机械和功基本概念

机械和功基本概念
机械和功基本概念

第四章机械和功

4.1.1杠杆

一、知道

1、杠杆定义:在力的作用下能够绕着固定点转动的硬棒叫做杠杆。

2、杠杆的五要素:------组成杆杆的示意图

(1)支点o:杠杆绕着转动的固定点。

(2)动力F1:促使杠杆转动的力。

(3)阻力F2:阻碍刚刚转动的力。

(4)动力臂L1:从支点到动力作用线的距离。

(5)阻力臂L2:从支点到阻力作用线的距离。

二、会

1、会画力臂:画力臂方法:一找支点、二画线、三连距离、四标签。

⑴找支点O;⑵画力的作用线(虚线);⑶画力臂(虚线,过支点垂直力的作用线作垂线)

⑷标力臂(大括号)。

2、会确定力的方向:动力和阻力的方向不一定相反,但是动力与阻力使杠杆转动效果相反

4.1.2杠杆的平衡条件

1、杠杆的平衡:在动力和阻力的作用下,如果杠杆静止不动或绕支点匀速转动,那么杠杆就处于平衡状

态。

2、探究杠杆的平衡条件:

(1)实验器材:带有刻度的杠杆、铁架台(支架)、弹簧夹(线)、弹簧测力计、钩码

(2)实验前:调节杠杆使其在水平位置上保持平衡

(3)探究杠杆平衡条件的步骤:

1.把带有刻度杠杆的中点支到铁架台上

2.调节杠杆两端的平衡螺母,使杠杆在水平位置平衡(目的:能直接在杠杆上读出力臂数值)。

3.杠杆两端挂钩码,改变钩码的个数和钩码在杠杆上的位置直到杠杆在水平的位置重新平衡

4。使用测力计时,它对杠杆施加的力必须竖直向上(保证与杠杆垂直)

5。实验过程中应多次改变力的大小和力臂的大小,使杠杆在水平位置平衡,记录动力、动力臂、阻力、阻力臂的大小,把数据记录在表格中。

(.重复上述实验三次----目的得出普遍规律)

(4)实验结论:

杠杆的平衡的平衡条件:动力×动力臂=阻力×阻力臂

F1×L1=F2×L2

上式的意义是:动力臂是阻力臂的几倍,动力就是阻力的几分之一。

※解题指导:1、分析杠杆平衡条件问题:

必须要画出杠杆示意图,分析所受的力的大小和方向,找出

对应的力臂的大小,根据杠杆平衡条件解决问题。

2。解决杠杆平衡时动力最小问题:

当F2×L2一定时,必须使动力臂最大,动力才能最小。

(做法:在杠杆上找到一个与支点最远的点;动力过该点且与该点与支点的连线垂直)

杠杆类型杠杆结构特点优缺点实例

省力杠杆动力臂大于阻力臂省力但费距离独轮车、切纸刀(铡刀),

瓶起子、羊角锤、钢丝钳、

动滑轮

费力杠杆阻力臂大于动力臂费力但省距离筷子,镊子,钓鱼竿、人的

前臂、理发剪子、起重臂

等臂杠杆动力臂、阻力臂相等既不省距离也不省力天平,定滑轮,摩天轮

4.1.4 滑轮

一、滑轮:

1、定义:滑轮是周边有槽、能绕着轴转动的小轮。

2、实质:滑轮实质上是能连续转动的变形杠杆。

3、分类:滑轮根据工作情况可以分为定滑轮和动滑轮两种。

二、定滑轮:

1、定义:工作时,轴固定不动,不随物体移动的滑轮叫定滑轮

2、实质:是个等臂的杠杆

3、原理图:如图1

4、使用特点(好处):使用定滑轮不省力,但能改变用力的方向

5、对理想的定滑轮(不计轮轴间摩擦)F=G。

绳子自由端移动距离SF(或速度vF)=重物移动的距离SG(或速度vG)

三、动滑轮:

1、定义:工作时,轴随物体一起移动的滑轮叫动滑轮

2、实质:是个省力的杠杆

3、原理图:如图2

4、使用特点(好处):提升重物时,如果两边绳子平行,动力臂为阻力臂的两倍,动力是阻力的一半。

但是使用动滑轮不能改变用力方向。

5、理想的动滑轮(不计轴间摩擦和动滑轮重力)则:F= G

只忽略轮轴间的摩擦则,拉力F= (G物+G动)

绳子自由端移动距离SF(或vF)=2倍的重物移动的距离SG(或vG)

4.2.1机械功

1、功的定义:一个力作用在物体上,且物体沿力的方向通过了的距离,物理学上称这个力对物体做了机

械功,简称做了功。

2、做功的两个必要因素:(一)作用在物体上的力;

(二)物体在力的方向上移动的距离。

3、功的计算:力对物体所做的功W等于作用力F与物体在力的方向上移动的距离S的乘积

公式:W=F.S 1焦=1牛×米

4、功的单位:焦耳—简称焦

5、体会1焦的大小:两个鸡蛋(1牛的力)举高一米,举力做的功大约1焦

6、不做功的三种情况

(1)有力、没有距离(举不动)(推物体没推动)

(2)没有力、有距离(惯性)(某同学踢足球,球离开脚后继续飞行十米的距离,这个过程人没做功)(3)有力有距离--===有力、有距离但是力与距离互相垂直。

(提着水桶水平走100米,这个过程提水桶的力和重力做功都为0)

