东西方文化对数学发展的影响——大连理工大学数学文化大作业

东西方文化对数学发展的影响——大连理工大学数学文化大作业
东西方文化对数学发展的影响——大连理工大学数学文化大作业

东西方文化对数学发展的影响

摘要

本文以欧洲中世纪、文艺复兴及我国明清时期为时间节点,分析了造成东西方数学发展速度此消彼长的文化领域原因。提出文化的发展繁荣一定伴随着数学的发展繁荣,文化思想的解放一定预示着数学重大成就的来临。相反,对于思想的束缚,对于知识分子个性的压制一定会导致数学发展的受挫。

第一章:概述

说到东西方数学发展,我们自然会联想到课本中一个又一个西方人的面孔,作为东方文明代表的中国,难道在数学发展上毫无建树吗?下面是一组数据:

公元前6世纪以前:数学重大成就,世界5项.中国2项。

公元前600公元1年:数学重大成就,世界15项,中国3项。

公元1—400年:教学重大成就,世界10项,中国4项,

公元400一1000年:数学重大成就.世界9项.中国6项,

公元1000一1500年:数学重大成就.世界15项,中国9项。

公元1501—1900年:数学重大成就.世界100项.中国0项。[1]

从以上数据表明在1500年以前.中国数学在世界占据重要地位.在整体上处于领先水平。特别是在公元401~1000年和公元1000~1500年期间.中国数学重大成就占世界数学重大成就的50%以上。但在1500~1900年期间,中国数学则一落千丈。在400年中竟没有一项数学重大成就。

那么究竟是什么原因造成了这样的不同呢?我认为正是东西方经济文化的发展改变了这一切。值得的注意两个重要的时间节点,第一:中世纪(Middle Ages)始于约公元476年西罗马帝国灭亡。第二:文艺复兴,始于14世纪中叶。第三:明朝建立公元1368,推行八股文,科举只考四书五经。

综上,提出以下观点,文化的发展繁荣一定伴随着数学的发展繁荣,文化思想的解放一定预示着数学重大成就的来临。相反对于思想的束缚,对于知识分子个性的压制一定会导致数学发展的受挫。

第二章:中世纪对欧洲数学发展的影响

中世纪(Middle Ages)(约公元476年~公元1453年),是欧洲历史上的一个时代(主要是西欧),自西罗马帝国灭亡(公元476年)到东罗马帝国灭亡(公元1453年)的这段时期。这个时期的欧洲没有一个强有力的政权来统治。封建割据带来频繁的战争,造成科技和生产力发展停滞,人民生活在毫无希望的痛苦中,所以中世纪或者中世纪早期在欧美普遍被称作“黑暗时代”,传统上认为这是欧洲文明史上发展比较缓慢的时期。

这一时期欧洲社会受到教廷的控制,普通市民识字率极低,哥白尼的日心学说从提出开始就受到教廷的迫害,直到哥白尼去世才肯将他的著作公诸于众,而这还是发生在14世纪末文艺复兴已经兴起的时代,试想如果哥白尼早出生几百年,他甚至可能都不识字。我们认

为,社会的进步来源于生产所需,数学亦然。首先,人们需要用解决计数的问题,于是发生了数字,而后田地分割等问题促进了几何学的发展,同样与农业密切相关的天文发展促进和数学的进一步发展,这一点上玛雅文明是一个很好的例子。在没有发明车轮的社会经济发展水平下,玛雅人创造会辉煌的天文学成就,这显然要归功于他们的数学成就。

统治阶级既然要用基督教来禁锢人民的思想,就必然会遭到人民的反抗。这种矛盾反映到基督教内部,就表现为“正统”同“异端”的斗争。“异端”问题由来已久,为了对付“异端”的活动,除了采取暴力以外,“正统”派也从理论上入手。公元五世纪初,就出现了奥古斯丁这样的神学理论家,他吸收了古希腊哲学家柏拉图的学说来论证基督教的宗教信仰,用柏拉图关于现实世界是按“理念”的模型造出来的观点来论证上帝创造世界。他提出:一切东西“它们有形体,是因为它们都有数目,如果把数目去掉,便会一无所有。奥古斯丁后来被教会尊称为“圣者”、“真理的台柱”。[2]

