高中数学竞赛讲义---代数式的恒等变换方法与技巧

高中数学竞赛讲义---代数式的恒等变换方法与技巧
高中数学竞赛讲义---代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧

一、代数式恒等的一般概念

定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。

定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。

两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但

x

=,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。

定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。

代数式的变形,可能引起定义域的变化。如lgx2的定义域是(,0)(0,)

-∞+∞,2lgx的定义域是(0,)

+∞,因此,只有在两个定义域的公共部分(0,)

+∞内,才有恒等式lgx2=2lgx。由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。

例1:设p

x

=有实根的充要条件,并求出所有实根。

由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。

解:

原方程等价于

22

2

(

0,0

x p x

x x

?-=-

?

?

-≥

??

2

2

2

22

2

(4)

4448(2)

44

1

33

0440,0

p

x

x p p

x x

x x p x

?-

=

?

?=+--

?

?

?

?

?≤≤?≤

??

??

??+-≤≥

??

?

2

2

2

(4)

8(2)

44

,0

43

p

x

p

p

x x

?-

=

??-

??

-

?≤≤≥

??

由上式知,原方程有实根,当且仅当p满足条件

2

4(4)44

48(2)33

p p

p

p

--

≤≤?≤≤

-

这说明原方程有实根的充要条件是

4

3

p

≤≤

。这时,原方程有惟一实根x=。

二、恒等变换的方法与技巧

恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。

1.分类变换

当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

例1:当x取什么样的实数值时,下列等式成立:

(a

=(b

1

=;

(c

2 =。

解:

(0) m m

=≥

记方程左边为f(x)

,则()

f x=

1

1||1|1

221

2

x

x

=+=

≤≤

由此可知,

当m=时,原方程的解集为

1

[,1]

2

当[0,

m∈时,解集为?;

当)

m∈∞时,

m

=,解得2

1

(2)

4

x m

=+。

即当)

m∈+∞时,原方程的解集为2

1

{(2)}

4

m+。

例2:在复数范围内解方程组222

555

3,

3,

3.

x y z

x y z

x y z

++=

?

?

++=

?

?++=

?

解:考虑数列*

,

n n n

n

a x y z n

=++∈N。不难证明此数列满足递推式

321

()()

n n n n

a x y z a xy yz zx a xyza

+++

=++-+++,其中

125

3,3

a a a

===。

利用基本恒等式,得2

12

1

()3

2

xy yz zx a a

++=-=,

3123

11

[()]

33

xyz a a a xy yz zx a

=--++=,∴{}

n

a的

递推式化为*

3213

1

33,

3

n n n n

a a a a a n

+++

=-+?∈N

由此得

432313543323

11

3349,331027

33

a a a a a a a a a a a a

=-+?=---+?=-

5

3

a=,得

3

10273

a-=,∴

3

3

a=。∴

3

1

1

3

xyz a

==。

综上所述知,原方程组等价于

3,

3,

1.

x y z

xy yz zx

xyz

++=

?

?

++=

?

?=

?

由韦达定理知,x,y,z是关于t的三次方程33

3310

t t t

-+-=的三根,此三次方程

即3

123

(1)0,1

t t t t

-=∴===,这说明原方程组在复数范围内的解集为{(1,1,1)}。

注:此题还可以利用三次单位根122

ω=-+的性质来解。 2.利用对称性

定义4 一个n 元解析式12(,,

,)n f x x x 称为对称式,当且仅当对于任意的i ,(1)j i j n ≤<≤都有

11(,,,,,,)(,,,,,,)i j n j i n f x x x x f x x x x ≡。

由定义可知,对称式的各变元所处的地位相同,因此,一个对称式12(,,

,)n f x x x 具有下列性质:

(1)若对于变元x 1,x 2,f 具有性质p ,则对于任意的变元,,i j x x f 也具有性质p 。 (2)对于x 1,x 2,…,x n 的任意排12,,,i i in x x x ,有1212(,,,)(,,,)i i in n f x x x f x x x =,因此,对