4.2.2机械功率

机械原理基本概念

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

1机械基础基本概念

第一讲 机械基础基本概念 学习目标及考纲要求 1. 了解机械、机器、机构、构件、零件的概念。?2. 理解机器与机构、构件与零件的区别。 3. 掌握运动副的概念,熟悉运动副的类型,了解其使用特点,同时能举出应用实例。 知识梳理 一、机器和机构 1.机器 (1)任何机器都是由许多实物(构件)组合而成的。 (2)各运动实体之间具有确定的相对运动。 (3)能代替或减轻人类的劳动,完成有用的机械功或实现能量的转换。 发动机:将非机械能转换成机械能的机器。 电动机:电能→机械能、内燃机:热能→机械能 空气压缩机:气压能→机械能 ? 工作机:用来改变被加工物料的位置、形状、性能、和状 态的机器。 如机床、纺织机、轧钢机、输送机、汽车、飞机等。 2.机构 (1)任何机器都是由许多实物(构件)组合而成的。 (2)各运动实体之间具有确定的相对运动。 相同点:从结构与运动角度来看,机器与机构是相同的。 不同点: 区别主要在于功用不同,机器的主要功用是利用机械能做功或实现能量转 换, 机构的主要功用在于传递或改变运动的形式。 3. 机器的组成 动力部分:机器动力的来源。如电动机、内燃机和空气压缩机等。 传动部分:将动力部分的运动和动力传递给工作部分的中间环节。如齿轮传 动。 工作部分:直接完成机器工作任务的部分,通常处于整个传动装置的终端,其 结 构形式取决于机器的用途。如金属切削机床的主轴、拖板、工作台 等。

自动控制部分:智能部分(与近代机器的区别) 二、构件和零件 1.构件 ⑴定义:构件是机构的运动单元体,也就是相互之间能作相对运动的物体。 固定构件:又称机架,一般用来支承运动构件,通常是机器的基体 或机座,例如各类机床的床身。 主动件:带动其他可动构件运动的构件。 运动构件 从动件:机构中除了主动件以外随着主动件运动而运 动的构件。 2.零件 定义:零件是构件的组成部分,是机器中的制造单元。 3.构件与零件联系与区别 联系:构件可以是一个零件,也可以是几个零件组成。 区别:构件是运动的单元体,零件是加工制造的单元体。 三、运动副 1.运动副概念 定义:两构件直接接触,又能产生一定相对运动的连接称为运动副。 2.运动副类型 转动副:两构件只能绕某一轴线作相对转动的运动副。 低副移动副两构件只能作相对直线移动的运动副。 (面接触) 按接触形螺旋副两构件只能沿轴线作相对螺旋运动的运动副。 式的不同 高副 (点、线接触) 3.低副和高副的特点 低副:面接触,容易制造和维修,承受载荷时单位面积压力较低,不能传递较复杂的运动,效率低、摩擦大。

机械加工通用技术要求规范

机械加工通用技术要求 规范 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

机械加工通用技术规范 1.目的 对机加工产品质量控制,以确保满足公司的标准和客户的要求。 本标准规定了各种机械加工应共同遵守的基本规则。 2.范围 适用所有机加工产品,和对供应商机加工产品的要求及产品的检验。 3.定义 A级表面:产品非常重要的装饰表面,即产品使用时始终可以看到的表面。 B级表面:产品的内表面或产品不翻动时客户偶尔能看到的表面。 C级表面:仅在产品翻动时才可见的表面,或产品的内部零件。 4.规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T3-1997普通螺纹收尾、肩距、退刀槽和倒角 GB/T145-2001中心孔 GB/T197-2003普通螺纹公差 GB/T1031-2009产品几何技术规范(GPS)表面结构轮廓法表面粗糙度参数及其数值GB/T1182-2008产品几何技术规范(GPS)几何公差形状、方向、位置和跳动公差标注GB/T1184-1996形状和位置公差未注公差值 GB/T1568-2008键技术条件 GB/T1804-2000一般公差未注公差的线性和角度尺寸的公差

GB/计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 GB/T4249-2009产品几何技术规范(GPS)公差原则 GB/梯形螺纹第4部分:公差 Q/不合格品控制程序 Q/机柜半成品钣金件下料技术要求 5.术语和定义 GB/T1182-2008给出的术语和定义及下列术语和定义适用于本文件。 切削加工 用切削工具(包括刀具、磨具和磨料)把坯料或上多余的材料层切去成为切屑,使工件获得规定的几何形状、尺寸和表面质量的加工方法。包括车削、铣削、刨削、磨削、拉削、钻孔、扩孔、铰孔、研磨、珩磨、抛光、超精加工及由它们组成的自动技术、数控技术、成组技术、组合机床、流水线、自动线。 特种加工 特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。公司现有的特殊加工方法有线切割加工、激光加工、水切割加工。 公差带 有一个或几个理想的几何线或面所限定的、由线性公差值表示其大小的区域。 6.技术要求 加工原则 1)“基准先行”原则