以负数的发展为例,西方对于负数的认知来源于古希腊数学,古希腊人认为数学具有理性与真理的特性,不允许用“高尚”的数学与实际生活中“损失”、“欠债”这样的“小”问题相类比.由于古希腊数学主要研究几何问题,赋予数学的是几何内容理性层面的构造,所以,负数长时间不被人们所接受.受到古希腊数学的影响,西方学者对负数的认知也脱离了实际生活,几乎没有实际应用负数的机会,致使对负数没有直观的认知,进而对负数产生了怀疑和排斥.所以,西方对负数的认知要比东方国家晚得多.直到18世纪,英国教会仍对负数提出异议,他们认为比零小的数是荒谬的,所以完全不承认负数。相比较之下,我国是世界上首先发现和认知负数的国家,战国时期李悝就在《法经》中说到“衣五人终岁用千五百不足四百五十”,这里“不足”就是负数的概念和记号.负数的概念及运算法则最早出现在我国东汉时期的《九章算术》方程章中,继负数的概念出现以后魏晋时期数学家刘徽对负数的记法给出了说明.他在《九章算术》刘徽注中提出:“今两算得失相反,要令正负以名之.”并给出了以下几种负数记法:①“正算赤,负算黑”,这是指以红色算筹表示正数,以黑色算筹表示负数,即用算筹的颜色来区分正负数.②“否则以斜正为异”,这是指以正摆的算筹表示正数,以斜摆的算筹表示负数.后来为了使负数记法更加简单明了,又相继出现了其他记法。[3]

第三章:文艺复兴对欧洲数学发展的影响

公元14世纪至15世纪,当中国传统的筹算数学衰微,天元术和四元术的理论研究出现失传的时候,地中海沿岸的一些城市不同程度地出现了资本主义生产的最初的萌芽,加上新大陆的发展,于是西方从意大利开始,以后逐渐蔓延到荷兰、西班牙、法国、英国、德国等,进行了一场政治、经济、文化的全面斗争,迎来了文艺复兴时期。此时期促成了思想的大解放和科学的大发展,是继希腊之后科学发展的第二个黄金时代。对于这个历史时期,恩格斯认为:这是一次人类从来没有经历过的最伟大的、进步的改革,是一个需要巨人而且产生了巨人——在思维能力、热情和性格方面,在多才多艺和学识渊博方面的巨人的时代。

此时对运动与变化的研究已成为自然科学的中心问题——机械的普遍使用引起了对机械运动的研究.世界贸易的高涨促使航海事业的空前发达,而测定船舶位置问题要求准确地研究天体运动的规律.武器的改进刺激了弹道问题的探索等等。这些迫切地需要一种新的数学工具,从而导致了变量数学,亦即近代数学的诞生。变量数学的第一个里程碑是解析几何的发明,它的真正发明者之一笛卡儿的《几何学》的整个思路与传统的方法大相径庭,他主张用怀疑的态度代替盲从和迷信,认为只有依靠理性才能获得真理。在当时不仅打击了经院哲学的教条权威,而且也为笛卡儿自己的科学发现开辟了一条崭新的道路。他这种怀疑传统与权威、大胆思索创新的精神,反映了文艺复兴时期的时代特点。解析几何的创立,导致了

数学史上划时代的转折。恩格斯曾评价:数学中的转折点是笛卡儿的变量,有了它运动进入了数学,因而辩证法进入了数学,微分和积分的运算也就立刻成为必要的了。[4]事实上,我们看到出现在我们课本中的西方面孔普遍也来自这一时期。艾萨克·牛顿(1643—1727)、拉普拉斯(1749-1827)、皮耶·德·费玛(1601—1665)布鲁克·泰勒(1685-1731)、伯特兰·罗素(1872—1970)、西莫恩·德尼·泊松(1781—1840)、奥古斯丁·路易·柯西(1789—1857)、莱昂哈德·欧拉(1707~1783)、丹尼尔·伯努利,D.(1700—1782)等等……

正如上面提到的,这一时期西方的数学发展得益于工业革命的推动,一方面更多的生产要求使得数学家有更多的问题需要研究,另一方面工业革命对生产力的大幅对推动也使得数学家可以有更大的经历可以用于数学研究,而不是为生计发愁。

综上,文艺复兴解放了人们的思想,为西方数学的大发展大繁荣奠定了基础,工业革命的爆发为以数学为首的科学技术的发展提供了重要的土壤以及原始冲动。下面我们着重分析,几乎与文艺复兴同一时期的我国明清八股文怎样遏制了我国的数学发展。

第四章:明清八股文对我们数学发展的影响

八股文就是指文章的八个部分:破题、承题、起讲、入手、起股、中股、后股、束股(大结),八股文也称“时文”“制艺”等,也就是说八股文是具有固定格式的“时文”。即它不同于“诗言志、歌咏言”。八股文作为一种“时文”,最初它的兴起是因为它用以针砭时弊,用以发掘出一批对国家管理有用的循吏,而不是选拔出“诗人”、“画家”、”音乐家“来管理国家。作为一个长时间存在的文体,我们没有必要一概否定,黑格尔也说“存在即合理”。八股文在它的发展过程中具有一定的积极意义,它使得士大夫阶层能够花精力去关心时事,以制“时文”。只是在它走向极端以后才失去了他的议事功能,但专心于格式也未必就一定比唐诗宋词低级多少。但是我们必须指出,作为全国知识分子唯一上升渠道的科举制的的唯一科目,八股文对数学的发展绝对是致命的。这就好像如今的高考单考一门语文一样,试想还会有多少孩子去研究数理化,即使天高考已经不在是唯一的上升渠道,而今天的汉语文也完全不同于八股文。

