无线电发射与接收电路

无线电发射与接收电路
无线电发射与接收电路

无线电发射与接收电路

————————————————————————————————作者:————————————————————————————————日期:

简易无线遥控发射接收设计--- 315M遥控电路

OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。

早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。

图一

图二

接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。

ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

MICRF002为完整的单片超外差接收电路,基本实现了“天线输入”之后“数据直接输出”,接收距离一般为200米。

=====================================分隔符

==============================

使用声表谐振器的无线发射电路形式很多,这里推出又一款电路,这个电路是我在3年前参考电子报上的文章后,又结合了该文章介绍的那个模块的实样做的,在经过批量生产后,改进了一些参数,现在这款产品真是非常不错。不过现在这个东东的仿制产品实在太多了,质量差别也很大,但是因为它比较简单,所以我觉得还是很有必要把它弄出来给大家,我在网上也找到许多类似的电路图,不过其中有的是有陷阱的哦,希望大家要注意学会自己辨别一些BUG。对于这个模块,我没有测试过它的无线发射的绝对功率,不过我们开着汽车在公路上拉过距离,它和普通的315M超再生接收模块相配合,可以达到800米距离,虽然我的电路只要减小一下8050基极电阻的值,通讯距离会加大到1200米甚至更加远,但是经过大量的实验证明,那样不是很可靠的,原因我不是很清楚,可能有2方面的原因,一个是8050在R2小的时候,有轻微的导通,导致发射不能快速截止。还有一个是R2很小,8050开通电流比较大,对供电可能是一个扰动,而达不到起振要求。我曾经怀疑过自己的电路是不是很匹配,因此特意买了好多号称1500米的类似模块,发现它们也有一样的不可靠性,普遍表现为偶尔的不能起振或者波特率上不到2K,后来我就增加R2电阻,在大于15K时,发射一直很正常,距离和27K的差不多,所以现在就用这个电阻了,这里的L1L2,我是用0.8mm的免去漆漆包线在3毫米的钻头上绕4圈半脱胎而成。在制作的时候,或许在PCB布线上还是有些问题的,提醒大家,线路要尽量简单,做到布线越短越好,元

件要选好的,PCB板可以用1点5毫米厚的。

超再生接收电路,一直以来,人们总是在说它和超外差比起来,有什么什么不好啊,频带宽呀,抗干扰能力差呀,辐射厉害呀,好象它什么都不好似的,那么我这里可以很明确告诉你,现在市面上绝大部分的防盗报警器所用的无线接收电路,都是用的是超再生电路,几乎全部的遥控玩具,用的也都是那玩意,所以嘛,它的市场还是挺大的,因为它的灵敏度是超外差的所比不上的,而且,调试要比超外差的简单点。许多朋友也许注意到了,我这里的东西用的高频小电感好象都是用的PCB ,为什么呢?关键是好做啊,虽然我做的时候,做了好多的实验性的工作,但是一旦确定后,它就比较稳定了。下面对电路做一个简单的介绍,前面环状是PCB 电感,后面的可调电容作为调谐使用,调谐的方法就是对着频谱仪,使本振信号调到你要的315MHZ ,如果没有频谱仪的话,就对着发射,慢慢地凑,直到可以接收为止,微弱的数据信号从PCB 电感的上面经过10K 电阻和10UF 电容输入到T2 的基极,经过初步放大后,进入LM358 继续整形放大,放大后的数字信号直接输入到

PT2272 的信号输入脚14 脚进行解码,解码输出脚为PT2272 的10-13 脚。

=====================================分隔符

==============================

无线电遥控发射头T630是一种内藏开线未经信号的微型发射机,其发射频率为

265MHz,12V电源供电时,遥控距离为100M,工作电流仅为4mA,其体积为28X12X10mm。无线电接收头T631,一个内藏天线,象电视机高频头一样的接收、解调器,其典型工作电压为6V,守候工作电流为1mA,接收频率为265MHz,其体积仅为31X23X10mm。利用它们可以很方便地制作出各种无线电遥控装置,具有微型化,传输距离远、耗电省、抗干扰能力强等优点。能够方便地取代红外线、超声波发射及接收头。

