量审批的意见”中指出:“勘查矿产时,对可以利用且对社会、经济效益的共生、伴生矿产,必须进行综合评价。”指的是当前技术上可

行,经济上合理的共生、伴生矿产必须进行综合评价。

(二)开采技术条件方面的要求

1.最低可采厚度

它是薄矿层的一个重要的工业指标,指在一定的技术经济条件下,对有开采价值的单矿体、单矿段的最小可采厚度要求。它是根据开采时最大允许贫化率和矿体内有用组分的含量,并用最低工业品位衡量来确定的。最低可采厚度与矿体的产状及变化有关,在无特殊说明的情况下应以矿体的真厚度衡量。

同一采高内的互矿层,若主要矿层接近于可采厚度,累积厚度超过可采厚度,经开采部门同意,也可计算工业储量。

2.最低工业米百分值

简称米百分率或米克/吨值,它是工业部门对某些矿产,特别是工业利用价值较高的矿产所提出的一项综合指标。它等于最低工业品位与最低可采厚度的乘积,只用于圈定厚度小于可采厚度而高于最低工业品位的富而薄的矿层或薄脉状矿床。只有当厚度与品位的乘积大于或等于此项指标时,方可加入能利用(表内)储量范围。

3.夹石剔除厚度

又称“最大允许夹石厚度”。它是工业部门根据采矿技术和矿床地质条件对固体矿产提出的一项工业指标。在工业矿体或块段中低于边界品位的夹层叫“夹石”。夹石剔除厚度,是指开采工业矿石时能分别处理的最小夹石厚度。大于这一厚度规定的夹石,应从矿石中剔除,小于这一指标规定的夹石则应参加计算不能剔除。但混入后其平

均品位不能低于最低工业品位,否则一起剔除或将夹石附近的样品一并剔除,直到满足各项指标要求为止。夹石剔除以后,夹石两侧的矿层应按最低工业品位,最低可采厚度或最低工业米百分值分别衡量。

4.剥离比(剥采比、剥离率、剥离系数)

露天开采的矿体或矿床,开采时需剥离的覆盖物量(包括开拓安全角的剥离量)与埋藏的矿石量之比。

(三)提交工业指标论证资料

地质部门应当根据有关文件精神,积极与矿山生产建设,设计部门共同协商,根据需要提供有关资料和图件,并提出用不同的工业指标试算方案所得的储量、图件、说明书等有关资料。一般包括:

(1)矿区地形地质图;

(2)有关剖面图、平面图;

(3)地质构造及矿体产状等有关说明;

(4)样品的化验分析资料(包括内外检验资料,如系砂矿应包括淘洗品位与化验品位,实方重量与松方重量等);

(5)矿石的加工试验资料(包括原矿品位、精矿品位、回收率、尾矿品位、流程等);

(6)不同工业指标方案的储量、品位等对比资料(包括不同方案的矿体形态变化有关图纸资料等);

(7)矿床开采技术条件有关资料;

(8)对工业指标的建议意见;

(9)其他资料。

三、矿体的圈定

矿体的圈定是储量计算的关键环节,矿体圈定的原则必须遵循地质规律。必须建立在对地质规律研究的基础上,根据矿体的自然形态、产状及其变化特点,有益有害组分的空间分布规律,蚀变矿物的分布和组合,以及后期构造的影响等因素综合确定,不能“见矿连矿”。储量计算应严格按工业指标圈定矿体,所圈定的矿体形态应与矿体的自然形态基本一致。

(一)单工程矿体厚度的圈定

单工程矿体厚度的圈定主要是依据工业指标,以充分体现连续性。圈定单工程矿体厚度一般按下列步骤进行:

1.按边界品位的指标初步确定矿体的边界(表1中的1-8号样品之间)及矿体中的无矿夹石地段;

2.按夹石剔除厚度的指标剔除夹石,或并入矿体中;

3.按工业品位圈定“表内”矿与“表外”矿界线,并按照“穿鞋載帽”的有关规定(见国储[1991]164号文)最后确定表内矿矿体界线。

矿例:设某金矿工业指标为:边界品位 1.00g/t,工业品位3.00g/t,块段平均品位5g/t(每个块段只允许带进一个含表外矿的工程),最低可采厚度1.00m,夹石剔除真厚度2.00m。下面是几个典型分析成果,表中(表2-表6)厚度均为换算后的真厚度。

(1)单工程表内与表外矿的圈定(单品位指标则相对简单一些)

表1 表内矿包表外矿及上下带表外矿

样品 1 2 3 4 5 6 7 8 9 10 11 12

厚度/m 1.50 1.90 1.10 1.200.900.980.80 2.00 1.00 1.20 1.10 1.50

Au/(g.t-1) 1.05 2.88 3.21 5.62 2.56 2.80 6.50 1.500.500.50 0.30 0.10

平均 Au 3.27g/t,厚度 8.88m

说明:①3、4、7号样品为表内矿,中间夹5、6号样品为表外矿,因两侧工程无对应表外

矿,因此一起并入计算表内矿;②根据“穿鞋載帽”原则,在不影响表内矿圈定的前提下,

上、下可以带进一个夹石剔除厚度的表外矿,因此,2、8号也参加一起计算表外矿。1号样

品已经超出2.00m夹石剔除厚度范围,故不能加入;③经试算结果,2-8号之间符合表内矿

要求,金品位3.27g/t,单工程矿体厚度8.88m。

表2 表内只包表外矿

样品 1 2 3 4 5 6 7 8 9 10 11 12 厚度/m 1.50 1.90 1.10 1.20 0.90 0.98 0.90 2.20 1.10 1.20 1.10 1.50 Au/(g.t-1) 1.05 2.55 3.21 3.02 2.56 2.80 3.50 1.50 2.50 0.50 0.30 0.10 平均 Au 3.02g/t,厚度 5.08m

说明:①先计算表内矿,经加权初算结果,只有3-7号5个样品加权平均,符合表内矿要求;

②因该矿金品位低,无法带进1-2个表外矿;1-2、8-9号分别为两段表外矿;

③本工程试算结果,3-7号之间符合表内矿要求,金品位 3.02 g/t,单工程矿体厚度

5.08m。

表3 表内矿单独分支或合并到表外矿

说明:①本矿段金品位过低,只有3号、4号样品为表内矿;

②7号样品厚度只有0.90m,其m.g/t值为3.15m.g/t,也可列为表内矿;