八股文造就了一批批忠于同治阶级的官僚知识分子,他们思想僵化,忠孝礼仪廉的传统根深蒂固,惧怕改革妄谈推翻封建统治,固步自封安于现状。可以说这一时期中西方来了个对调,中国开始进入一个黑暗时期,表面上社会安定祥和,江山安泰,各地方的知识分子忠君报国,完美的维护和整个国家的稳定。但是在这一片祥和之下,隐藏的确实我国科学技术的大幅度落后,这几百年间在中国人写着八股文做着天朝上国美梦时,西方的数学家正在创造这近代数学,同时影响着西方自然科学的发展繁荣。这一时期我们的数学研究不仅仅没有进步,反而将之前的辉煌丢掉了。不难想象为什么这一时期我国的数学成就为零。

参考文献

[1]自然科学大事年表,上海人民出版社,1975年.

[2]陈心一,罗马及中世纪西欧数学初探,辽宁师范大学学报自然科学版,1987年.

[3]张建双,徐聪,数学史教学中东西方负数发展的比较分析,通化师范学院学报第33卷第6期,2012年.

[4]李渺,文艺复兴时期欧洲的数学文化,太原教育学院学报第21卷第3期,2003年.

大连理工大学优化方法上机大作业程序

函数定义: % 目标函数 function f = fun(x) fm=0; for i=1:499 fmi = (1-x(i))^2 + 100*(x(i+1)-x(i)^2)^2; fm=fm+fmi; end f =fm; end % 梯度 function g = grad(x) g = zeros(500,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); for i=2:499 g(i)=2*(x(i)-1)+400*x(i)*(x(i)^2-x(i+1))+200*(x(i)-x(i-1)^2); end g(500) = 200*(x(500)-x(499)^2); end % 二阶梯度

function g = grad2(x) g = zeros(500,500); g(1,1)=2+400*(3*x(1)^2-x(2)); g(1,2)=-400*x(1); for i=3:500 g(1,i)=0; end for i=1:498 g(500,i)=0; end g(500,499)=-400*x(499); g(500,500)=200; for i=2:499 for j=1:500 if j==i-1 g(i,j)= -400*x(i-1); elseif j==i g(i,j)= 2+400*(3*x(i)^2-x(i+1))+200; elseif j==i+1 g(i,j)= -400*x(i); else g(i,j)=0; end end end end 1.最速下降法 function x_star = steepest(x0,eps) gk = grad(x0); res = norm(gk); k = 0; while res > eps && k<=50000 dk = -gk;

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

大连理工大学2009年数学分析考研试题

大连理工大学2009年研究生入学考试数学分析试题 一、解答下列问题。 1、 判断下列数列是否收敛 222 111123n ++++…… 2、 设{}n a 1= 1= 3、 判断下列函数是否一致连续 ()1cos n f x e x ??= ??? ,(]0,1x ∈ 4、 设,y u f xy x ??= ???,求:22u x ??,2u x y ??? 5、 已知:()f a 存在,求()()lim x a xf a af x x a →-- 6、 设()f x 在[],a b 上可导,且()f a =()f b ,证明:存在(),a b ξ∈,使得 ()()()22f f a f ξξξ-= 7、 求极限()2lim ln n x x x →∞ 8、 求下列函数的Fourior 级数展开(),0,0x x f x x x ππππ+≤,使得 ()()0f x f x ≥,()00,x x x δδ∈-+,证明存在一个区域I 使得()f x 在I 上是一个常数。 二、设()f x 是[],a b 上具有连续的导数,()0a b <<,()()0f a f b ==,()2 1b a f x dx =?, 证明()()2 2'14b a x f x dx >? 三、给定函数列()()()2,3,n x x Inx f x n n α==…试问当α取何值时,(){}n f x 在[0,)+∞上

1大连理工数学分析试题及解答

大连理工大学2001年硕士生入学考试 数学分析试题 一. 从以下的1到8题中选答6题 1. 证明:2 ()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致 连续 2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积. 3. 证明:若1α>,那么广义积分1 sin x dx α+∞ ? 收敛 4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有: ()()f x dx g x dx β β α α =??,那么, ()()f x g x ≡于(,)a b 5. 证明:若1 n n a ∞ =∑收敛,那么 1 nx n n a e ∞ -=∑在[0,)+∞一致收敛 6. 已知:2 ,0 ()0,0 x e x f x x -?≠?=?=??,求"(0)f 7. 已知:()() 1(,)()2 2x at x at x at x at u x t d a φφψαα+-++-= + ?. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算 22 222 (,)(,)u x t u x t a t x ??-?? 8. 计算,半径为R 的球的表面积 二. 从9到14题中选取6题 9.已知: lim '()0x f x →∞ =,求证: () lim 0x f x x →∞ =