呼吸机相关概念

肺顺应性 肺顺应性是指单位压力改变时所引起的肺容积的改变,它代表了胸腔压力改变对肺容积的影响。它包括静态顺应性和动态顺应性两者,前者反映了肺组织的弹性,后者受肺组织弹性和气道阻力的双重影响。肺顺应性检查的适用范围有:①各种类型的肺纤维化、胸膜纤维化等限制性肺疾病。②肺水肿、肺充血。③急性呼吸窘迫综合征。④肺气肿。⑤小气道功能测定。 ⑥机械通气和呼吸监护。 健康值 男性:Clst(170±60)ml/cmH2O,Cldyn20(230±60)ml/cmH2O(1cmH20≈0.098kPa)。 女性:Clst (110±30)ml/cmH2O,Cldyn20(150±40)ml/cmH2O。 专家解读 临床用途:①作为某些疾病如肺纤维化、肺气肿等诊断参考或估计其严重程度。②频率依赖动态顺应性用于小气道功能测定较为敏感。③用于机械通气和呼吸衰竭监护,协助确定最佳PEEP水平。 (1)肺顺应性降低见于: ①限制性肺疾病,包括各种类型肺纤维化、胸膜纤维化等。 ②肺泡充填性疾病,如肺水肿、肺充血、肺泡出血、肺泡蛋白沉着症等。 ③急性呼吸窘迫综合征。 (2)肺气肿时,由于肺泡壁破坏弹力组织减少,故静态顺应性增加;肺泡附着对支气管环状牵引力减弱,肺充气不均,故动态顺应性减低。 (3)肺泡充气和排空的速度取决于肺顺应性与气道阻力的乘积,即时间常数。小气道疾病时,呼吸频率增快时,肺顺应性减低,称动态肺顺应的频率依赖性(frequency dependence of dynamic complianceFDC),是测定小气道功能的一项敏感指标。 (4)机械通气时,确定最佳PEEP水平,即能产生最大肺顺应性时的PEEP压力,此时可产生最大健康搜索的氧转运和最小的死腔。

机械设备通用技术要求

机械设备通用技术要求标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

机械设计通用的技术要求 1.零件去除氧化皮。 2.零件加工表面上,不应有划痕、擦伤等损伤零件表面的缺陷。 3.去除毛刺飞边。 4.经调质处理,HRC50~55。 5.零件进行高频淬火,350~370℃回火,HRC40~45。 6.渗碳深度0.3mm。 7.进行高温时效处理。 8.未注形状公差应符合GB1184-80的要求。 9.未注长度尺寸允许偏差±0.5mm。 10.铸件公差带对称于毛坯铸件基本尺寸配置。 11.未注圆角半径R5。 12.未注倒角均为2×45°。 13.锐角倒钝。 14.各密封件装配前必须浸透油。 15.装配滚动轴承允许采用机油加热进行热装,油的温度不得超过100℃。

16.齿轮装配后,齿面的接触斑点和侧隙应符合GB10095和GB11365的规定。 17.装配液压系统时允许使用密封填料或密封胶,但应防止进入系统中。 18.进入装配的零件及部件(包括外购件、外协件),均必须具有检验部门的合格证方能进行装配。 19.零件在装配前必须清理和清洗干净,不得有毛刺、飞边、氧化皮、锈蚀、切屑、油污、着色剂和灰尘等。 20.装配前应对零、部件的主要配合尺寸,特别是过盈配合尺寸及相关精度进行复查。 21.装配过程中零件不允许磕、碰、划伤和锈蚀。 22.螺钉、螺栓和螺母紧固时,严禁打击或使用不合适的旋具和扳手。紧固后螺钉槽、螺母和螺钉、螺栓头部不得损坏。 23.规定拧紧力矩要求的紧固件,必须采用力矩扳手,并按规定的拧紧力矩紧固。 24.同一零件用多件螺钉(螺栓)紧固时,各螺钉(螺栓)需交叉、对称、逐步、均匀拧紧。 25.圆锥销装配时应与孔应进行涂色检查,其接触率不应小于配合长度的60%,并应均匀分布。 26.平键与轴上键槽两侧面应均匀接触,其配合面不得有间隙。 27.花键装配同时接触的齿面数不少于2/3,接触率在键齿的长度和高度方向不得低于50%。

《汽车机械基础》试题库及答案

《汽车机械基础》试题库 模块一汽车机械基础简介 项目一机械及其相关概念的识别复习要点: 1、机器、机构、构件、零件的基本概念; 2、区分构件和零件; 3、汽车的结构。 一、填空题(每空1分) 1、构件是机器的______单元体;零件是机器的______单元体,分为______零件和_______零件。 2、一部完整的机器,就其功能而言,可分为__ ____、______ 、__ ____和 __ ____。 3、运动构件分为______ 和______ 。 4、汽车的基本结构都由______ 、______ 、______ 、______ 四大部分组成。答案: 1、运动、制造、专用、通用 2、动力部分、传动部分、执行部分、控制部分 3、主动件、从动件 4、发动机、底盘、车身、电器部分二、判断题(每题1分) 1、所有构件一定都是由两个以上零件组成的。() 2、汽车的发动机是驱动整个汽车完成预定功能的动力源。() 3、构件就是零件。()答案: 1、3 2、√ 3、3 三、选择题(每题2分) 1、在如图所示的齿轮—凸轮轴系中,键2称为( ) A、零件 B、机构 C、构件 D、部件 2、我们把各部分之间具有确定的相对运动构件的组合称为() A、机器 B、机构 C、机械 D、机床 3、汽车的转向系属于一下哪部分?() A、发动机 B、车身 C、底盘 D、电器设备答案: 1、A、 2、B 3、C 项目二平面机构的自由度计算复习要点: 1、能够判断平面机构是否具有确定运动。一、填空题(每空1分) 1、运动副是使两构件________,同时又具有_________的一种联接。平面运动副可分为 ________和_______。 2、平面运动副的最大约束数为。 3、机构具有确定相对运动的条件是机构的自由度数目主动件数目。 4、房门的开关运动,是副在接触处所允许的相对转动。 5、抽屉的拉出或推进运动,是副在接触处所允许的相对移动。 6、火车车轮在铁轨上的滚动,属于副。答案: 1、直接接触、相对运动、低副、高副 2、2 3、等于 4、转动 5、移动 6、齿轮 二、判断题(每题1分) 1、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。() 2、凡两构件直接接触,而又相互联接的都叫运动副。() 3、任何构件的组合均可构成机构。() 4、面接触的运动副称为低副。() 5、组成移动副的两构件之间的接触形式,只有平面接触。() 6、运动副中,两构件联接形式有点、线和面三种。()