③只要两侧工程相应部位有表内矿,这两段表内矿可以单独划分出来(3-4号表内矿

3.02g/t,厚度2.30m,7号表内矿3.50g/t,厚度0.90m);

④若两侧相邻,工程的相应单位不存在表内矿则划分出这两小段表内矿无实用意义。

可以将1-9号9个样品一起划分为表外矿。经计算得知,该工程本矿段表外矿品位2.40g/t,

单工程表外矿体厚度11.78m。

(2)单工程夹石剔除厚度的圈定

表4 夹石正常剔除

样品 1 2 3 4 5 6 7 8 9 10 厚度/m 1.50 1.90 1.50 1.40 1.10 1.20 1.30 2.00 1.00 1.00 Au/(g.t-1) 1.05 2.88 3.21 5.62 0.90 0.80 6.50 1.50 0.50 0.20

平均 Au 3.27g/t,

厚度 8.88m

剔除

金3.47

厚3.30m

说明:①5、6号样品为夹石,厚度已超过2.00m;

②属于夹石正常剔除范围;

③1号样为表外矿。

表5 夹石剔除后带走一个上部样品

全部加权平均,则全部变为表外矿,金2.85g/t,厚度7.60m;

②按夹石剔除原则,应把上部或下部品位较低样品一并剔除,以保存上下两段表内矿;

③比较结果,应把上部低品位的4号样品一起作为夹石剔除,4、5、6号样品加权平均结果是,金0.94g/t,不是表外矿;

④夹石剔除结果,带走了一个表内矿样品,但仍然保留下来两段表内矿,较为合理。

说明:①5、6号样品为夹石,但厚度尚不足2.00m;

②若不剔除,将2-7号样品加权结果,则全部变成了表外矿,金品位2.91g/t,厚度

6.90m,显然不合理;

③将4号样与7号样比较,4号样品高于7号样品;

④对比结果,应把下部低品位的7号样品与5、6号样品一起作为夹石剔除;

⑤计算结果,5-8号样品为表外矿,金品位1.56g/t,厚度3.60m,假如不是连成一片,或相邻工程对应部位不存在表外矿体,则该表外矿无实用价值,可以不单独圈出;

⑥结论:本工程夹石剔除结果,带走了下部的分枝矿体,只留下上部一段表内矿,单工程要厚度圈定和夹石剔除的类似情况,可能还有很多,但最典型的列举了这6种,供读者参考。

二、矿体截面积的圈定

矿体截面形态的圈定是在单工程矿体厚度圈定的基础上,分别在储量计算剖面图或平面图上进行的。

1.矿体连续性的圈定

两个相邻见矿工程其矿体经厚度圈定后均合乎工业要求,赋存部位互相对应,符合地质规律,则应在截面上将这两个工程所见的矿体连接成同一矿体。在圈定时应注意以下几点:

(1)在储量计算剖面图或平面图上的矿体连接,除极个别情况外,一般应以直线相连;

(2)若用曲线圈定矿体时,工程之间的矿体推绘厚度,不应大于相邻被工程控制的实际厚度(图1);

(3)两工程所见为同一矿体,若矿石类型或品级不同或量类别不一致,则应互为对角线尖灭连接(图2);

(4)如两见矿工程之间矿体被新断层或岩脉所切割,则矿体只能根据已掌握的地质规律分别推绘断层或岩脉的边界上(图3);

(5)对于形态复杂、具有不同产状的分枝矿体或交叉矿体,应划

分出分枝,而且在截面形态圈定时,也应在图上注明分枝产状的储量计算分界线(图4);

(6)两相邻工程所圈矿体中无矿夹石的层位相同,部位对应,地质特征一致,则应相连成同一夹层(图5)。

2.矿体边界点(线)圈定

(1)两相邻工程一个见矿,另一个不见矿时,用有限外推法确定边界;

①两相邻工程一个见矿,另一个不见矿时,按工程间距的二分之一作尖灭(图6);

②两相邻工程,一个见矿,若另一个只见矿化(即品位大于边界品位二分之一以上)则可推工程间距的三分之二尖灭(图7);

③两相邻工程,一个工程见矿,另一个工程只达到米百分值或米克吨值,则该工程可以作为矿体尖灭点处理(图8);

④经工程证实,矿体为断层切割错开,在允许的间距范围内,矿体边界可平行推绘至断层线上(见图3);

⑤当只有单工程见矿,且矿体厚度小于夹石厚度时,不能列为“分枝”矿体(图

9)。

作无限推断时的边界点确定

工程之间距离远

大于计算的基本单元,块段的划分尽可能考虑地质因

素,勘一块段内产状基本稳定,矿体基本连续,(2)见矿工程向外见矿工程以外无工程控制,或未见矿工程到见矿勘探时所要求的相应控制间距时,

由见矿工程向外推断矿体之边界,称作无限推断,除特殊情况外,一般都作相应网度的二分之一尖灭。对于只达到米百分值或米克吨值的见矿工程,除绝大部分工程都按最低工业米百分值圈定的薄脉状富矿体外或在矿体内部包含的一个工程外,均不外推。

(三)块段划分

块段是矿体储量探手段和储量级别等因素,

既不能划分过大,也不应划分过小。 1.块段划分的原则

(1)考虑地质因素:同

不受本相同,如槽探、钻探、坑探或两种10所示。

(4)下,从左到右,或从北到南、从西到则由各工程品位和厚度加权平均求得,则应分别加权,然后再平均计算,如图断层错动,形态较为规则,矿石类型、工业品级相同,品位比较稳定。

(2)考虑相邻块段勘探手段应基、三种手段的组合。块段划分不宜过大,也不应过小。块段分界线应尽可能以勘探工程间的连线为分界线(剖面法则以剖面为分界线)。如图10所示矿体垂直纵投影图。

(3)同一块段储量级别应当相同,如图块段编号顺序一般应从上到东,按不同级别,顺序编号,以便在计算机过程中便于检查。块段代号应力求简单明了,切忌繁琐和生搬硬套。

2.块段平均品位的计算原则

(1)块段内工程密度基本相同,,如图10中B 级储量。

(2)块段内各工程密度不同10中C、D 级储量,应分别求取上部三个工程的加权平均品位和

下部两个工程的加权平均品位,然后再次平均求得矿块平均品位。

(3)表内矿工程和表外矿工程的块段平均品位计算。据前述批复的工业情况下含表外矿工程的块段平均品位计算(图11) 指标中,每个块段只允许携带一个表外矿工程。但前提是矿块平均品位应达到5g/t 的要求。若矿块平均品位小于5g/t 要求,则应降为表外矿块。