10.证明: ()a f x dx +∞ ? 收敛,且lim ()x f x λ→+∞ =,那么0λ= 11.计算曲面积分: 333 S I x dydz y dzdx z dxdy = ++??, 其中S 为旋转椭球面222 2221x y z a b c ++=的外侧 12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛 13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1 0lim ()0n n f x dx →∞ =? 14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1 ()n n u b ∞ =∑发散,那么1 ()n n u x ∞ =∑不在[,)a b 一致收 敛

大连理工大学(工程抗震)大作业

大连理工大学《工程抗震》大作业

题目1:底部剪力法。 钢筋混凝土5层框架经质量集中后计算简图如下图所示,各层高均为3m , 集中于各楼层的重力荷载代表值分别为: 1500kN G =,2550kN G =,3580kN G =,4600kN G =,5450kN G =。结构阻尼比0.05ξ=,自振周期为10.55s T =,Ⅰ1类 场地类别,设计地震分组为第一组,抗震设防烈度为8度(设计基本地震加速度为0.30g )。按底部剪力法计算结构在多遇地震时的水平地震作用及地震剪力。 3580kN =2550kN =1500kN =(a )计算简图 4600kN =5450kN = 解:查《建筑设计抗震规范》表5.1.4知,8度多遇地震,αmax=设计地震分组为第一组, Ι类场地,取Tg= Tg=<T1=<5Tg= α1=(Tg/T1)r η2αmax =()××=≈ 查《建筑设计抗震规范》表5.2.1知,T 1=>=×= 取δn=T1+=×+= 总水平地震作用标准值: F EK =α1Geq=×(500+550+580+600+450)×85%=

各楼层水平地震作用标准值: Fi=G i H i F EK (1-δn)/∑G j H j (i=1,2,3n) ∑G j H j =500×3 +550×6+580×9+600×12+450×15=23970KN ·m F 1=[500×3××]/23970= F 2=[550×6××]/23970= F 3=[580×9××]/23970= F 4=[600×12××]/23970= F 5=[450×15××]/23970= 计算各楼层的层间地震剪力 V 1= F 1+ F 2+ F 3+ F 4+ F 5=++++= V 2= F 2+ F 3+ F 4+ F 5=+++=152KN V 3= F 3+ F 4+ F 5=++= V 4= F 4+ F 5=+= V 5=F 5= 题目3:怎样判断土的液化如何确定土的液化严重程度,并简述抗液化措施。 答:饱和松散的砂土或粉土(不含黄土),地震时易发生液化现象,使地基承载力丧失或减弱,甚至喷水冒砂,这种现象一般称为砂土液化或地基土液化。其产生的机理为:地下水位以下的饱和砂土和粉土颗粒在地震作用下,土颗粒之间有变密的趋势。因空隙水不能及时排出,土颗粒就处于悬浮状态,形成如同液体一样的现象,即所谓的土的液化现象。地基土液化判别过程可以分为初步判断和标准贯入试验判别两大步骤。下面分别予以介绍。 1、初步判断 饱和的砂土或粉土(不含黄土)当符合下列条件之一时,可初步判别为不液化或不考虑液化影响: (1)地质年代为第四纪晚更新世(Q3)及其以前时且处于烈度7度或者8度地区时可判为不液化土。 (2)粉土的粘粒(粒径<0.005mm )含量百分率当烈度为7度时大于10%、当烈度为8度时大于13%、当烈度为9度时大于16%,可判为不液化土。 (3)浅埋天然地基,当地下水位深度和覆盖非液化土层厚度满足下式之一时,可不考虑液化影响。 03w b d d d >+- 02 u b d d d >+-

大连理工大学入学测试机考专升本高等数学模拟题

大连理工大学入学测试机考专升本高等数学模拟题1、题目Z1-2(2)() 标准答案:A 2、题目20-1:(2)() 标准答案:A 3、题目20-2:(2)() 标准答案:B 4、题目20-3:(2)() 标准答案:A 5、题目20-4:(2)() 标准答案:D 6、题目20-5:(2)() 标准答案:D

标准答案:A 8、题目20-7:(2)() 标准答案:D 9、题目20-8:(2)() 标准答案:C 10、题目11-1(2)() 标准答案:C 11、题目11-2(2)() 标准答案:B 12、题目11-3(2)() 标准答案:A 13、题目20-9:(2)() 标准答案:C

标准答案:D 15、题目11-5(2)() 标准答案:C 16、题目20-10:(2)() 标准答案:B 17、题目11-6(2)() 标准答案:B 18、题目11-7(2)() 标准答案:C 19、题目11-8(2)() 标准答案:C 20、题目11-9(2)() 标准答案:D 21、题目11-10(2)() 标准答案:B