机械原理基本杆组分析法

机械原理 机构运动分析基本杆组法 上 机 指 导 书

Ⅱ级机构的杆组分析法通用子程序设计 随着计算机的普及,用解析法对机构进行运动分析得到越来越广泛的应用。解析法中有矢量方程解析、复数矢量、杆组分析、矩阵运算等方法。本文采用杆组分析的方法,设计通用的Ⅱ级杆组子程序,可对一般的Ⅱ级机构进行运动分析。 1. 单杆运动分析子程序 单杆的运动分析,通常是已知构件三角形△P 1P 2P 3的边长l 、r 夹角α以及构件上某基 点P 1的运动参数x 1,y 1,x ’ 1,y ’ 1,x ’’1,y ’’1和构件绕基点转动的运动参数θ,θ’ ,θ ’’,要求确定构件上点P 2和P 3的运动参数。 显然,由图1可得下列关系式: x 2=x 1+lcos θ, y 2=y 1+lsin θ x ’ 2=x ’ 1-lsin θθ’ , y ’ 2=y ’ 1+lcos θθ’ x ’’2=x ’’1-lsin θθ’’-lcos θθ’ 2, y ’’2=y ’’1 +lcos θθ’’-lsin θθ’ 2 x 3=x 1+rcos(θ+α), y 3=y 1+rsin(θ+α) x ’ 3=x ’ 1-(y 3-y 1)θ’ , y ’ 3=y ’ 1+(x 3-x 1)θ’ x ’’3=x ’’1-(y 3-y 1)θ’’-(x 3-x 1)θ’ 2, y ’’3=y ’’1+(x 3-x 1)θ’’-(y 3-y 1 )θ’ 2 由以上各式可设计出单杆运动分析子程序(见程序单)。 图1 2. RRR 杆组运动分析子程序 图2所示RRR Ⅱ级杆组中,杆长l 1,l 2及两外接转动副中心P 1,P 2的坐标、速度、加 速度分量为x 1,x ’ 1,x ’’1,y 1,y ’ 1,y ’’1,x 2,x ’ 2,x ’’2,y 2,y ’ 2,y ’’2,要求确定两杆的角度、 角速度和角加速度θ1,θ’ 1,θ’’1,θ2,θ’2,θ’’ 2。 1) 位置分析 将已知P 1P 2两点的坐标差表示为: u=x 2-x 1,v=y 2-y 1 (1) 杆l 1及l 2投影方程式为: l 1cos θ1-l 2cos θ2=u l 1sin θ1-l 2sin θ2=v (2) 消去θ1得:vsin θ2+ucos θ2+c=0 (3) 其中:c=(u 2+v 2+l 22-l 12 )/2l 2 解式(3)可得: tan(θ2/2)=(v ±222c u v -+)/(u-c) (4) 式中+号和-号分别对应图2中m=+1和m=-1两位置。 图2