例1:正常120

.180.2 ①C 1块段为4个工程的块段,其中ZK 为表外矿工程,按指标要求计算,可以划入块段内计算表外矿,经得C 1块段金平均品位

5.48g/t,平均厚度1.80m。

②ZK 2

10

.150.2为C 2、C 3、C 5、C 6四个块段的表外矿工程,经计算各块段平及厚均品位度为C 2 13.254.5、C 3 25.215.6、C 5 45.222.5、C 6 10.240.5均符合块段品位指标。故ZK 2表外矿工可以参表内矿计算。③ZK 程与块

,而且每个矿块平均品位(图12) 3 、ZK 4 、ZK 5三个表外矿工程,因为分布在边部不允许带进两个表外矿工程,因此,在每个矿块中只好再次划分出表内矿块和表外矿块(各工程影响一半)。

2:特殊情况下包含表外矿工程的矿块

①段后结果为:C C 1、C 2、C 3、C 4四个矿块包

含了一个表外矿工程ZK 1,带入矿

试算结果是,4 个矿块品位

均不符合矿块最低平均品位

5g/t的要求,表外矿工程ZK 1必须

单独圈定。不再参加四个矿块的

平均品位计算。

②扣除表外矿ZK 1工程后,矿块平均品位计算1

47

.299.5、C 230.229、C .5390.247.5、C 473.213.5,均符合块段最低平均品位要求。 3:情况知扣除表外矿块的情况(图13,改变例特殊下未ZK 2参数后引程后,矿块的平均品位及厚度是:C 起的变化)

①扣除ZK 1工1

47.299.5、C 230.229.5、C 390

.222均符合矿块平均品位大于5g/t的要求 ; 唯有C .5②473

.288.4

不符合矿块最低平均品位要求,处理意见有两种。

一是原则上,C 4矿块应当与ZK 1表外工程一同剔除,列为表外矿矿块;

二是若全区类似C 4的矿块只有少数几个,则可以考虑周边地质条件,作为特殊情况保留表内矿块。保留的前提是全矿区必须达到矿区最低响的面积;

平均品位的计算方法

计算平均品位常用的方法有算术平均法及加权平均法。对于那些品位法计算。对于品位波动幅度较大的矿体,样品品位的代数和除以样品个数;单项工程加权平均品位的计算一般是以长度加权,即用平均品位的要求,如果工业指标中没有全区最低平均品位要求,但应在储量计算应当说明的问题中单独提出,以便开采时综合考虑其经济利用价值。

例4:扣除表外矿工程后的矿块平均品位计算(图14,改变ZK 2参数后引起的变化)

①ZK 1、ZK 2均为表外矿工程,故按表内矿与表外矿各影响一半的原则,扣除表外矿影②计算结果如图14所示,C 1、C 2、C 3、C 4为表内矿块,C 5为表外矿块。

四、储量计算参数的计算方法

(一)稳定的矿体,可用算术平均则应采用样长或矿体厚度加权平均法计算。当采样数量很大时,加权平均法与算术平均法所求得的结果往往是接近的,在作了必要的对比以后,亦可用算术平均法来代替加权平均法。

1. 单项工程平均品位的计算

单项工程算术平均品位的计算,就是用该工程各各样品的长度与品位的乘积除以各样品的长度和。

中国石油SEC准则油气储量评估指南(印刷版)

油密AA级 5年 中国石油SEC准则油气储量评估指南 (试行) 中国石油天然气股份有限公司勘探与生产分公司 二○○四年十一月

前言 自2000年以来,中国石油天然气股份有限公司(中国石油)、中国石油化工股份有限公司(中国石化)和中海石油(中国)有限公司(中国海油)三大公司相继在纽约证券交易所上市,根据美国证券交易委员会(SEC)准则进行油气储量评估已成为中国三大石油公司储量管理的重要内容。SEC准则下的油气证实储量是油公司的核心资产。证实储量评估的核心内容是依据生产连续性的原则和已经见到效果的技术,确定现阶段高确信度的剩余经济可采储量和储量价值。 中国石油已成功地进行了五个年度的油气储量特定资产评估,开展了《SEC标准油气储量评估方法研究与培训》项目的研究,组织了大规模的“SEC标准油气储量评估方法”培训,引进并客户化了油气储量资产评估软件,建立了上市储量评估数据库,培养了一批能按照国际通行标准开展储量评估的技术骨干,具备了全面开展SEC准则油气储量自评估的条件。 为了指导和规范各油田公司SEC准则油气储量的自评估工作,勘探与生产分公司储量管理处组织了中国石油勘探开发研究院杭州地质研究所、油气资源规划所、廊坊分院天然气地质所以及大庆、西南、辽河等有关油田公司的专家,组成《中国石油SEC准则油气储量评估指南》编制小组。编制小组成员主要包括:王永祥、王靖云、胡允栋、谢锦龙、蒋新、郑德文、张亚庆、毕海滨、胡晓春、邓攀、张伦友、兰丽凤、李铁军等。编制小组充分地研讨了美国SEC准则中S-X部分有关证实储量定义以及美国SEC财务会计准则第69号声明等有关油气储量准则,以

固体矿产资源储量分类及编码

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

煤矿“三量”及可采期计算规定

煤矿“三量”及可采期 计算规定 编制:李治南 编制日期:2018年1月31日

煤矿“三量”及可采期计算规定 一、基本内容 煤矿三量是指:开拓煤量,准备煤量,回采煤量,就是我们常说的三量。三量平衡对于正常生产有现实的意义。 为了及时掌握和检查各矿井的采掘关系,按开采准备程度,将可采储量中已经进行开拓准备的那部分储量分为开拓煤量、准备煤量和回采煤量,即所谓三量。 开拓煤量,是井田范围内已掘进开拓巷道所圈定的尚未采出的那部分可采储量。 准备煤量,是指采区上山及车场等准备巷道所圈定的可采储量。 回采煤量,是准备煤量范围内,已有回采巷道及开切眼所圈定的可采储量。 二、三个煤量的划分及计算 为了及时掌握和检查各矿井的采掘关系,按开采准备程度,将可采储量中已经进行开拓准备的那部分储量分为开拓煤量、准备煤量和回采煤量如下: 1、开拓煤量