于讨论f 具有某一性质时,可不妨设12n x x x ≥≥

≥。

定义5 一个n 元解析式称为轮换对称式,当且仅当x 2代x 1,x 3代x 2,…,x n 代x n-1,x 1代x n 时有

12231(,,,)(,,,,)n n f x x x f x x x x ≡。

显角,对称式一定是轮换式,但轮换式不一定是对称式。例如,x 2y+y 2z+z 2x 是轮换式,但不是对称式。因此,对称式所具有的性质(1)、(2)对轮换式一般不成立。由轮换的特点,在解题中,为了方便起见,我们可指定变元中x 1最大(或最小)。

例3:设x ,y ,z>0,求证(x+y+z)5-(x 5+y 5+z 5)≥10(x+y)(y+z)(z+x)(xy+yz+zx)等号成立当且仅当x=y=z 。

证:令5555(,,)()()f x y z x y z x y z =++-++。易知(,,f x y z )是对称式。 ∵当x+y=0时,f(x ,y ,z)=0,∴()|(,,)x y f x y z +。从而()|,()|y z f z x f ++, ∴()()()|x y y z z x f +++。注意到f 是关于x ,y ,z 的五次齐次式,故可设

222(,,)()()()[()]()f x y z x y y z z x A x y z B xy yz zx =++++++++,令0,1,1x y z ===,

得2A+B=15。令1x y z ===,得A+B=10。因此,A=B=5。

∴2

2

2

(,,)5()()()()f x y z x y y z z x x y z xy yz zx =++++++++注意到,,0x y z >,

且222

x y z xy yz zx ++≥++,得(,,)10()()()()f x y z x y y z z x xy yz zx ≥+++++等号成立的条件为

x y z ==。

例4:设a ,b ,c 是三角形的边长,证明2

2

2

()()()0a b a b b c b c c a c a -+-+-≥并说明等号何时成立。 证:令欲证不等左边为(,,)f a b c ,则易证(,,)f a b c 为轮换式(非对称)。故可设,a b c ≥。注意到

0b c a +->,则可先考虑将f 中分离出一个含b+c-a 的非负式子。事实上

222()()[()]()f a b a b b c b c c b b a c a =-+-+-+-

2222()()()()(2)()()c b a b c a ab b c ab c a c b a b a b b c b c =-+---+--+-+-

再令222*()()(2)()()f ab b c ab c a c b a b a b b c b c =--+--+-+- 令a c =,有222*()()()0f bc b c c b c b b c b c =--+-+-= 令a b =,有2222*()()(2)()0f b b c b c b c b b c b c =--+--+-=

∴**|,|a c f a b f --。又*|b f ,∴*()()b a c a b f --+。注意到*f 关于c 是二次式,a ,b 是三次式,故可设*()()()f b a c a b xa yb zc =--++令b=c ,得22*()()[()]f ab a c b a c xa y z b =-≡-++, ∴()a xa y z b ≡++,∴0,1y z x +==令a=0,得22*()()f b c b c b c yb zc =-≡+,∴b c yb zc -≡+,∴1,1y z ==-。于是2**()()0f b a c a b c a f =-+-+≥。从而2*()()0f c b a b c a f =-+-+≥

显然,当且仅当a=b=c 时f=0。

注:对于*f ,也可直接通过提取公因式法来分解因式。事实上

1222*()(2)()()()()b f a c a c b a a c a c b a b c bc b c -?=--+-+---+-

22()(2)()[]()(2)()()()()[2()]()[()()()]()()()

a c a c a

b b

c a ab ac bc a c a c a b b c c a a b c a ac a a b ab ac bc b c a a b c b a a b c a b a a b c =---+---++=---+--+=--++--+=--+-+=--+-