高中通用技术教案 常见的技术图样

第二节常见的技术图样(一) 一、内容分析: 通用技术必修模块“技术与设计1”第六章第二节《常见的技术图样》之“正投影与三视图”(苏教版)主要描述了正投影形成三视图的方法、原理,三视图的绘制(识读)方法和规律等。技术图样是设计交流语言,在设计活动过程中,经常用以表达设计观点、呈现设计方案,是表达设计思想的一种十分有效的手段,是解析几何和立体几何的具体应用,是一种在技术活动中进行信息交流的特有形式,是整个技术产品设计过程中进行信息交流的关键,它在“发现问题、明确问题”,“方案的构思及其方法”、“模型或原型的制作”,“技术产品的使用和保养”等组成了设计过程。所讲的内容都是在空间思维层面上的,对学生的思维提出挑战,同时也为学生提供了一个表达创造力的机会。内容包括正投影与三视图、形体的尺寸标注、机械加工图、剖视图和线路图。这一节的线索是:正投影与三视图―――形体的尺寸标注―――机械加工图、线路图。 由于技术图样能准确表达物体的形状和大小,并能提供生产所需的技术资料,绘图简便,适合于交流。采用正投影法得到的正投影图,既能如实地表达物体的形状和大小,而且作图方便。三视图、机械加工图、线路图是较常见的技术图样,在日常生活中应用较多,本节对这些图样作了介绍。技术图样中都有尺寸标注,所以本节将形体的尺寸标注列入课文内容。由于机械加工图中,通常利用剖视图表现零件的内部,所以本节也介绍了剖视图的基本知识。以使学生能够掌握一般技术图样的投影方法,能绘制简单的三视图并标注尺寸,并能了解一般机械加工图、电子线路图中的符号的含义及表达方法,并能识读它们。在本节的教学要注重培养学生细致、严谨的态度,注重提高学生规范作图的能力。 二、学情分析 学生已学过立体几何,有了一定的空间想象力和形体的表达能力,通过对三视图形成的讲解,让学生能够在平面的三视图与实物的立体图之间自由的转换,并且能够表达出来。 三、三维目标: 1.知识与技能目标: 1)让学生掌握一般技术图样所采用的投影方法。 2)让学生能绘制简单的三视图并学会标注简单的尺寸。 3)让学生了解一般的机械加工图、电子线路图所用符号的意义及表达方法,能识读一般机械加工图和线路图。 2. 情感态度与价值观 1)培养形成感受设计交流中三视图的作用;养成细致、严谨的良好习惯。 2)学会运用机械加工图、电子线路图所用符号的含义及表达方法解决生活中遇到的一些问题。 3)培养形成在设计活动中用技术语言表达设计意图的能力。 3.过程与方法: 1)通过学习掌握简单的三视图的绘制与识读;学会规范作图的方法和技能。 2)通过学习逐渐掌握一般的机械加工图、电子线路图所用符号的含义及表达方法,能识读一般机械加工图和线路图。 四、重点、难点: 重点: 正投影与三视图,形体的尺寸标注,机械加工图、剖视图和线路图的识读。 难点: 三视图与轴测图相互转化。 五、教学策略:

机械加工通用技术规范

机械加工规范书 1.目的 1.1 对机加工产品质量控制,以确保满足公司的标准和客户的要求。 1.2 本标准规定了各种机械加工应共同遵守的基本规则。 2.范围 适用精工车间机加工产品,和对供应商机加工产品的要求及产品的检验。 3.定义 3.1 A级表面:产品非常重要的装饰表面,即产品使用时始终可以看到的表面。 3.2 B级表面:产品的内表面或产品不翻动时客户偶尔能看到的表面。 3.3 C级表面:仅在产品翻动时才可见的表面,或产品的内部零件。 4.机加工的要求 4.1机加工件材料要符合图纸,选用的材料符合国家标准。 4.2机加工件图纸未注尺寸公差参考国家标准线性尺寸的未注公差GB/T1804-f要求进行检验。 4.3机加工件图纸未注角度公差参考国家标准角度的未注公差GB/T11335-m要求进行检。4.4机加工件图纸未注形位公差参考国家标准形位的未注公差GB/T1184-H要求进行检验。 4.5图纸中尺寸标注为配合形式加工的,采用间隙配合,具体要求为:外配合为配合为配作对象最大尺寸+0.01~+0.10mm:内配合为配作对象最小尺寸-0.10~-0.01。 5.机加工质量的控制 5.1 零件加工按照图纸加工,对图纸有标示不清、模糊、错误和对图纸产生疑问的与公司工艺人员联系。 5.2 零件加工按照工艺流程去做。 5.3零件加工过程中遇到加工错误或尺寸超出公差范围要与公司工艺人员联系,公司工艺人员将会确认零件可以采用或不可采用。 5.4 需要划线加工的零件,加工后不允许有划线的痕迹。 5.5 所有机加工的零件要去毛刺、钻孔后要倒角、棱角要倒钝(特殊要求除外)。 5.6两加工面间过度圆角或倒角的粗糙度,按其中较低的执行。 5.7两加工面间的根部,未要求清根的,其圆角半径均不大于0.5。 5.8零件的配合表面上,除图样及技术文件有规定外,不得刻打印记或作其它不易清除的标记。 5.9图样上未注明锪平深度的,其深度尺寸不作检查,以锪平为限。 5.10碰到零件加工错误不应该擅做主张对零件进行修改,应与公司工艺人员联系获得技术支持。 6.机加工外观的控制 6.1 机加工中由于控制不力和操作不当造成机械碰伤、表面划伤的不允许存在A级表面,允许存在B,C 级表面.。 6.2 变形、裂纹不允许存在A,B,C级表面。 6.3 需要表面处理的零件表面不允许有氧化层、铁锈、凹凸不平的缺陷。 7.机加工质量检验 7.1 外观检验:不允许有翘曲、变形、裂纹、划伤、碰伤、凹凸不平及表面粗糙度符合要求。 7.2 材料的检验:材料厚度符合国家标准。 7.3 尺寸及公差的检验:零件的尺寸和公差符合图纸的要求。