无线电射头T630电路原理如图所示。电路四发射管V1及外围元件C1、C2、L1、L2等构成频率为265MHz超高频发射电路,通过环形天线L2向空中发射。天线L2采用镀银线或直径为1.5mm的漆包线,天线尺寸为24mm(长)X9mm(高)。三极管V1选用高频发射管BE414或2SC3355。

无线电遥控接收头T631电路原理如图所示。接收电路主要由V1、IC等组成,V1与

C7、C9、L2等元件组成超高频接收电路,微调C9改变其接收频率,使之严格对准265MHz 发射频率。当天线L2收到调制波时,经V1调谐放大出低频成分,再经V2前置放大后送入IC LM358,进一步放大整形后由LM358第7脚输出,该印刷电路板实际尺寸为

31mmX23CC,天线尺寸为27mm(长)X9mm(高)。OUT为信号输出端,三极管V1选用BE415

或2SC3355。电容C9可选用小型可调电容。IC选用LM358。

在发射及接收电路中为减小体积,所有电阻均选用1/8W或1/16W的金属膜电阻;电解电容亦用超小型电容,其它电容全部采用高频陶瓷电容。在焊接时元件引脚尽量剪短,使其紧贴电路板,电路板材料应选用高频电路板。

以下是两载采用声表面的收发装置,相对于前面的介绍的电路,具有更远的传输距离、更强的抗干扰能力和更易制作、调试。

发射部分

接收部分

补充一点内容,关于电路中的电感:

产品编号颜色最小电感值(nH) 最大电感值(nH) 中心电感值(nH) Q值测试频率(MHz) MD1012U-1.5T-C-F 白32 52.0 42 92 100

MD1012U-2.5T-C-F 红60 87.5 115 96 100

MD1012U-3.5T-C-F 橙95 152.5 210 90 100

MD1012U-4.5T-C-F 黄130 195.0 260 80 50

MD1012U-5.5T-C-F 绿175 255.0 335 90 50

MD1012U-6.5T-C-F 蓝230 328.5 427 90 50

MD1012U-7.5T-C-F 紫285 413.5 542 95 50

MD1012U-8.5T-C-F 灰253 464.0 575 80 50

MD1012U-9.5T-C-F 白372 498.0 625 84 50

MD1012U-10.5T-C-F 红403 544.0 685 80 来自:

DF无线数据收发模块(315无线模块)[转自互联网]

[日期:2008-04] 来源:作者:[字体:大中小]

无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232 数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图

主要技术指标:

1。通讯方式:调幅AM

2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明)

3。频率稳定度:±75KHZ

4。发射功率:≤500MW

5。静态电流:≤0.1UA

6。发射电流:3~50MA

7。工作电压:DC 3~12V

315MHZ发射模块 8元一个433MHZ发射模块 8元一个DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。

DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17

脚接至DF数据模块的输入端即可。

DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。

DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平应接近DF数据模块的实际工作电压,以获得较高的调制效果。

DF发射发射模块最好能垂直安装在主板的边缘,应离开周围器件5 mm以上,以免受分布参数影晌。DF模块的传输距离与调制信号頻率及幅度,发射电压及电池容量,发射天线,接收机的灵敏度,收发环

境有关。一般在开阔区最大发射距离约800米,在有障碍的情况下,距离会缩短,由于无线电信号传输过程中的折射和反射会形成一些死区及不稳定区域,不同的收发环境会有不同的收发距离。

DF发射模块可以配两种接收模块组合使用

1。超再生式接模块

超再生接收模块的体积:30x13x8毫米模块的中间两个引脚都是信号输出,连通的。

这是DF超再生接收模块的等效电路图

主要技术指标:

1。通讯方式:调幅AM

2。工作频率:315MHZ(可以提供433MHZ,购货时请特别注明)

3。频率稳定度:±200KHZ

4。接收灵敏度:-106DBM

5。静态电流:≤5MA

6。工作电流:≤5MA

7。工作电压:DC 5V

8。输出方式:TTL电平

315MHZ超再生接收模块 7元一个433MHZ超再生接收模块 7元一个

DF接收模块的工作电压为5伏,静态电流4毫安,它为超再生接收电路,接收灵敏度为-105dbm,接收天线最好为25~30厘米的导

线,最好能竖立起来。接收模块本身不带解码集成电路,因此接收电路仅是一种组件,只有应用在具体电路中进行二次开发才能发挥应有的作用,这种设计有很多优点,它可以和各种解码电路或者单片机配合,设计电路灵活方便。