在矿井可采储量范围内已完成设计规定的主井、副井、风井、井底车场、主要石门、集中运输大巷、集中下山、主要溜煤眼和必要的总回风巷等开拓掘进工程所构成的煤储量,并减去开拓区内地质及水文地质损失、设计损失量和开拓煤量可采期内不能回采的临时煤柱及其它开采量,即为开拓煤量。 计算公式: 计算公式: Q开=(LhMD-Q地损-Q呆滞)K 式中:Q开——开拓煤量,t; L——煤层两翼已开拓的走向长度,m; h——采区平均倾斜长,m; M——开拓区煤层平均厚度,m; D——煤的视密度,t/m3; Q地损——地质及水文地质损失,t; Q呆滞——呆滞煤量,包括永久煤柱的可回采部分和开拓煤量可采期内不能开采的临时煤柱及其它煤量,t;

K——采区采出率。 2、准备煤量 在开拓煤量范围内已完成了设计规定所必须的采区运输巷、采区回风巷及采区上(下)山等掘进工程所构成的煤储量,并减去采区内地质及水文地质损失、开采损失及准备煤量可采期内不能开采的煤量后,即为准备煤量。 计算公式: Q准=(LhMD-Q地损-Q呆滞)K 式中Q准——准备煤量,t; L——采区走向长度,m; h——采区倾斜长度,m; M——采区煤层平均厚度,m。 在一个采区内,必须掘进的准备巷道未掘成之前,该采区的储量不应算作准备煤量。 3、回采煤量

矿山资源量与储量计算方法

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。 (一)地质块段法 计算步骤: 1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如 根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段 的体积和储量; 3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置

②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。 缺点:误差较大。当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。 (二)开采块段法 开采块段主要是按探、采坑道工程的分布来划分的。可以为坑道四面、三面或两面包围形成矩形、三角形块段;也可为坑道和钻孔联合构成规则或不甚规则块段。同时,划分开采块段时,应与采矿方法规定的矿块构成参数相一致,与储量类别相适应。 该法的储量计算过程和要求与地质块段法基本相同。 适用条件:适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但因为开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用。一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三)断面法 定义:矿体被一系列勘探断面分为若干个矿段或称块段,先计算各断面上矿体面积,再计算各个矿段的体积和储量,然后将各个块段储量相加即得矿体的总储量,这种储量计算方法称为断面法或剖面法。 根据断面间的空间位置关系分为水平断面法和垂直断面法,凡是用勘探(线)网法进行勘探的矿床,都可采用垂直断面法;对于按一定间距,以穿脉、沿脉坑道及坑内水平钻孔为主勘探的矿床,一般采用水平断面法计算矿床资源量和储量。根据断面间的关系分为平行断面法和不平行断面法。 1平行断面法 无论是垂直平行断面法还是水平平行断面法,均是把相邻两平行断面间的矿段,作为基本储量计算单元。首先在两断面图上分别测定矿体面积,然后计算块段的体积和储量。体积(V)的计算有下述几种情况:

储量计算方法的基本原理

储量计算方法的基本原理 在矿产勘查工作中,利用各种方法、各种技术手段获得大量有关矿床的数据,这些数据是计算储量的原始材料。计算储量通常的步骤如下: (1)工业指标及其确定方法: 1)工业指标:工业指标是圈定矿体时的标准。主要有下列个项: 可采厚度(最低可采厚度):可采厚度是指当矿石质量符合工业要求时,在一定的技术水平和经济条件下可以被开采利用的单层矿体的最小厚度。矿体厚度小于此项指标者,目前就不易开采,因经济上不合算。 工业品位(最低工业品位、最低平均品位):工业品位是工业上可利用的矿段或矿体的最低平均品位。只有矿段或矿体的平均品位达到工业品位时,才能计算工业储量。 最低工业品位的实质是在充分满足国家需要充分利用资源并使矿石在开采和加工方面的技术经济指标尽可能合理的前提下寻找矿石重金属含量的最低标准。所以确定工业品位应考虑的因素是:国家需要和该矿种的稀缺程度;资源利用程度;经济因素,如产品成本及其与市场价格的关系;技术条件,如矿石开采和加工得难易程度等。 工业品位和可采厚度对于不同矿种和地区各不相同,就是同一矿床,在技术发展的不同时期也有变化。 边界品位:边界品位是划分矿与非矿界限的最低品位,即圈定矿体的最低品位。矿体的单个样品的品位不能低于边界品位。 最低米百分比(米百分率、米百分值):对于品位高、厚度小的矿体,其厚度虽然小于最小可采厚度,但因其品位高,开采仍然合算,故在其厚度与品位之乘积达到最低米百分比时,仍可计算工业储量。计算公式为:K=M×C。(K-最低米百分比(m%);M-矿体可采厚度(m);C-矿石工业品位(%))。 夹石剔除厚度(最大夹石厚度):夹石剔除厚度实质矿体中必须剔除的非工业部分,即驾驶的最大允许厚度。它主要决定于矿体的产状、贫化率及开采条件等。小于此指标的夹石可混入矿体一并计算储量。夹石剔除厚度定得过小,可以提高矿石品位,但导致矿体形状复杂化,定得过大,会使矿体形状简化,但品位降低。