1、机械基础基本概念.docx

第一讲机械基础基本概念 学习目标及考纲要求 1.了解机械、机器、机构、构件、零件的概念。 2.理解机器与机构、构件与零件的区别。 3.掌握运动副的概念,熟悉运动副的类型,了解其使用特点,同时能举出应用实例。 知识梳理 一、机器和机构 1 .机器 (1)任何机器都是由许多实物(构件)组合而成的。 (2)各运动实体之间具有确定的相对运动。 (3)能代替或减轻人类的劳动,完成有用的机械功或实现能量的转换。 厂发动机:将非机械能转换成机械能的机器。 电动机:电能→机械能、内燃机:热能→机械能空气压缩机:气压能→机械能 按用途分类< ■工作机:用来改变被加工物料的位置、形状、性能、和状态的机器。 如机床、纺织机、轧钢机、输送机、汽车、飞机等。 2 ?机构 (1)任何机器都是由许多实物(构件)组合而成的。 (2)各运动实体之间具有确定的相对运动。 机器与机构的异同点 相同点:从结构与运动角度来看,机器与机构是相同的。 不同点:区别主要在于功用不同,机器的主要功用是利用机械能做功或实现能量转换, 机构的主要功用在于传递或改变运动的形式。 机器与机构的总称为机械。 3. 机器的组成 动力部分:机器动力的来源。如电动机、内燃机和空气压缩机等。 传动部分:将动力部分的运动和动力传递给工作部分的中间环节。如齿轮传动。 ]工作部分:直接完成机器工作任务的部分,通常处于整个传动装置的终端,其结 构形式取决于机器的用途。如金属切削机床的主轴、拖板、工作台等。 I自动控制部分:智能部分(与近代机器的区别)

、构件和零件 1 ?构件 ⑴定义:构件是机构的运动单元体,也就是相互之间能作相对运动的物体。 固定构件:又称机架,一般用来支承运动构件,通常是机器的基体或机座, 例如各类机床的床身。 按运动状况主动件:带动其他可动构件运动的构件。 运动构件4 '从动件:机构中除了主动件以外随着主动件运动而运 动的构件。 2?零件 定义:零件是构件的组成部分,是机器中的制造单元。 3?构件与零件联系与区别 联系:构件可以是一个零件,也可以是几个零件组成。区别:构件是运动的单元体,零件是加工制造的单元体。 三、运动副 1 ?运动副概念定义:两构件直接接触,又能产生一定相对运动的连接称为运动副。 2 ?运动副类型 f转动副:两构件只能绕某一轴线作相对转动的运动副。 低副彳移动副两构件只能作相对直线移动的运动副。(面接触)按接触形(I螺旋副两构件只能沿轴线作相对螺旋运动的运动副。 式的不同 咼副k (点、线接触) 3.低副和高副的特点 低副:面接触,容易制造和维修,承受载荷时单位面积压力较低,不能传递较复杂的运动效率低、摩擦大。 高副:点或线接触,承受载荷时单位面积压力较高,两构件接触处容易磨损,寿命短,制造和维修也较困难,能传递较复杂的运动。 4.低副机构和咼副机构 机构中所有运动副均为低副的机构称为低副机构。 机构中至少有一个运动副是高副的机构称为高副机构。 四、机构运动简图 简单线条和符号来表示构件和运动副,并按比例绘制出各运动副的位置。这种表达机构

[机械制造行业]机械原理考试大纲

(机械制造行业)机械原 理考试大纲

机械原理考试大纲 1、绪论 ⑴内容 ①机械原理的研究对象及基本概念 ②机械原理课程的内容及在教学中的地位、任务和作用 ③机械原理学科的的发展趋势 ⑵基本要求 ①明确本课程的研究对象和内容。 ②明确本课程的地位、任务和作用。 ③对本学科的发展趋势有所了解。 ⑶重点、难点 本章重点是“本课程研究的对象和内容”。对零件、构件、机器、机构、机械等名词和概念要弄得很清楚,对机器与机构的特征和区别要清楚。比如:零件与构件的不同之处在于零件是机器有制造单元而构件是机器的运动单元,这些都应熟练掌握。 2、平面机构的结构分析 ⑴内容 ①研究机构结构的目的 ②运动副、运动链和机构 ③平面机构运动简图 ④平面机构的组成原理和结构分析 ⑵基本要求 ①能计算平面运动链的自由度并判断其具有确定运动的条件。 ②能绘制机构运动简图。 ③能进行机构的组成原理和结构分析。 ⑶重点、难点 何谓约束?约束数与自由度数的关系如何?平面低副(转动副和移动副)和高副各具有几个约束,其自由度为多少? 平面机构自由度F=。要注意式中n为活动构件数而不是所有构件数,为平面低副数,为平面高副数。为使F计算正确,必须正确判断n、、的数目,因此要注意该机构中有无复合铰链、局部自由度和虚约束等。对于复合铰链,只要注意到,

计算运动副数目时不弄错就行了;局部自由度常出现在有滚子的部分;而虚约束的出现较难掌握,应认真领会课堂讲解中所列可能出现虚约束的几种情况。 能正确分析机构的组成原理,平面连杆机构的高副低代,杆组级别判断。 3、平面机构的运动分析 ⑴内容 ①研究机构运动分析的目的和方法 ②用相对运动图解法求机构的速度和加速度 ③用解析法机构的位置、速度和加速度 ⑵基本要求 ①能用图解法对机构进行运动分析。 ②能用解析法对机构进行运动分析。 ⑶重点、难点 相对运动图解法(又称向量多边形法)为本章的重点内容。所讨论的问题有两类。一类是在同一构件上两点间的速度和加速度的关系;一类是组成移动副两构件的重合点间的速度和加速度的关系。这两类问题都可以通过建立矢量方程式,作速度多边形和加速度多边形来解题。要注意一个矢量方程只能解两个未知数,若超过两个则要通过与其它点之间新的矢量方程式来联立求解。在解题时要充分利用速度、加速度影像原理,以期达到简捷、准确的目的。 关于后一类问题,是否存在哥氏加速度是其中的关键,判断方法如下: 1)两构件组成移动副,但只有相对移动,而无共同转动时,重合点间加速度关系中无哥氏加速度。 2)若两构件组成移动副,即有相对移动又有共同转动时,重合点间加速度关系中必存在哥氏加速度。 4、平面机构的力分析和机器的机械效率 ⑴内容 ①研究机构力分析的目的和方法 ②构件惯性力的确定 ③运动副中摩擦力的确定