3.逆推分析

从一个数学过程的结果出发,按与原来相反的程序去推求初始条件的方法叫做逆推分析法,它的特点是每一步逆推均可逆。由此可见,逆推分析法是证明恒等式的重要方法。

例5:设a ,b ,c ,d ,x ,y 为正实数,且满足,

x ad bc xy ac bd y ab cd

+=+=+。求证: abx cdx ady bcy

a b x c d x a d y b c y

+=+++++++++。

证:注意到,

x

xy y

的表达式有()()ab c d x cd a b x +++++ ()()()()()()()()

ab c d cd a b x ab cd ab c d cd a b y ad bc ad b c y bc a d y =+++++=+++++=+++++ 利用①式,将欲证等式两边通分化简,等价于

()()()()x a d y b c y y a b x c d x ++++=++++

②式左边=2()()()x a d b c xy a b c d xy +++++++

2()()()x ac bd x ab cd xy a b c d xy =++++++++ 22()()x y y ad bc xy a b c d xy =+++++++ 2[()()()]y x x a b c d a b c d =+++++++

()()y a b x c d x =++++②

式右边。故原等式得证。 4.整体代换

把若干变元的整个式子换成一个新的字母,于是问题中的变元就减少了,有利于式的变形求解。 例6:求出所有四元实数组1234(,,,)x x x x 使其中任一数与其他三数的积之和都等于2。

解:根据题意,四元数组1234(,,,)x x x x 满足方程组;12342341

341241232,2,2,2.

x x x x x x x x x x x x x x x x +=??+=??+=??+=?易知,所有0(1,2,3,4)i x i ≠=。

于是可作整体代换:令1234x x x x p =,则上述每一个方程均可写成如下形式2i i

p

x x +

=,

即220i i x x p -+=(p≠0)

,解之得1i x =由于i x 是实数,故1p ≤。以下分两种情况讨论:

(1)若p=1,则1,1,2,3,4.i x i == (2)若p<1,则有三种可能:

(i )

三个根为1

一个根为1

这时32(1(1(1p p ==?

21(1111p ?=?=?=。但这和p<1的假设矛盾。

(ii

)三个根为1

1

3(1(1p =

22(11(1(1)p p =??=<

113p ?-=?=-,故有一个i x 为3,其他三数为-1。

(iii

)两个根为1

1

222(1(2p p ==,故p=1。这又和p<1的假设矛盾。

综上所述,原方程组共有五组不同的实数解:

(1,1,1,1)(3,1,1,1),(1,3,1,1),(1,1,3,1)(1,1,1,3)------------。

6.重新组合

所谓重新组合是指把几个独立的式子依据某一运算组合成新的式子,其目的是使组合后的解析式变得简单,以便于问题求解。

例8:确定所有能使不等式组22

1352352

2

24134122

35245222413513225

24124()()0,()()0,()()0,()()0,()()0.

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?--≤?--≤??--≤??--≤?

?--≤?成立的12345(,,,,)x x x x x ,

其中12345,,,,x x x x x 为正实数。

解:注意到此不等式组关于12345,,,,x x x x x 成轮换对称,因此可考虑将五个不等式重新组合(相加)起来,得

22222222222222222223

212131415232425343545124

x x x x x x x x x x x x x x x x x x x x x x x +++++++++-2222222221352142353143254134255135240x x x x x x x x x x x x x x x x x x x x x x x x x x x ---------≤

再重新组合各项,得

222212141224133413351111

()()()()2222x x x x x x x x x x x x x x x x -+-+-+-222214431553232523351111

()()()()2222x x x x x x x x x x x x x x x x +-+-+-+- 224451()2x x x x +-225541

()02

x x x x +-= 从而可推出x 1=x 2=x 3=x 4=x 5。

经检验每组五个相等的正实数是原不等式组的解。故原不等式组的解为x 1=x 2=x 3=x 4=x 5=a ,a ∈R +。 在解题中既要注意到题目各个部分,又要从整体上把握题目。因此,必须把化整为零与重新组合的思想有机地结合起来。

7.消去部分

所谓消去部分是指或者让一部分式子互相抵消,或者让一部分式子代替另一部分式子。比如,在解方程中的加减消元法、代入消元法、比较消元法;数列求和(积)中的交叉消去(交叉相约)等。