石油储量计算介绍

石油储量介绍 1. 概述与适用范围 1.1介绍了石油储量及远景资源量的分级和分类、储量计算和储量评价的方法。 1.2适用于天然石油及其溶解气储量的计算、评价与管理工作(海上石油储量计算另有补充规定)。 2. 术语 2.1地质储量:是指在地层原始条件下,具有产油(气)能力的储层中原油的总量。地质储量按开采价值划分为表内储量和表外储量。表内储量是指在现有技术经济条件下,有开采价值并能获得社会经济效益的地质储量。表外储量是指在现有技术经济条件下,开采不能获得社会经济效益的地质储量,但当原油价格提高或工艺技术改进后,某些表外储量可以转变为表内储量。 2.2可采储量:是指在现代工艺技术和经济条件下,能从储油层中采出的那一部分油量。 2.3剩余可采储量:是指油田投入开发后,可采储量与累积采出量之差。 2.4远景资源量:是依据一定的地质资料对尚未发现资源的估算值。 2.5总资源量:是地质储量和远景资源量之总和。 2.6评价井:对一个已证实有工业性发现的油(气)田,为查明油、气藏类型、构造形态,油、气层厚度及物性变化,评价新油(气)田的规模、生产能力(产能)及经济价值,最终以建立探明储量为目的而钻的探井。 2.7滚动勘探开发:复杂油气田,是有多层系含油、多种圈闭类型叠合连片,富集程度不均匀,油气水纵向、横向关系复杂特点。由于这种复杂的油气聚集带或油气藏不可能在短期内认识清楚,为提高经济效益,对不同类型的复式油气聚集带有整体认识后,可不失时机地先开发高产层系或高产含油气圈闭。在进入开发阶段以后,还要对整个油气聚集带不断扩边、连片、加深勘探,逐步将新的含油气层系和新的含油气圈闭分期投入开发。这种勘探与开发滚动式前进的做法,称为滚动勘探开发。 3. 储量计算工作的一般要求 3.1应采用现代先进工艺技术,认识和改造油层,取全取准基础资料,在认真研究地质规律的基础上进行储量计算。储量计算方法的选用和参数的确定,既要有理论根据,又要有本油田实际资料的验证。储量工作必须严肃认真、实事求是、科学地反映地下客观实际。 3.2在勘探开发的不同阶段,应根据对油藏的认识程度计算不同级别的储量。在油田投入开发后,应定期进行储量复核,使之逐渐接近于实际,直至油田枯竭。 3.3为确切反映我国石油储量状况及利用程度,应分别计算石油及其溶解气的地质储量、可采储量和剩余可采储量,并进行综合评价。

地热资源储量计算方法

地热资源储量计算方法 一、地热资源/储量计算的基本要求 地热资源/储量计算应建立在地热田概念模型的基础上, 根据地热地质条件和研究程度的不同, 选择相应的方法 进行。概念模型应能反映地热田的热源、储层和盖层、储层 的渗透性、内外部边界条件、地热流体的补给、运移等特征。 依据地热田的地热地质条件、勘查开发利用程度、地热 动态,确定地热储量及不同勘查程度地热流体可开采量。 表3—1地热资源/储量查明程度 类别验证的探明的控制的推断的 单泉多年动态资 料年动态资料调查实测资 料 文献资料 单井多年动态预 测值产能测试内 插值 实际产能测 试 试验资料 外推 地热田钻井控制 程度 满足开采阶 段要求 满足可行性 阶段要求 满足预可行 性阶段要求 其他目的 勘查孔开采程度全面开采多井开采个别井开采自然排泄动态监测 5年以上不少于1年短期监测或 偶测值 偶测值

计算参数依据勘查测试、多 年开采与多 年动态 多井勘查测 试及经验值 个别井勘查、 物探推测和 经验值 理论推断 和经验值 计算方法数值法、统计 分析法等解析法、比拟 法等、 热储法、比拟 法、热排量统 计法等 热储法及 理论推断 二、地热资源/储量计算方法 地热资源/储量计算重点是地热流体可开采量(包括可利用的热能量)。计算方法依据地热地质条件及地热田勘查研究程度的不同进行选择。预可行性勘查阶段可采用地表热流量法、热储法、比拟法;可行性勘查阶段除采用热储法及比拟法外, 还可依据部分地热井试验资料采用解析法;开采阶段应依据勘查、开发及监测资料, 采用统计分析法、热储法或数值法等计算。 (一)地表热流量法 地表热流量法是根据地热田地表散发的热量估算地热资源量。该方法宜在勘查程度低、无法用热储法计算地热资源的情况下,且有温热泉等散发热量时使用。通过岩石传导散发到空气中的热量可以依据大地热流值的测定来估算,温泉和热泉散发的热量可根据泉的流量和温度进行估算。

储量计算方法

金属、非金属矿产储量计算方法 邓善德 (国土资源部储量司) 一、储量计算方法的选择 矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似的用规则的几何体来描述或代替真实的矿体,求出矿体的体积。由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法在。比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法),断面法(包括垂直剖面法和水平断面法)及等值线法等,其中以算术平均法、地质块段法、开采块段法和断面法最为常见。现将几种常用的方法简要说明如下。 1.算术平均法 是一种最简单的储量计算方法,其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。 算术平均法应用简便,适用于矿体厚度变化小,工程分布比较均匀,矿产质量及开采条件比较简单的矿床。 2.地质块段法

它是在算术平均法的基础上加以改进的储量计算方法,此方法原理是将一个矿休投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板状体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。各部分储量的总和,即为整个矿体的储量。地质块段法应用简便,可按实际需要计算矿体的不同部分的储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。 地质块段法按其投影方向的不同垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁琐,所以一般不常应用。 3.开采块段法 是以坑道为主要勘探手段的矿床中常用的储量计算方法,由于矿体被坑道切割成大小不同的块段,即将矿体化作一组密集的、厚度和品位一致的平行六面体(即长方形的板状体)。因此实质上开采块段法仍是算术平均法在特定情况下的具体运用。 计算储量时,是根据块段周边的坑道资料,(有时还包括部分钻孔资料)分别计算各块段的矿体面积,平均厚度,平均品位和矿石体重等,然后求得每个块段的体积和矿产储量,各块段储量的总和,即为整个矿体的储量。 开采块段法能比较如实地反映不同质量和研究程度的储量及其

经济可采储量的计算方法

经济可采储量的计算是把储量资本化、按财务准则进行财务评估的一种方法,分为动态的现金流量法和经济极限法。 现金流量法当合同区或油气田已具有初始开发方案或重大调整方案时,评价经济可采储量采用现金流量法。该方法是以一个独立开发工程项目所属的技术可采储量来整体计算。 首先根据技术可采储量减去已采出油(气)量,测算出剩余的技术可采储量;然后,根据开发方案或调整方案的逐年工作量、投产井数,预测出各年度的平均产油量(或产气量),再根据经济评价的基准参数,如采用的油气价、基准收益率,测算出项目在评价期内逐年销售收入,建立项目现金流入剖面。根据项目逐年的勘探、开发投资和经营操作费用、应交纳的税金等全部的投入资金,建立项目现金流出剖面。 项目现金流量=项目现金流入-项目现金流出 按照上述方法将全部产出资金、投入资金逐年折成现值,分别计算评价期内项目净现金流,并计算各方案的净现值及内部收益率,在评价期内历年的净收入变化到零时所对应的评价期内累积油气产量即是该项目的经济可采储量。 如果我们设计了多个可能的开发方案或者调整方案,对每个方案的经济可采储量都进行了经济评价,那么,根据计算结果就可以对各个方案进行优选,在这种方法中,经济综合评价往往起到一锤定音的作用。 经济极限法未具有开发方案新增的技术可采储量或某一个独立的油(气)藏或开发层系为基本单元进行经济评估时,采用经济极限计算(现金流入=现金流出)。计算步骤: 第一步根据试采油(气)资料确定单井可能最大的稳定产量,参照已开发区同类储层井网密度,可能达到的产量高峰期、递减率,规划出各年度产油量(或产气量)。计算期以采出技术可采储量95%为界限,从而确定计算期采出的技术可采储量。