机械波知识点

第一节机械振动 物体(或物体的一部分)在某一中心位置两侧所做的往复运动,就叫做机械振动,简称为振动. 第二节简谐运动 一、简指运动 1.简谐运动的定义及回复力表达式 (1)物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动,叫做简谐运动. (2)回复力是按力的作用效果命名的力,在振动中,总是指向平衡位置、其作用是使物体返回平衡位置的力,叫回复力. (3)作简谐运动的物体所受的回复力F大小与物体偏离平衡位置的位移X成正比,方向相反,即F=-kx.K是回复力常数. 1.简谐运动的位移、速度、加速度 (1)位移:从平衡位置指向振子所在位置的有向线段,是矢量.方向为从平衡位置指向振子所在位置.大小为平衡位置到该位置的距离.位移的表示方法是:以平衡位置为坐标原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻振子(偏离平衡位置)的位移用该时刻振子所在的位置坐标来表示. 振子在两“端点”位移最大,在平衡位置时位移为零。振子通过平衡位置,位移改变方向. (2)速度:在所建立的坐标轴上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.速度和位移是彼此独立的物理量.如振动物体通过同一个位置,其位移矢量的方向是一定的,而其速度方向却有两种可能:指向或背离平衡位置.振子在两“端点”速度为零,在平衡位置时速度最大,振子在两“端点”速度改变方向. (3)加速度:做简谐运动物体的加速度.加速度的大小跟位移成正比且方向相反.振子在两“端点”加速度最大,通过平衡位置时加速度为零,此时加速度改变方向.

1.固有周期和固有频率 “固有”的含义是“振动系统本身所具有,由振动系统本身的性质所决定”,跟外部因素无关.对一弹簧振子,当它自由振动时,周期只取决于振子的质量和弹簧的劲度系数,而与振动的振幅无关.而振幅的大小,除跟弹簧振子有关之外,还跟使它起振时外力对振子做功的多少有关.因此,振幅就不是“固有”的. 2.简谐运动的对称性 做简谐运动的物体,运动过程中各物理量关于平衡位置对称,以水平弹簧振子为例,物体通过关于平衡位置对称的两点,加速度大小相等、速率相等、动能、势能相等.对称性还表现在过程量的相等上,如从某点到达最大位置和从最大位置再回到这一点所需要的时间相等.质点从某点向平衡位置运动时到达平衡位置的时间,和它从平衡位置再运动到这一点的对称点所用的时间相等. 3.求振动物体路程的方法 求振动物体在一段时间内通过路程的依据是: (1)振动物体在一个周期内的路程一定为四个振幅. (2)振动物体在半个周期内的路程一定为两个振幅. (3)振动物体在T/4内的路程可能等于一个振幅,可能大于一个振幅,还可能小于一个振幅.只有当T/4的初时刻,振动物体在平衡位置或最大位移处,T/4内的路程才等于一个振幅. 计算路程的方法是:先判断所求的时间内有几个周期,再依据上述规律求路程. 3.振动中各物理量的变化 回复力和加速度均跟位移成正比,势能也随位移的增大而增大;速率、动能、动量的大小随位移的增大而减小,随位移的减小而增大.回复力和加速度的方向总跟位移方向相反.而速度、动量的方向可能跟位移方向相同,也可能相反.二、简谐运动图象 1`、振动图象及其物理意义

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

机械波习题及答案 (2)