这种电路的优点在于:

1。天线输入端有选频电路,而不依赖1/4波长天线的选频作用,控制距离较近时可以剪短甚至去掉外接天线

2。输出端的波形相对比较干净,干扰信号为短暂的针状脉冲,所以抗干扰能力较强。

3。DF模块自身辐射极小,加上电路模块背面网状接地铜箔的屏蔽作用,可以减少自身振荡的泄漏和外界干扰信号的侵入。

4。采用带骨架的铜芯电感将频率调整到315M后封固,这与采用可调电容调整接收频率的电路相比,温度、湿度稳定性及抗机械振动性能都有极大改善。可调电容调整精度较低,只有3/4圈的调整范围,而可调电感可以做到多圈调整。可调电容调整完毕后无法封固,因为无论导体还是绝缘体,各种介质的靠近或侵入都会使电容的容量发生变化,进而影响接收频率。另外未经封固的可调电容在受到振动时定片和动片之间发生位移;温度变化时热胀冷缩会使定片和动片间距离改变;湿度变化因介质变化改变容量;长期工作在潮湿环境中还会因定片和动片的氧化改变容量,这些都会严重影响接收频率的稳定性,而采用可调电

感就可解决这些问题,因为电感可以在调整完毕后进行封固,绝缘体封固剂不会使电感量发生变化。

2。超外差式RX3310接收模块

超外差接收模块的体积:35x13x8毫米

主要技术指标:

1。通讯方式:调幅AM

2。工作频率:315MHZ(声表上标注为316.8)(可以提供433MHZ,声表上标注为436,购货时请特别注明)

3。频率稳定度:±75KHZ

4。接收灵敏度:-102DBM

5。静态电流:≤5MA

6。工作电流:≤5MA

7。工作电压:DC 5V

8。输出方式:TTL电平

315MHZ超外差接收模块 14元一个433MHZ超外差接收模块 14元一个

这里提供的超外差接收模块采用进口高性能无线遥控及数传专用集成电路RX3310A,并且采用316.8M声表谐振器,所以工作稳定可靠,适合比较恶劣的环境下全天候工作。

超外差接收机对天线的阻抗匹配要求较高,要求外接天线的阻抗必须是50欧姆的,否则对接收灵敏度有很大的影响,所以如果用1/4波长的普通导线时应为23厘米最佳,要尽可能减少天线根部到发射模块天线焊接处的引线长度,如果无法减小,可以用特性阻抗50欧姆的射频同轴电缆连接(天线焊点右侧有一个专门的接地焊点)

3。超外差RX3400接收模块

315MHZ 3400超外差接收模块 25元一个433MHZ 3400超外差接收模块 25元一个

超外差RX3400接收模块的性能比RX3310的更高,主要是灵敏度更高达到-106DB,适合高要求的系统中。

4。超外差RX3600高可靠高灵敏接收模块

315MHZ 高可靠高灵敏接收模块 29元一个433MHZ 高可靠高灵敏接收模块 29元一个

这是采用RX3600芯片的高可靠高灵敏超外差接收模块,是目前性能最好的接收模块。

几款无线话筒电路电路图及原理

几款无线话筒电路 来源:滕州科苑电子作者:未知字号:[大中小] 编者按:本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。 单声道调频发射电路 图1是较为经典的1.5km单管调频发射机电路。电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。工作电流为60--80mA。但以上三极管难以购到,且价格较高,假货较多。笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在 C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。