标准答案:C 23、题目19-2:(2)() 标准答案:B 24、题目19-3:(2)() 标准答案:D 25、题目12-1(2)() 标准答案:D 26、题目12-2(2)() 标准答案:D 27、题目19-4:(2)() 标准答案:B 28、题目12-3(2)() 标准答案:B 29、题目12-4(2)() 标准答案:C

标准答案:A 31、题目19-5:(2)() 标准答案:C 32、题目12-6(2)() 标准答案:A 33、题目12-7(2)() 标准答案:B 34、题目19-6:(2)() 标准答案:B 35、题目12-8(2)() 标准答案:B

大连理工大学上学期工科数学分析基础学习知识试题

2010工科数学分析基础(微积分)试题 一、填空题 (每题6分,共30分) 1.函数?? ? ?? ??? ??-≥+=01 0)(2πx x e x bx a x f bx ,=- →)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。 2.=?? ? ??+∞→x x x x 1lim , =??? ??+++???++++++∞→n n n n n n n n n 2222211lim 。 3.曲线? ??==t e y t e x t t cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。 4.1=-+xy e y x ,=dy ,='')0(y 。 5.若22 lim 2 21=-+++→x x b ax x x ,则=a ,=b 。 二、单项选择题 (每题4分,共20分) 1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32= a , (B )3=a , (C). 2 3 =a , (D )2=a 2.下列结论中不正确的是( ) (A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数; (D )可导单调增加函数的导数一定是单调增加函数; 3.设x x x x f πsin )(3-=,则其( ) (A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点; 4.设x x x x f 3 )(+=,则使)0() (n f 存在的最高阶数n 为( )。 (A )1 (B )2 (C) 3 (D )4 5.若0)(sin lim 30=+→x x xf x x , 则20) (1lim x x f x +→为( )。 (A )。 0 (B )6 1 , (C) 1 (D )∞

大工《高等数学》课程考试模拟试卷A答案

绝 密★启用前 大连理工大学网络教育学院 2010年9月份《高等数学》课程考试 模拟试卷答案 考试形式:闭卷 试卷类型:A 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.B 2.C 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B 二、填空题(本大题共10小题,每小题3分,共30分) 1.dx x 45 2.x e 3.0 4.5 5.C x x +-3 31 (不写常数C 扣1分) 6.0 7.)cos(2 2y x x 8.2ln 21 9.61 10.C x y +=22(不写常数C 扣1分) 三、计算题(本大题共5小题,每小题8分,共40分) 1.解:11lim )1)(1(1lim 1 1lim 1121+=+--=--→→→x x x x x x x x x (4分)21=(4分) 2.解:)(sin sin 1'= 'x x y (4分)x x cos sin 1=x cot =(4分) 3.解:??=x xd xdx 33sin 313sin (4分)C x +-=3cos 31(4分)(不写常数C 扣1分) 4.解法1:令x t =,则tdt dx t x 2,2== 当1=x 时,1=t ;4=x 时,2=t (4分) 于是???=?=212 14122dt e dt t t e dx x e t t x (2分) )(21222e e e t -==(2分) 解法2:x d e dx x e x x ??=41412(4分))(21422e e e x -==(4分) 5.解:t dt dx 4=(2分) t dt dy cos =(2分)

大连理工大学2005硕士研究生考试数学分析试题及解答

大连理工大学2005硕士研究生考试试题数学分析试题及解答 一、 计算题 1、 求极限:122 2 (i) ,lim n n n n a a na a a n →∞ →∞+++=其中 解: 1212222...(1)(1)lim lim lim ()(1)212 n n n n n n a a na n a n a a Stolz n n n n +→∞→∞→∞+++++===+-+利用公式 2、求极限:2 1lim (1)x x x e x -→∞ + 解: 22 2 222 1(1) 1lim (1)lim()1111(1)(1)(ln(1)) 1lim lim 11 1111(())21lim 121(1)112lim (1)lim( )lim()x x x x x x x x x x x x x x x x x x x x e x e e x x x x x x o e x x x x e x e e x x e x e e e -→∞→∞→∞→∞→∞-→∞→∞→∞++=+-++-+=--+- +==--+- ∴+=== 3、证明区间(0,1)和(0,+∞)具有相同的势。 证明:构造一一对应y=arctanx 。 4、计算积分2 1 D dxdy y x +?? ,其中D 是x=0,y=1,y=x 围成的区域 解:

1120220001 1 1011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2 y y D dxdy dxdy x y dy y x y x y dy ydy y y y y y y ==+++=+-=++-+-+=?? ????? 5、计算第二类曲线积分:22 C ydx xdy I x y --=+?,22:21C x y +=方向为逆时针。 解 : 222222002222 2tan 2222 cos ,[0,2)1sin 211 sin cos 4cos 222113cos 22cos 22 13(2)(1)812arctan 421(2)(1)2 311421C x x y ydx xdy I d d x y x x x x d x dx x x x x ππθθ θπθθθθθθθθ +∞+∞=-∞-∞=?? ∈? =?? ---=???→=-+++-+-++?????→-=--+++ +=-?????换元万能公式代换22 6426212x dx d x x ππ+∞+∞-∞-∞+=-++??+ ??? ?? 6、设a>0,b>0,证明:1 11b b a a b b ++?? ?? ≥ ? ?+?? ?? 。 证明:

大工高等数学课程考试模拟试卷A答案

大工高等数学课程考试模 拟试卷A答案 Prepared on 24 November 2020

机密★启用前 大连理工大学网络教育学院 2015年3月份《高等数学》课程考试模拟试卷答案 考试形式:闭卷试卷类型:A 一、单项选择题(本大题共10小题,每小题2分,共20分)1、C 2、A 3、C 4、B 5、B 6、C 7、D 8、B 9、C 10、A 二、填空题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2 1 -=x y 2、0 3、dx x x x x x x x ??? ? ??-+---22 22121)23(arccos 6 4、>(或写成“大于”) 5、C x x +-3sin 31 sin 6、13-=x y 7、x 2 sin 2ππ 8、C e x +--9、必要10、 2 2y x xy + 三、计算题(本大题共5小题,每小题8分,共40分) 1、解:所给极限为“ ”型,注意当0→x 时,x x ~)1ln(+(4分)。因此 211sin lim sin lim )1ln(sin lim 000=+=?? ? ??+=+=++→→→x x x x x x x x x x x x x (4分) 2、解:本题为第一类换元法计算不定积分 解法Ⅰ做变量代换,令,1 ,ln du dx x u x ==(4分) C x C u udu dx x x +=+==??ln sin sin cos ln cos (4分) 解法Ⅱ凑微分法,使用凑微分公式 3、解:依前述求定义域的原则,需有???>+-≥--01204222x y y x ,(4分)即???>+≤+x y y x 214 222(4分)

(完整版)大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

大连理工大学-环境化学-所有作业答案

绪论部分: 2、简述环境问题的分类?(10分) 答:环境问题是多方面的,但大致可分为两类:原生环境问题和次生环境问题。由自然力引起的为原生环境问题,也称为第一环境问题。由于人类生产和生活引起生态系统破坏和环境污染,反过来又危及人类自身和生存和发展的现象,为次生环境问题,也叫第二环境问题。原生环境问题和次生环境问题很难截然分开,它们之间常常存在着某种程度的因果关系和相互作用。 4、什么是环境化学,学习环境化学有什么意义?(10分) 答:环境化学是一门研究有害化学物质在环境介质中的存在、化学特性、行为和效应及其控制的化学原理和方法的科学。 意义:用来掌握污染来源,消除和控制污染,确定环境保护决策,以及提供科学依据诸方面都起着重要的作用。 5、简述环境化学的分支学科。(10分) 答:主要包括6类。 ①环境分析化学:是研究化学品的形态、价态、结构、样品前处理和痕量分析的学科。 ②环境污染化学:大气、水体和土壤环境化学,元素循环的化学过程。 ③污染控制化学:主要研究与污染控制有关的化学机制及工艺技术中化学基础性问题。 ④污染生态化学:是研究化学污染物在生态系统中产生生态效应的化学过程的学科。 ⑤环境计算化学:主要利用有效的数学近似以及电脑程序计算分子的性质。 ⑥环境生物化学:是研究环境化学品对生命影响的学科。 第一章: 1、地球环境主要由哪些圈层构成?英文单词?各之间有什么联系?各有哪些性 质?(10分) 答:地球环境主要由大气圈(atmosphere)、水圈(hydrosphere)、土壤圈(pedosphere)、岩石圈(lithosphere)和生物圈(biosphere)构成。 联系:大气圈、水圈、土壤圈和生物圈共同组成了地球环境系统,每个圈层都离不开

大连理工大学专升本高等数学题库道

大连理工大学专升本高等 数学题库道 Last updated on the afternoon of January 3, 2021

Z题库建议搜索作业帮 [题型]单选题 [章节] [类别]模拟 [题干]题目编号01 [选项] [答案]D [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号02 [选项] [答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号03 [选项] [答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号04 [选项]

[答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号05 [选项] [答案]D [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号06 [选项] [答案]D [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号07 [选项] [答案]C [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号08

[答案]B [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号09 [选项] [答案]B [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号10 [选项] [答案]A [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号11 [选项] [答案]B [解析] [难度]中 [分数]2 [题型]单选题