矿产资源储量估算方法

国体矿产资源储量各估算方法的适用条件及优缺点 1储量估算方法的定义: 估算方法:是指矿产资源埋藏量估算过程中,各种参数及其资源的计算方法和相关软件的统称。由于矿产资源赋存方式也不尽相同,因此,必须要研究适合的矿产资源储量计算方法。矿产资源划分为三大大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤:第二类是石油天然气、天然气、煤层气资源;第三类是地下水资源。 2矿产资源储量估算放法的主要种类: (1)传统方法,据计算单元划分方式的不同,又可分为断面法和块段法两种。 断面法进一步分为:平行断面法、不平行断面法。垂直断面法,有分为勘探线剖面法和先储量计算法。 块段法:依据块段划分依据的不同,分为:地质块段法。开采块段法法、最近地区法、三角形法。等值线法、等高线法等。 地质断块法,是勘探阶段计算资源储量较为常用的一种方法。是将矿体投影到某个方向的平面上,按照矿石类型,品级,地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干各块段,分别计算资源储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查技术手段比较单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区

的资源储量计算。 地质块段发按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法适用于陡倾斜的矿体:水平投影法适用于产状平缓的矿体;倾斜投影法通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用。 (2)克立格法 克立格法,是由南非地质学家克里格创立的,它以地质统计学理论为基础。目前西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是采用这种方法,评价矿产资源,估计矿产资源储量。地质统计学方法,是一套方法传统。目前在我国应用的主要有:二维及三维普通克里格法,二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。 (3)SD法(最佳结构曲线断面积分储量计算法) SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产资源储量计算方法。该方法以断面结构为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何为工具,进行矿产资源储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产资源勘查工程控制程度和资源储量精度。

可采储量及生产能力

井田境界和储量 第一节井田境界 井田境界 一、井田范围 井田西部基本以黄河为界,北部与邓家庄井田相邻,东部与大东庄煤矿及武家山煤矿相邻,南部基本以聚财塔北断层为界。井田呈长方形,东西长约6.2km,南北宽约5km。 二、开采界限 井田内有可采煤层两层,即4和9号煤层。9号煤层由于绝大部分处于带压开采不安全区内,且含硫量较高,结构较复杂,上距4号煤层达70m左右。故4号煤层为主采煤层。其它煤层做为后期储备资源开采,矿井设计只针对4号煤层。 三、井田尺寸 井田南北走向最小长度为4.70 km,最大长度为5.05 km,平均长度为4.83km。 井田东西倾斜最小长度为4.70 km,最大长度为7.47 km,平均长度为6.15 km。 煤层的倾角最大为5°,最小为1°,平均为3°,井田平均水平宽度为6.12 km。 井田的水平面积按下式计算: S=H ×L (2.1) 式中:S——井田的面积,K㎡; H——井田的水平宽度,Km; L——井田的平均走向长度,Km。 则,井田的水平面积为:S=6.14 *4.83=29.66(K㎡) 井田的赋存状况示意图见图2.1。

井田的赋存状况示意图图2.1 第二节井田工业储量 储量计算基础 (1)根据双柳井田地质勘探报告提供的煤层储量计算图计算; (2)依据《生产矿井储量管理规程》:煤厚,能利用储量最低可采厚度为0.7 m,暂不能利用储量厚度为0.6 m;煤的灰份指标,能利用储量灰份最高不大于40%(含40%),暂不能利用储量灰份最高不大于50%(含50%),超过51%则不计储量; (3)依据国务院过函(1998)5号文件《关于酸雨控制区及二氧化硫污染控制区有关问题的批复》内容要求:禁止新建煤层含硫份大于3%的矿井硫份大于3%的煤层储量列入平衡表外的储量; (4)储量计算厚度:夹矸厚度不大于0.05 m时,与煤分层合并计算,复杂结构煤层的夹矸总厚度不超过每分层厚度的50%时,以各煤分层总厚度作为储量计算厚度; (5)井田内主要煤层稳定,厚度变化不大,煤层产状平缓,勘探工程分布比较均匀,采用地质块段的算术平均法;

矿量计算方法

矿量计算方法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等。 (一)地质块段法计算步骤: 首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等;然 后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 块段编号 资源储量级别 块段 面积 (m2) 平均厚度(m) 块段 体积 (m3) 矿石体重(t/m3) 矿石储量(资源量) 平均品位(%) 金属储量(t) 备注 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置 ②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。

固体矿产资源、储量分类与编码

固体矿产资源、储量分类及编码-----------------------作者:

-----------------------日期:

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

油气储量计算方法

西南石油大学 学生毕业设计(论文) 题目:油气储量的计算方法 专业年级:油气开采技术2011级 学生姓名:李桥学号:11105030105 指导老师:刘柏峰职称:讲师 指导单位:西南石油大学 西南石油大学自考本科 论文完成时间2013年3月23日

摘要 油气储量是石油工业和国民经济的物质基础,是国家安全的战略资源。它是油气勘探开发的成果的综合反映。油田地质工作能否准确、及时地提供油、气储量数据,这关系到国家经济计划安排、油田建设投资的重大问题。在油气勘探开发的不同阶段都需要计算储量,这是油田地质工作的一项重要问题。 正因为油气储量计算具有如此重要的意义,所以本文就油气储量的各种计算方法进行分析研究。 关键词:储量,方法,容积法,物质平衡,水驱曲线,产量递减······