例11:求出所有的实数a ,使得存在非负实数12345,,,,x x x x x 适合

5

55

3

2

531

1

1

,,k

k k k k k kx

a k x a k x a ======∑∑∑。

解:我们对i x 的个数为n 来求解。注意到3

2

2

a a a a ?=?,可考虑先消去a ,再由12,,,n x x x 的值来

确定a 的值,事实上,5

3

2

2221

1

1

11

(

)()()

()00n n n

n n

k

k

k

i j i j k i k i j kx k x k x ij i j x x x x ======?-=?=∑∑∑∑∑

(,i j =1,2,…,n ,i j ≠)。则对任意x k 有下列两种情况

(1)0k x =,其余的i x 均为零,得a=0;

(2)0k x ≠,其余i x 均为零,得2

32/(1,2,,)k k a a k x kx k k n a

====。

综上所述,a 的取值集为222{0,1,2,,}n 。

8.构造对偶式

根据题中某式A 的结构特征,构造A 的对偶式B 。利用A 与B 之间的运算(主要是加、减、乘)求得A 、B 的两种关系式,从而使问题获得解决。

常见的对偶式有a+b 与a-b ;ab 与a b ;sinx 与cosx ;tanx 与cotx ;n a a b +与n

b a b

+等等。

例13:设0(1,2,

,)i x i n >=且11n

i i x ==∑。求证:2

22

12

1223

112

n n x x x x x x x x x ++

+≥+++ 证:令不等式左边为A ,其对偶式22

2

32

112231

n x x x B x x x x x x =++

+

+++,由平均不等式可得: 222

2

22

23112

12231()()()n n x x x x x x A B x x x x x x ++++=++

++++12231111

()()()1222

n x x x x x x ≥++++

++= ① 又222

2

22

23112

1223

1

n n x x x x x x A B x x x x x x ----=++

+

+++12231()()()0n x x x x x x =-+-++-=

①+②得,121,2

A A ≥≥

。 10

.数形结合

对于某些特殊的代数式,它有其特殊的几何意义,我们可利用这种几何意义将代数式之间的变换转化为几何量之间的变换,使最终达到我们求解问题的目的。

16:已知正实数p

,q ,r

满足关系式

1p q r

+++=

。求证方程组

=

=有惟一解。 解:显然,,,(0,1)p q r ∈,故存在三锐角A 、B 、C cos cos cos A B C ===,于是

222cos cos cos 2cos cos cos 1A B C A B C +++=。易证上式当且仅当A+B+C=π成立。故以A ,B ,C 为内角可构造ΔABC 。设其外接圆半径为

1

2

,其垂足三角形为ΔDEF ,H 为垂心,则易计算得ΔAEF ΔABC (∵B ,C ,E ,F 共圆)∴cos EF

AF A BC AC ==。由A ,F ,H ,E 共圆得sin EF

AH A

=,而

1sin

BC A =。

∴cos sin ,cos sin BC A

A BC AH A A

?=∴=

==,同理,cos cos HB B CH C ===

又11

cos cos 22

BHC S BC DH EC HB DH B C ?=?=??=?=

同理,cos cos cos cos EH C A FH A B =?=?=

sin BD CD BC A +==

=

=

=(,,)(,,)x y z p q r =为原方程组

的一组解。若另有一组解(,,)x y z ''',不妨设x p '>,则由③式知y q '<,由①式知z r '>,由②式知x p '<矛盾。故原方程组有惟一解(,,)p q r 。

习题1—1

1

mx =。

2.设,,x y z ∈R 。求证:不等式3333x y z xyz ++≥成立的充要条件是0x y z ++≥或x y z ==。

3.设0x y z ++=,求证:555333222

532

x y z x y z x y z ++++++=?。

4.设,,a b c

2=

的正数,试证明方程组:1,

1,1,===有惟一实数解。

1.答案:当0m ≤

或m >原方程的解集为?;