大连理工数学分析试题及解答

2000年大连理工大学硕士生入学考试试题——数学分析 一、从以下的第一到第八题中选取6题解答,每题10分 1. 证明:1 ()f x x =于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一致连续 证明: 01212(1)0,()[1]2 (2)1||()|()()|f x x x f x f x δδδδεδδε<= =+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在 当所以,在无理点连续 为有理数,。不难找到趋近于的收敛子列:无理数这样显然不连续。

大工2018年春高等数学期末复习题

机 密★启用前 大连理工大学网络教育学院 2018年春《高等数学》 期末考试复习题 ☆ 注意事项:本复习题满分共:400分。 一、单项选择题(本大题共60小题,每小题2分,共120分) 1、设x x x x f 2)(,)(2==?,则=)]([x f ?( ) A 、2 2x B 、x x 2 C 、x x 2 D 、x 22 答案:D 2、下列结论正确的是( ) A 、函数x y 5=与x y 5-=关于原点对称 B 、函数x y 5=与x y -=5关于x 轴对称 C 、函数x y 5=与x y 5-=关于y 轴对称 D 、函数x y 5=与x y 5log =关于直线y=x 对称 答案:D 3、设)(x f 在()+∞∞-,内定义,则下列函数中必为奇函数的是( ) A 、|)(|x f y = B 、|)(|x f y -= C 、c y = D 、)(2 x xf y = 答案:D 4、下列极限存在的有( ) A 、2 ) 1(lim x x x x +∞→ B 、1 21 lim 0-→x x C 、x x e 1 lim → D 、x x x 1 lim 2++∞ → 答案:A 5、当0→x 时,与x x --+11等价的无穷小量的是( ) A 、x B 、x 2 C 、2 x D 、2 2x 答案:A 6、当∞→n 时,为了使n 1sin 2 与k n 1 等价,k 应为( ) A 、 2 1 B 、1

C 、2 D 、3 答案:C 7、已知三次抛物线3x y =在点1M 和2M 处的切线斜率都等于3,则点1M 和2M 分别为( ) A 、(-1,-1)及(1,1) B 、(-1,1)及(1,1) C 、(1,-1)及(1,1) D 、(-1,-1)及(1,-1) 答案:A 8、根据函数在一点处连续和可导的关系,可知函数???? ???≥<<≤+=1,1 10,20,2)(2 x x x x x x x x f 的不可导点是( ) A 、1-=x B 、0=x C 、1=x D 、2=x 答案:C 9、设x x y 2 212--=,则='y ( ) A 、 ()2 22 214x x -- B 、 ()2 22 212x x +-- C 、 ()2 22 212x x -- D 、 ()2 22 214x x +- 答案:D 10、=)(arccos x d ( ) A 、xdx 2 sec B 、xdx 2 csc C 、 dx x 2 11- D 、dx x 2 11-- 答案:D 11、在区间[-1,1]上,下列函数中不满足罗尔定理的是( ) A 、1)(2 -=x e x f B 、)1ln()(2 x x f += C 、x x f =)( D 、2 11 )(x x f += 答案:C 12、下列极限中能使用罗必达法则的有( ) A 、x x x x sin 1sin lim 20 → B 、?? ? ??-+∞ →x x x arctan 2lim π C 、x x x x x sin sin lim +-∞→ D 、2 sin lim x x x x ∞ → 答案:B 13、下列函数对应的曲线在定义域内为凹的是( ) A 、x e y -= B 、)1ln(2 x y += C 、3 2x x y -= D 、x y sin = 答案:A 14、下列函数中原函数为)0(ln ≠k kx 的是( )

大连理工大学2000-2017年数学分析真题

大连理工大学2000年数学分析真题 (2) 大连理工大学2001年数学分析真题 (4) 大连理工大学2002年数学分析真题 (6) 大连理工大学2003年数学分析真题 (8) 大连理工大学2004年数学分析真题 (10) 大连理工大学2005年数学分析真题 (12) 大连理工大学2006年数学分析真题 (14) 大连理工大学2008年数学分析真题 (16) 大连理工大学2009年数学分析真题 (18) 大连理工大学2010年数学分析真题 (20) 大连理工大学2011年数学分析真题 (22) 大连理工大学2013年数学分析真题 (24) 大连理工大学2014年数学分析真题 (25) 大连理工大学2015年数学分析真题 (28) 大连理工大学2016年数学分析真意 (30) 大连理工大学2017年数学分析真题 (32)