无线电遥控器工作原理介绍

无线电遥控器工作原理介绍 2008-07-09 07:14:21 来源: 作者: 【大中小】评论:0条 无线电遥控器的分类和组成 要了解无线电遥控就必须首先知道什么是无线电遥控,无线电遥控就是利用电磁波在远距离上,按照人们的意志实现对物体对象的无线操纵和控制,这种无线控制的方式就叫做无线电遥控。 无线电遥控遥控技术的诞生,起源于无线电通讯技术,最初的构想是无线电电报技术的建立,真空电子管的发明使得无限电技术的应用和普及很快应用在民用和军用等各个领域。在第一次世界大战时,无线电遥控应用较多的是在军事上,将遥控装置安装在鱼雷,当鱼雷发射后利用遥控鱼雷去攻击敌方的船只和舰艇,使得鱼雷的命中率大大的提高。到了第二次世界大战时,纳粹德国又将无线电遥控系统安装在V——2火箭上,对英国伦敦进行了大规模的轰炸,在那时可以说无线电遥控技术发挥到了极至。后来随着晶体管的发明和集成电路的诞生,无线电遥控技术达到了更加完善的程度,现如今我们所知道导弹、卫星、航天飞机等高科技技术都是利用无线电遥控技术的结晶,它已经不再是军事领域唯一成员,我们的日常生活可以说是已经离不了无线电遥控,如:遥控监视、报警、遥控电视、遥控玩具等等。那么,无线电遥控是怎样划分的呢?又是怎样工作的呢?下面我们就来谈谈这个问题。 从无线电遥控的定义上看,所有能够实现无线遥控的控制系统,都应视为无线电遥控装置,为此我们按其发射和接收波谱频率上分,有音频声控、可见光控、红外线控、射频电磁波控和载频电磁波控等;按发射和接收的传输方式上分,有再生式、超再式、外差式、超外差式、等幅、调幅式和调频式等等;如果按发射和接收的载体性质上分,有单音频式遥控、双单音频式遥控、脉冲数字式遥控等等;如果我们按发射和接收的动作类型上分,有开关式、占空比式、脉宽式、脉位式、复合式、时分比例式和混合比例式等等;如果按发射和接收的通道数量上分,有单通道、双通道、四通道、八通道和十通道以上的多通道等等;如果再按发射和接收频率波长上分,有长波、中波、短波或低频、高频和甚高频等等;从发射和接收的电路组成上看,有分立元件、集成电路、模拟电路、数字电路、混合电路等等。可以说从广义上看无线电遥控技术的种类和方式多种多样,我们不能一一的详尽。为了能使大家对无线电遥控有更加深刻的了解,我们先介绍一下模型用无线电遥控设备和电路的组成。 无线电遥控模型的设备一般都包括以下几个部分遥控发射机、遥控接收机、执行舵机、电子调速器组成。 1.遥控发射机 就是我们所说的遥控器,它是来操控我们的车模或船模的,由于它外部有一个长长的天线,遥控指令都是通过机壳外部的控制开关和按钮,经过内部电路的调制、编码,再通过高频信号放大电路由天线将电磁波发射出去。目前模型常用的遥控发射机有三种类型:一种是盒式按键手持用的小型遥控发射机;一种是便携杆式遥控发射机;另一种是手持枪式遥控发射机。前一种多为开关式模拟电路的遥控系统,为一般普通的玩具遥控车模、船模或航模使

无线电发射与接收电路

无线电发射与接收电路

————————————————————————————————作者:————————————————————————————————日期:

简易无线遥控发射接收设计--- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

无线电波的发射与接收

第一章无线电波的发射与接收 我们在物理学的学习中知道,通有交流电的导线,会在它周围产生变化的磁场,变化的磁场又能在它周围引起变化的电场,而变化的电场还将在它周围更远的空间引起变化的磁场。这种不断交替变化,由近及远传播的电磁场就叫电磁波。无线电技术中使用的电磁波叫无线电波。 无线电广播、电视广播都是利用无线电波进行传播信号的。现代通讯离不开无线电波。本章将介绍无线电波的波长、频率、波段划分,以及它的发射与接收。 第一节无线电波的波长、频率与波段划分 一、无线电波波段的划分 表1-1无线电波波段的划分 理论和实验都可以证明,无线电波在真空中的传播速度跟实验测得的光速相等,即 C=3.0×108m/s 无线电波在一个振荡周期T内传播的距离叫做波长。波长、频率和无线电波传播速度c的关系为 λ=c/f