当0m <<时,

原方程的解集为;

m ≤

。 2.提示:利用重要恒等式3332223()()x y z xyz x y z x y z xy yz zx ++-=++?++---

2221()[()()()]02

x y z x y y z z x ++-+-+-≥。 3.提示:构造数列*

()n

n

n

n a x y z n =++∈N ,则2

2

2

120,2()a a x y z xy yz zx ==++=-++。

33333a x y z xyz =++=。可证。

4.简解:在边长为1的正三角形内必存在一点P

,恰好满足:

124

=。则222111,,x PA y PB z PC ===就是原方程组的解。 若(,,)x y z '''也是一组解,如果1x x '>,则由第三个方程知1y y '<,又由第一个方程有1z z '>,再由

第二个方程有:1x x '<,矛盾。

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

人教版高中数学必修四三角恒等变换题库

(数学4必修)第三章 三角恒等变换 [基础训练A 组] 一、选择题 1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .7 24- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.设00sin14cos14a =+,00sin16cos16b =+,c = , 则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b << 5.函数)cos[2()]y x x ππ= -+是( ) A .周期为4π的奇函数 B .周期为4 π的偶函数 C .周期为2π的奇函数 D .周期为2 π的偶函数 6.已知cos 2θ= 44sin cos θθ+的值为( ) A .1813 B .1811 C .9 7 D .1- 二、填空题 1.求值:0000 tan 20tan 4020tan 40+=_____________。 2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα += 。 3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223 θ θ +=那么sin θ的值为 ,cos2θ的值为 。 5.ABC ?的三个内角为A 、B 、C ,当A 为 时,cos 2cos 2 B C A ++取得最大值,且这个最大值为 。 三、解答题 1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值. 2.若,2 2sin sin = +βα求βαcos cos +的取值范围。 3.求值:0 010001cos 20sin10(tan 5tan 5)2sin 20 -+-- 4.已知函数.,2 cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合; (2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象. (数学4必修)第三章 三角恒等变换 [综合训练B 组] 一、选择题 1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

初中奥数恒等变形知识点归纳整理.pdf

初中奥数恒等变形知识点归纳整理 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数 值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种 形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立 设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6

再设x=2,代入①,因为已得c=6,故有 22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得 由②得b=5 将b=5代入③得 1-5+c=2 c=6 ∴x2+3x+2=(x-1)2+5(x-1)+6 这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.

高一数学三角恒等变换

高一数学 三角恒等变换 一、考点、热点回顾 1、诱导公试:奇变偶不变,符号瞧象限 2、同角三角函数得基本关系式: 22sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ?= 3、与差角公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ○3β αβ αβαtan tan 1tan an )tan(?±=± t 4、倍角公式: ①θ θθθ2 tan 2cos sin 22sin ==②2222cos2cos sin 2cos 112sin θθθθθ=-=-=- 5、降次升角公式: ○121cos 2sin 2 θ θ-= ○22 2cos 1cos 2θθ+= ○31 sin cos sin 22θθθ= 6、万能公式: ○122tan sin 21tan θ θθ = + ○2 221tan cos21tan θ θθ -= + 7、半角公式:(符号得选择由2 θ 所在得象限确定) ①2cos 12sin θθ-±= ○22cos 12cos θθ+±= ○3sin 1cos tan 2 1cos sin θ θθ θθ -== + 8、辅助角公式: sin cos a b αα±)α?±,(tan b a ?= )、 ), tan )a b αγγ=(、 二、典型例题 1.已知角α得终边过点p(-5,12),则cos α= ,tan α= . 2.若cos θtan θ>0,则θ就是 ( ) A.第一象限角 B.第二象限角 C.第一、二象限角 D.第二、三象限角 3.sin 2150°+sin 2135°+2sin210°+cos 2 225°得值就是 ( ) A. 14 B. 34 C. 114 D. 94 4.已知sin(π+α)=-3 5 ,则 ( ) A.cos α= 45 B.tan α= 34 C.cos α= -45 D.sin(π-α)= 3 5

高中数学人教版必修简单的三角恒等变换教案(系列一)