大连理工大学2000年数学分析真题 一.从以下的第一到第八题中选取6题解答,每题10分 1.证明: ()x x f 1 = 于区间()10,δ(其中0<0δ<1)一致连续,但是于(0,1)内不一致连续。 2.证明:若()x f 于[a ,b]单调,则()x f 于[a ,b]内Riemann 可积。 3.证明:Dirichlet 函数: ()()?? ???==有理数为无理数q p x q x x f ,1,0在所有无理点连续,在有理点间断。 4.证明:若()()b a C x f ,∈,(指(a ,b )上的连续函数,且任意()()b a ,,?βα, ()?=β α 0dx x f ,那么()()b a x x f ,0∈≡,。 5.证明:∑∞ =-1 n nx ne 于(0,+∞)不一致收敛,但是对于0>?δ,于[)+∞,δ一致收敛。 6.证明:()?? ???=≠=0,00 ,1sin 4 x x x x x f ,在0=x 处有连续的二阶导数。 7.利用重积分计算三个半长轴分别为a,b,c 的椭球体的体积。 8.计算第二类曲面积分:??∑ ++zdxdy ydzdx xdydz ,其中,∑是三角形 ()10,,=++>z y x z y x ,,法方向与z y x ,,轴成锐角为正。 9.假设∞ →=n n a a lim ,证明2 2lim 2 21a n na a a a n n n = +++∞ → 。 11.计算曲面积分?? ++=S dxdy z dzdx y dydz x I 3 3 3 ,S 为椭球面122 2222=++c z b y a x 的外侧。 12.设()[]()?-==-∈>1 1 ,,3,2,111,10 n dx x C x n n ,, ,φφφ,对于任意的c>0,()x n φ在[][] 1,,1,1c -上一致收敛于0。证明:对于任意()[]1,1-∈C x g ,()()()?-∞→=1 1 0lim g x x g n n φ 13.证明:一个严格递增函数的间断点只能是第一类间断点

大连理工大学 高等数值分析 常微分方程数值解法-2017

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<<<<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=- 方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

大连理工大学高等数学(上)期中测试

姓名:__________ 大 连 理 工 大 学 盘锦校区期中试题 学号:__________ 任课教师:________ 课 程 名 称: 高等数学A(1) 试卷: A 考试形式:闭卷 学院(系):_______ 授课院(系):基础教学部_ 考试日期:2016年11月19日 试卷共 6页 _____ 级_____ 班 装 一. 填空题(每题6分,共计30分) 1. 12011lim 1cos _____;lim ______.1x n x x n n x →∞→+???? -== ? ?-???? 2. )lim 0,_____,____._x ax b a b →-∞ -===则 3. 2,1; ()1____,____., 1. x x f x x a b ax b x ?≤====? +>?设在点处可导,则 224sin d 4.(),. sin cos d t x t y t y t t t x π==??=+?设为参数则=___________ 25.____,ln ,____. a y ax y x === 当时曲线和相切切点为 二. 选择题(每题4分,共计20分) 1 () ()()()0()()(). ()0,()()()0,()()1.()()0()0.lim(1()),f x x A f x g x x B f x g x C x f x g x D x g x f x f x g x x f x g x e →→=→→→≠+=和是时的等价无穷小. 当时是比是更高阶的无穷小.当时是比是更高阶的无穷小. 设函数和是时的无穷小量 且若则( ).

大连理工大学矩阵大作业

2013级工科硕士研究生 《矩阵与数值分析》课程数值实验报告 大连理工大学 Dalian University of Technology

一、设 6 2 2 10 1 N N j S j = = - ∑,分别编制从小到大和从大到小的顺序程序分别计算 100001000000 , S S 并指出两种方法计算结果的有效位数。 程序代码: 从小到大: function f=s(N); %定义函数s f=0; %初始值为0 for j=N:-1:3 %j从3到n循环(从小到大) ft=1000000/(j^2-1); %Sj f=f+ft; %SN end 从大到小: function f=s(N); %定义函数s f=0; %初始值为0 for j=N:-1:3 %j从3到n循环(从小到大) ft=1000000/(j^2-1); %Sj f=f+ft; %SN end 执行结果: 从小到大: s(10000) ans = 4.16566671666167e+05 s(1000000) ans =

4.166656666671731e+05 有效数字:16,16 从大到小: s(10000) ans = 4.165666716661668e+05 s(1000000) ans = 4.166656666671667e+05 有效数字:16,16 分析: 小数和大数相加时,按照从大到小的顺序和按照从小到大的顺序得出的结果不同,前者由 于舍入误差的影响而使结果不准确,所以应避免大数吃小数的现象。 二、解线性方程组 1.分别利用Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组Ax b =,其中常向量为()21n -维随机生成的列向量,系数矩阵A 具有如下形式 1111 11 1122n n n n n n n n T I I I A I I T I --------+-?? ?- ?= ? - ? -+? ? , 其中1 211112n T --?? ? - ?= ?- ? -? ? 为1n -阶矩阵,1n I -为1n -阶单位矩阵,迭代法计算停止的条件为:10 12 10k k x x -+-<,给出10,100,1000n =时的不同迭代步数. 程序代码:

相关文档
最新文档