. . 波的形式传播波的图象 认识机械波及其形成条件,理解机械波的概念,实质及特点,以及与机械振动的关系; 理解波的图像的含义,知道波的图像的横、纵坐标各表示的物理量.能在简谐波的图像中指出波长和质点振动的振幅,会画出某时刻波的图像 一、机械波 ⑴机械振动在介质中的传播形成机械波. ⑵机械波产生的条件:①波源,②介质. 二、机械波的分类 ⑴)横波:质点振动方向与波的传播方向垂直的波叫横波.横波有波峰和波谷. ⑵纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有疏部和密部. 三、机械波的特点 (1)机械波传播的是振动形式和能量,质点只在各自的平衡位置附近振动,并不随波迁移. ⑵介质中各质点的振动周期和频率都与波源的振动周期和频率相同 ⑶离波源近的质点带动离波源远的质点依次振动 ⑷所有质点开始振动的方向与波源开始振动的方向相同。 四、波长、波速和频率的关系 ⑴波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长. 振动在一个周期里在介质中传播的距离等于一个波长,对于横波:相邻的两个波峰或相邻的两个波谷之间的距离等于一个波长.对于纵波:相邻的两个密部中央或相邻的两个疏部中央之间的距离等于一个波长. ⑵波速:波的传播速率叫波速.机械波的传播速率只与介质有关,在同一种均匀介质中,波速是一个定值,与波源无关. ⑶频率:波的频率始终等于波源的振动频率. ⑷波长、波速和频率的关系:v=λf=λ/T 五、波动图像 波动图象是表示在波的传播方向上,介质中各个质点在同一时刻相对平衡位置的位移,当波源做简谐运动时,它在介质中形成简谐波,其波动图象为正弦或余弦曲线. 六、由波的图象可获取的信息 ⑴该时刻各质点的位移. ⑵质点振动的振幅A. ⑶波长. ⑷若知道波的传播方向,可判断各质点的运动方向.如图7-32-1所示,设波向 右传播,则1、4质 点沿-y方向运动;2、 3质点沿+y方向运 动. ⑸若知道该时 刻某质点的运动方 向,可判断波的传播 方向.如图7-32-1中若质点4向上运动,则可判定该波向左传播. ⑹若知波速v的大小。可求频率f或周期T,即f=1/T=v/λ. ⑺若知f或T,可求波速v,即v=λf=λ/T ⑻若知波速v的大小和方向,可画出后一时刻的波形图,波在均匀介质中做匀速运动,Δt时间后各质点的运动形式,沿波的传播方向平移Δx=vΔ t 有关机械波的内容近年经常在选择题中出现,尤其是波的图象以及波的多值解问题常常被考生忽略。 【例1】关于机械波,下列说法中正确的是( ) A.质点振动方向总是垂直于波的传播方向 B.简谐波沿长绳传播时,绳上相距半个波长的两质点的振动位移总是相同 C.任一振动质点每经过一个周期沿波的传播方向移动一个波长 D.在相隔一个周期的两个时刻,同一介质点的位移、速度和加速度总相同 【解析】波有纵波和横波两种,由于横波的质点振动方向总是与波的传播方向垂直,而纵波的质点振动方向与波的传播方向平行,所以选项A是错误的。 由于相距半个波长的两质点振动的位移大小相等,方向相反,所以选项B是错误的。 机械振动,并不沿着传播方向移动,所以选项C是错误的。 相隔一个周期的两个时刻,同一介质质点的振动状态总是相同的,所以选项D正确. 图7-32-1

机械基础知识点归纳

液压传动知识点 一、液压传动基本概念 1、液压传动的工作原理:以油液为工作介质,依靠密封容积的变化来传递运动,依靠油液内部的压力来传递动力。 2、液压传动的组成:动力部分:将机械能转化为液压能,元件为液压泵。 执行部分:将液压能转化为机械能,元件为液压缸或液压马达。 控制部分:控制和调节油液的压力、流量、方向。 3、系统的压力取决于负载,并随负载的变化而变化。当有几个负载并联的时候,系统压力取决于克服负载的各个压力值中的最小值。 4、液压系统存在着液阻,液体流动时会引起能量损失,主要表现为压力损失。压力损失有沿程损失和局部损失两种形式,主要压力损失为局部损失。由于管壁对油液的摩擦造成的压力损失为沿程损失。液压系统的泄漏必然引起流量的损失。 二、基本计算 1、流量速度液流连续性原理 2、压力帕斯卡原理 3、压力损失的近似计算 4、流量损失的近似计算 5、驱动液压泵的电动机功率 6、与液压泵匹配的电动机的功率 三、液压泵 1、齿轮泵的特点:结构简单、自吸能力强,对油液污染不敏感,输油量不均匀,径向力不平衡,用于低压系统,单向定量泵。 2、叶片泵 单作用叶片泵:改变偏心距的大小和方向成为双向变量泵,中压系统; 双作用叶片泵:单向定量泵,中压系统; 3、柱塞泵 径向柱塞泵:改变偏心距的大小和方向成为双向变量泵,高压系统; 轴向柱塞泵:改变斜盘倾角的大小和方向成为双向变量泵,高压系统; 四、液压缸的计算 1、无杆腔进油(工进) 速度流量 2、有杆腔进油(快退) 速度流量 3、两腔同时进油(快进) 速度流量 4、快进与快退的速度相等:D= d,A1= A3 快进与快退的速度的2倍:D= d,A1= A3 5、液压缸密封的方法:间隙密封和密封圈密封,间隙密封适用于尺寸较小,压力较低、运动速度较高 的场合。V形密封圈主要用于移动速度不高的液压缸中。 6、双活塞杆液压缸,当缸体固定时,活塞杆为实心,其工作台往复运动范围约为有效行程的3倍, 当活塞杆固定时,活塞杆为空心,其工作台往复运动范围约为有效行程的2倍。7、液压缸的缓冲原理是活塞接近缸盖时,增大回油阻力,以降低活塞运动速度,从而避免活塞撞击缸盖。 8、液压系统中渗入空气后,会影响运动的平稳性,引起活塞低速运动的爬行和换向精度下降等。 9、排气的方法:油液从液压缸的最高点引入和引出,即缸的进出油口设置在最高处 五、液压元件 1、中位滑阀机能的特点 2、溢流阀的作用溢流稳压(定量泵的节流调速回路)和限压保护。 3、减压阀的作用:减压稳压,保证出口的压力值为恒定值。常态下,常开。 4、单向减速阀又称单向行程节流阀,可以满足机床液压进给系统的快进工进快退的工作循环。 5、调速阀代替节流阀的目的是提高速度的稳定性,背压阀的目的是提高运动的平稳性。 6、调速阀是由定差减压阀和可调节流阀串联而成,利用减压阀保证节流阀前后的压力差不受负载的影响,从而使通过节流阀流量为定值。 7、电液换向阀的作用:用较小的电磁铁控制较大的液流。

相关文档
最新文档