3.2 简单的三角恒等变换 一.教学目标 1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向 使用公式等数学思想,提高学生的推理能力。 2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三 角恒等变形在数学中的应用。 3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中 如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 三、教学设想: (一)复习:三角函数的和(差)公式,倍角公式 (二)新课讲授: 1、由二倍角公式引导学生思考:2 αα与有什么样的关系? 学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222 sin ,cos ,tan 222α α α. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 2 2α α-=;

因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=. 又因为222 sin 1cos 2tan 21cos cos 2α α ααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2.已知135sin = α,且α在第二象限,求2tan α的值。 例3、求证: (1)、()()1sin cos sin sin 2 αβαβαβ=++-????; (2)、sin sin 2sin cos 22θ? θ? θ?+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手. ()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2 αβαβαβ=++-????; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=, 那么,22θ? θ? αβ+-==. 把,αβ的值代入①式中得sin sin 2sin cos 22θ?θ?θ?+-+=. 思考:在例3证明中用到哪些数学思想? 例3证明中用到换元思想,(1)式是积化和差的形式,

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

1—1代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx 2的定义域是(,0)(0,)-∞+∞U ,2lgx 的定义域是 (0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。由lgx 2变形为2lgx 时, 定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222 (4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤ ???? ≥??+-≤≥?? ? 222(4)8(2) 44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件24(4)44 048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是4 03p ≤≤ 。这时,原方程有惟一实根x =。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

高一数学必修一三角恒等变换公式

三角恒等变换公式 教学目标: 1、掌握二倍角公式、和差公式的应用; 2、掌握拼凑法在求解角度三角函数值的应用。 重难点分析: 重点:1、和差公式、二倍角公式的记忆; 2、公式变换与求解三角函数值。 难点:1、二倍角公式的灵活使用; 2、整体代换思想与求解三角函数值。 知识点梳理 1、和差公式 sin()__________________±=αβcos()________________±=αβtan()___________ ±=αβ。 2、二倍角公式 sin 2_______________α=; cos 2___________________________________α===; tan 2____________α=。 3、半角公式[升(降)幂公式] 2sin ____________α=、2cos _________α=、sin cos _________αα=。 4、合一公式[辅助角公式] sin cos ____________a b αα+=(?由,a b 具体的值确定); )sin(cos sin 22?ααα++= +b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注意:公式中的α是角度代表,可以是α2、2 α 等。

知识点1:利用公式求值 (1)和差公式 【例1】cos79°cos34°+sin79°sin34°=【 】 A .2 1 B .1 C . 2 2 D . 2 3 【例2】sin 27cos63cos27sin63??+??=【 】 A .1 B .1- C . 22 D .2 2- 【随堂练习】 1、sin15°cos75°+cos15°sin75°等于【 】 A .0 B . 2 1 C . 2 3 D .1 2、cos12°cos18°-sin12°sin18°=【 】 (A )2 1- (B )2 3- (C )2 1- (D ) 2 3 3、sin70°sin25°+cos70°cos25°=________。 4、sin34sin 26cos34cos26??-??=【 】 A .12 B .1 2 - C .32 D .32- 5、式子cos cos sin sin 12 6 12 6 π π π π -的值为【 】

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

高一数学三角恒等变换-名校试题(答案)

三角恒等变换习题详解 一、选择题 1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π 4),x ∈R ,则函数f (x ) 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2的偶函数 [答案] A [解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π 2=π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为3 2 ,则cos2α=( ) A .-1 4 B .-1 2 C.12 D.3 2 [答案] B [解析] ∵|a |2=cos 2α+?? ? ?222 =cos 2α+12=34, ∴cos 2α=14,∴cos2α=2cos 2α-1=-1 2. 3.已知tan α 2=3,则cos α=( ) A.45 B .-45 C.4 15 D .-35 [答案] B [解析] cos α=cos 2α2-sin 2α 2=cos 2α2-sin 2 α2cos 2α2+sin 2 α 2 =1-tan 2 α 21+tan 2 α2 =1-91+9=-4 5 ,故选B. 4.(2010·揭阳市模考)若sin x +cos x =1 3,x ∈(0,π),则sin x -cos x 的值为( ) A .± 17 3 B .- 173 C.13 D. 173 [答案] D