目录 第一章前言 (1) 1.1当代中国油气储量的发展 (1) 1.2中国油气储量管理的发展 (1) 1.3中国油气储量工作的新进展 (1) 1.4油气田储量计算的发展现状 (2) 1.5油气储量计算的研究意义 (2) 1.6本文研究的主要内容 (2) 1.7本文研究的思路 (2) 第二章概述及储量分类 (3) 2.1油气储量的概念 (3) 1.油气储量 (3) 2.地质储量 (3) 3.可采储量 (4) 4.远景资源量 (4) 2.2工业油气流标准 (4) 2.3 储量分类 (4) 1.探明储量(也称为证实储量) (4) 2.控制储量(也称为概算储量) (4) 3.预测储量(也称为估算储量) (5) 第三章油气储量计算方法 (5) 3.1静态法 (5) 3.2动态法 (5) 第四章容积法油气储量计算 (6) 4.1容积法计算油气储量的思路及公示 (6) 1.油层岩石总体积 (6)

储量计算方法

油、气储量是油、气油气勘探开发的成果的综合反应,是发展石油工业和国家经济建设决策的基础。油田地质工作这能否准确、及时的提供油、气储量数据,这关系到国民经济计划安排、油田建设投资的重大问题。 油、气储量计算的方法主要有容积法、类比法、概率法、物质平衡法、压降法、产量递减曲线法、水驱特征曲线法、矿场不稳定试井法等,这些方法应用与不同的油、气田勘探和开发阶段以及吧同的地质条件。储量计算分为静态法和动态法两类。静态法用气藏静态地质参数,按气体所占孔隙空间容积算储量的方法,简称容积法;动态法则是利用气压力、产量、累积产量等随时间变化的生产动态料计算储量的方法,如物质平衡法(常称压降法)、弹性二相法(也常称气藏探边测试法)、产量递法、数学模型法等等。 容积法: 在评价勘探中应用最多的容积法,适用于不同勘探开发阶段、不同圈闭类型、储集类型和驱动方式的油、气藏。容积法计算储量的实质是确定油(气)在储层孔隙中所占的体积。按照容积的基本计算公式,一定含气范围内的、地下温压条件下的气体积可表达为含气面积、有效厚度。有效孔隙度和含气饱和度的乘积。对于天然气藏储量计算与油藏不同,天然气体积严重地受压力和温度变化的影响,地下气层温度和眼里比地面高得多,因而,当天然气被采出至地面时,由于温压降低,天然气体积大大的膨胀(一般为数百倍)。如果要将地下天然气体积换算成地面标准温度和压力条件下的体积,也必须考虑天然气体积系数。 容积法是计算油气储量的基本方法,但主要适用与孔隙性气藏(及油藏气顶)。对与裂缝型与裂缝-溶洞型气藏,难于应用容积法计算储量 纯气藏天然气地质储量计算 G = 0.01A ·h ·φ(1-S wi )/ B gi = 0.01A ·h ·φ(1-S wi )T sc ·p i / (T ·P sc ·Z i ) 式中,G----气藏的原始地质储量,108m3; A----含气面积, km2; h----平均有效厚度, m; φ ----平均有效孔隙度,小数; Swi ----平均原始含水饱和度,小数; Bgi ----平均天然气体积系数 Tsc ----地面标准温度,K;(Tsc = 20oC) Psc ----地面标准压力, MPa; (Psc = 0.101 MPa) T ----气层温度,K; pi ----气藏的原始地层压力, MPa; Zi ----原始气体偏差系数,无因次量。 凝析气藏天然气地质储量计算 G c = Gf g f g = n g /(n g + n o ) = GOR / ( GOR + 24056γ o /M o ) 式中,Gc ----天然气的原始地质储量, 108m3; G----凝析气藏的总原始地质储量, 108m3; fg----天然气的摩尔分数;

石油天然气预测储量计算方法

《石油天然气预测储量计算方法》 Q/SY 181-2006 中国石油控制预测储量分类评价项目组 2007年6月

目次 前言 ..................................................................................................................................................... II 1 范围 (1) 2 规范性引用标准 (1) 3 术语和定义 (1) 4 预测储量界定条件 (2) 5 预测地质储量计算 (3) 6 预测技术可采储量计算 (6) 7 预测储量分类和评价 (7) 8 预测储量报告编写要求 (7) 附录A(资料性附录)储量计算公式中参数名称、符号、计量单位及取值位数 (9) 附录B(资料性附录)油(气)藏类型与油(气)采收率对照表 (10) 附录C(规范性附录)油(气)田(藏)储量规模和品位等分类 (12) 附录D(规范性附录)预测储量年报表格式 (16) 附录E(规范性附录)预测储量年报封面和扉页格式 (21) 附录F(规范性附录)含油气构造(油气田)预测储量报告内容基本要求 (23) I

前言 本标准的附录A、附录C、附录D、附录E、附录F、附录G、附录H是规范性附录,附录B是资料性附录。 本标准由中国石油天然气股份有限公司勘探与生产分公司专业标准化技术委员会提出并归口。 本标准主要起草单位:中国石油天然气股份有限公司勘探开发研究院廊坊分院、大庆油田有限责任公司、辽河油田分公司。 本标准起草人:王永祥、郑得文、李晓光、黄薇、胡晓春、张亚庆、鞠秀娟。 II

金矿的储量计算方法

金矿的储量计算方法

金矿的储量计算方法 金矿石从找矿、评价、勘探到矿山开采的各个阶段,都要进行储量计算。储量计算是对矿石的“质”和“量”的全面总结,是生产建设和企业投资的依据。因此必须引起足够的重视,各种计算参数应真实可靠,计算数据要准确无误,以保证储量数字的正确性。 一、金矿储量级别的分类和条件 我国目前将金矿储量分为两类,即能利用储量(称表内储量)和暂不能利用储量(表外储量)。并根据地质勘探控制程度又分为A、B、C、D 四级。矿床评价阶段探获的储量,主要是D级储量,可有部分C级储量。C级储量是矿山建设设计的依据。其条件是:①基本控制了矿体的形态、产状和空间位置;②对破坏和影响主要矿体的较大断层、褶皱、破碎带的性质和产状已基本控制,对夹石和破坏主要矿体的主要火成岩的岩性、产状和分布规律已大致了解,③基本确定了矿石工业类型的种类及其比例和变化规律。 D级储量是用一定的勘探土程控制的储量,或虽用较密的工程控制,但仍达不到C级要求的储量以及由D级以上储量外推部分的储量。其