[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-8 9<0,∴x ∈????π2,π, ∴(sin x -cos x )2=1-sin2x =17 9 且sin x >cos x , ∴sin x -cos x = 17 3 ,故选D. 5.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( ) A .x ≤y B .x <y C .x ≥y D .x >y [答案] D [解析] ∵π>A +B >π 2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选 D. 6.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( ) A .向左平移π 2个单位长度 B .向左平移π 4个单位长度 C .向右平移π 2个单位长度 D .向右平移π 4个单位长度 [答案] D [解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x , 将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π 4个单位得,sin2????x -π4=sin ????2x -π2=-sin ??? ?π 2-2x =-cos2x ,故选D. 7.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( ) A .-2cos α 2 B .2cos α 2 C .-2sin α 2 D .2sin α 2 [答案] C [解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π 4. ∴1+sin α+1-sin α

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

高中数学必修4 三角恒等变换

高中数学必修4 三角恒等变换1 1.已知(,0)2 x π ∈-,4 cos 5 x = ,则=x 2tan ( ) A . 247 B .247- C .7 24 D .724- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.函数)cos[2()]y x x ππ= -+是( ) A .周期为 4π的奇函数 B.周期为4π 的偶函数 C .周期为2π的奇函数 D .周期 为2 π 的偶函数 5.已知cos 23 θ= ,则44 sin cos θθ+的值为( ) A . 1813 B .1811 C .9 7 D .1- 6. 函数2 sin cos y x x x =+的图象的一个对称中心是( ) A .2( ,32π- B .5(,62π- C .2(,32π- D .(,3 π 7. 当04 x π <<时,函数22cos ()cos sin sin x f x x x x =-的最小值是( ) A .4 B . 12 C .2 D .14 8. 已知函数()sin(2)f x x ?=+的图象关于直线8 x π= 对称,则?可能是( ) A . 2π B .4π- C .4 π D .34π 9. 将函数sin()3y x π =-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将 所得的图象向左平移3 π 个单位,得到的图象对应的僻析式是( ) A .1sin 2y x = B .1sin()22y x π=- C .1sin()26y x π=- D .sin(2)6 y x π =-

2代数式恒等变形

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k ,用它表示连比的比值,以便把它们分割成几个等式. 例1.已知x y z a b b c c a == ---,求x+y+z 的值。 例2.已知 ()() 23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等, 求证:8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例3.已知x+y+z=xyz ,证明: x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点 两角和差公式 ⒉两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ (α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公 式)sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1- 2sin^2(α)2tanα tan2α=————— 1-tan^2(α) 半角公式 ⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosα

sin^2(α/2)=————— 2 1+cosα cos^2(α/2)=————— 2 1-cosα tan^2(α/2)=————— 1+cosα 万能公式 ⒌万能公式 2tan(α/2) sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 和差化积公式 ⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----·cos—--- 22

α+βα-β sinα-sinβ=2cos—----·sin—---- 22 α+βα-β cosα+cosβ=2cos—-----·cos—----- 22 α+βα-β cosα-cosβ=-2sin—-----·sin—----- 22 积化和差公式 ⒏三角函数的积化和差公式 sinα·cosβ=0.5[sin(α+β)+sin(α-β)] cosα·sinβ=0.5[sin(α+β)-sin(α-β)] cosα·cosβ=0.5[cos(α+β)+cos(α-β)] sinα·sinβ=-0.5[cos(α+β)-cos(α-β)] 9解三角形 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点DCH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

(完整版)高一数学必修四三角恒等变换单元测试题(含答案)

三角恒等变换单元测试题(含答案) 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、16 65 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( )

A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移 6π个单位B 、向右平移12π个单位C 、向左平移6π个单位D 、向左平移12π 个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113 π B 、x = 53π C 、53x π=- D 、3x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上) 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数()cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)

相关文档
最新文档