条件是:①大致控制矿体的形状、产状和分布范围,②大致了解破坏和影响矿体的地质构造特征,③大致确定矿石的工业类型。 D级储量在金矿中有三种用途:一是作为进一步勘探和矿山远景规划的储量;二是在一般金矿脉中,部分D可作为矿山建设设计的依据,三是对小而复杂的矿床,可作为矿山建设设计的依据。 二、主要综合性图件的编绘 (一)坑道(中段)地质平面图. 1.图件的主要内容 (1)坐标线,勘探线、该平面上各种探矿工程及编号。 (2)采样位置及编号、样品分析结果。 (3)各种地质界线及并产状,矿体编号.(4)图名、比例尺、图例及图签。 2.编图的基本方法 (1)按坑道的范围,在图纸上画好平而坐标网及勘探线作为底图。 (2)利用坐标网和勘探线的控制,根据测量成果,在底图上画出坑道的几何外形和钻孔位置。(3)根据坑道原始地质编录资料,将各种地质

可采储量标定方法汇编

天然气可采储量标定方法汇编 1参数符号、代号 Ao----含油面积; A,B----线性方程直线截距和斜率; a,b----线性方程直线截距和斜率; A 2,B 2----二项式方程直线截距和斜率; B gi , B g ,B gb ,B ga ----分别为原始、目前、饱和、废弃压力条件下的天然气体积系数,f ; B oi , B o ,B ob , B ow ,B oa ----分别为原始、目前、饱和、开始注水、开采结束时的原油体积系数,f ; B ti ,B t ,B tb ,B tw ,B ta ----分别为原始、目前、饱和、开始注水、开采结束时的原油体积系数,f ; B w ----地层水的体积系数,f ; C----常数,或气井产能系数,104m 3/MPa 2; C e ----有效压缩系数,MPa -1; C f ----岩石的有效压缩系数,MPa -1; C g ----天然气的压缩系数,MPa -1; C w ----地层水的压缩系数,MPa -1; C o ----原油的压缩系数,MPa -1; C ef ----无因次综合压缩系数(=C e .P i ),MPa -1; C tg *----总压缩系数,MPa -1; d----油管内径,cm; d 1----套管内径,cm; d 2----油管外径,cm; D----埋藏深度,m; D ai ,D a ----初始、目前递减率,a -1; E p ----变容系数,f; E R ----天然气采收率, f 或%; E RO *----Wayhan 等人校正法的原油采收率, f 或%; E RO C ----气顶和溶解气综合驱动的原油采收率, f 或%; E RO S ----溶解气驱的原油采收率, f 或%; E RG ----凝析气藏干气采收率, f 或%; E RL ----凝析气藏凝析油采收率, f 或%; E RGd ,E RLd 分别为露点压力前的干气和凝析油的采收率; E RGa ,E RLa 分别为露点压力---废弃压力时的干气和凝析油的采收率; E RGi ,E RLi 分别为露点压力前注气开发至干气突破生产井时的干气和凝析油的采收率; f------摩阻系数,f ; f w ----含水率, f 或%; G,G R ,G p ----天然气地质储量、可采储量和累积采气量,108m 3 ; G pD ----递减期前的累积采气量,108m 3 ; G cap ,G capR ----气顶气地质储量、可采储量,108m 3 ; G S ,G SR -----油藏溶解气地质储量、可采储量,108m 3 ; G SR C -----气顶和溶解气综合驱动的溶解气可采储量,108m 3 ; G SR E -----岩石和束缚水弹性驱动的溶解气可采储量,108m 3 ; G SR S -----油藏溶解气驱的溶解气可采储量,108m 3 ; G SR W -----水驱开发阶段溶解气的可采储量,108m 3 ; G S1-----地下剩余油中的溶解气量,108m 3 ; G S2-----滞留在油层中的游离气量,108m 3 ; G pf -----累积气窜气量,108m 3 ; G pc -----伴生气累积采气量,108m 3 ; h-------储层有效厚度,m ; I --------水侵替换系数,f ; J-------气价,元/m 3 ; K-------渗透率,10-3μm 2 ; K rg -------气相相对渗透率,f ; K ro -------油相相对渗透率,f ; m--------压降直线段斜率, MPa/108m 3 ; m g -------气顶指数,f ; n---------自然数,或递减指数、指数式方程指数,无量纲 ; N,N R ,N p ----原油地质储量、可采储量和累积采油量,104m 3或104t; gi p w p e B G B W W R I ??-= =ω

储量计算方法的基本原理

储量计算方法的基本原理 在矿产勘查工作中,利用各种方法、各种技术手段获得大量有关矿床的数据,这些数据就是计算储量的原始材料。计算储量通常的步骤如下: (1)工业指标及其确定方法: 1)工业指标:工业指标就是圈定矿体时的标准。主要有下列个项: 可采厚度(最低可采厚度):可采厚度就是指当矿石质量符合工业要求时,在一定的技术水平与经济条件下可以被开采利用的单层矿体的最小厚度。矿体厚度小于此项指标者,目前就不易开采,因经济上不合算。 工业品位(最低工业品位、最低平均品位):工业品位就是工业上可利用的矿段或矿体的最低平均品位。只有矿段或矿体的平均品位达到工业品位时,才能计算工业储量。 最低工业品位的实质就是在充分满足国家需要充分利用资源并使矿石在开采与加工方面的技术经济指标尽可能合理的前提下寻找矿石重金属含量的最低标准。所以确定工业品位应考虑的因素就是:国家需要与该矿种的稀缺程度;资源利用程度;经济因素,如产品成本及其与市场价格的关系;技术条件,如矿石开采与加工得难易程度等。 工业品位与可采厚度对于不同矿种与地区各不相同,就就是同一矿床,在技术发展的不同时期也有变化。 边界品位:边界品位就是划分矿与非矿界限的最低品位,即圈定矿体的最低品位。矿体的单个样品的品位不能低于边界品位。 最低米百分比(米百分率、米百分值):对于品位高、厚度小的矿体,其厚度虽然小于最小可采厚度,但因其品位高,开采仍然合算,故在其厚度与品位之乘积达到最低米百分比时,仍可计算工业储量。计算公式为:K=M×C。(K-最低米百分比(m%);M-矿体可采厚度(m);C-矿石工业品位(%))。 夹石剔除厚度(最大夹石厚度):夹石剔除厚度实质矿体中必须剔除的非工业部分,即驾驶的最大允许厚度。它主要决定于矿体的产状、贫化率及开采条件等。小于此指标的夹石可混入矿体一并计算储量。夹石剔除厚度定得过小,可以提高矿石品位,但导致矿体形状复杂化,定得过大,会使矿体形状简化,但品位降低。

相关文档
最新文档