式中:λ一无线电波的波长,单位m ; c 一无线电波的传播速度,单位m/s; f 一无线电波的频率,单位H Z 无线电波的波长从不到一毫米到几十千米(频率范围由几十千赫到几十万兆赫)。通常根据波长〔频率)把无线电波划分成几个波段,如表1-1所示。 二、无线电波的传播 无线电波是横波,即电场和磁场的方向都跟波的传播方向垂直。在无线电波中各 处 的电场强度和磁感应强度的方向也总是互相垂直的,如图1-1所示。不同波长的电磁波,传播特性不相同;其传播方式大致可分为地波、天波和空间波三种形式。 (一)地波 沿地球表面空间向外传播的无线电波叫地波,如图1-2(a)所示。波具有衍射特性,当无线电波的波长大于或相当于山坡、建筑物等障碍物的尺寸时,它可以绕过障碍物继续向前传播。 地球是导体,地波沿地面传播时,地球表面因电磁感应而产生感应电流,因此要消耗能量,并且能量损耗随频率升高而增大。考虑到能量损失,只有中、长波才利用地波方式传播。由于地波传播稳定可靠,在超远 程无线电通讯和导航等方面多采用中长波。 图1-1无线电波传播示意图 (二)天波 依靠电离层的反射作用传播的无线电波叫做天波,如图1-2(b 〕所示。在地球表面的大气层中,大约在60km 到400km 的范围内,由于太阳光的照射,气体分子分解为带正电的离子和自由电子,这就是电离层。电离层一方面可以反射无线电波,反射本领随频率增大而减小。实践表明,波长短于10m 的微波会穿过电离层飞向宇宙,它只能反射短波或波长更长的无线电波。电离层另一方面要吸收无线电波,吸收本领随频率减小而增大,中波和中短波一部分被吸收,因此,只有短波多采用天波方式传播。 天波传播受外界影响较大,它与电离层强度、太阳辐射强度等多种因素有关,.由于这些原因,收音机夜晚收到的电台比白天多, (三)空间波 沿直线传播的无线电波叫做空间波,它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波,如图1-2(C 〉所示。

无线电发射设备管理规定(征求意见稿)

附件1 无线电发射设备管理规定 (征求意见稿) 第一章总则 第一条为加强无线电发射设备管理,防止和减少无线电干扰,维护空中电波秩序和保障良好的电磁环境,促进无线电技术应用和产业发展,根据《中华人民共和国无线电管理条例》和相关法律、行政法规,制定本规定。 第二条无线电发射设备的研制、生产、进口等活动应当遵守本规定。 本规定所称无线电发射设备是指为开展各类无线电业务而发射无线电波的设备。辐射无线电波的非无线电设备不适用本规定,但其产生的电磁辐射水平应当符合国家标准和国家无线电管理的有关规定。 第三条研制无线电发射设备使用的无线电频率,应当符合国家无线电频率划分规定。 第四条国家无线电管理机构负责无线电发射设备型号核准和监督管理,按照国家有关规定发布和调整无线电发射设备型号核准目录,制定型号核准有关规定和技术要求。 省、自治区、直辖市无线电管理机构依照本规定负责本

行政区域内无线电发射设备的临时进关批准和监督管理。 第二章无线电发射设备型号核准 第五条除微功率短距离无线电发射设备外,生产、进口在国内销售、使用的其他无线电发射设备,应当向国家无线电管理机构申请型号核准。 第六条申请无线电发射设备型号核准,应当符合下列条件: (一)申请人有相应的生产能力、技术力量、质量保证体系; (二)无线电发射设备的工作频率、功率等技术指标符合国家标准和国家无线电管理的有关规定; (三)申请人及其法定代表人未被列入无线电发射设备型号核准失信名单。 第七条申请无线电发射设备型号核准,应当向国家无线电管理机构提交下列申请材料: (一)经法定代表人或者其委托人签署的书面申请和承诺书; (二)加盖申请人签章的营业执照副本或者事业单位法人证书复印件,境外申请人提供加盖申请人签章的组织机构说明材料;

无线话筒电路图大全

无线话筒电路图大全 发布: | 作者: | 来源: luzhongguo | 查看:3175次 | 用户关注: 无线话筒电路图大全:介绍了颇有代表性的几款业余情况下容易制作成功的 88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、**、数据传输及校园调频广播等。单声道调频发射电路图1 是较为经典的1.5km单管调频发射机电路。电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。工作电流为60--80mA。但以上三极管难 无线话筒电路图大全: 介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、**、 数据传输及校园调频广播等。 单声道调频发射电路 图1是较为经典的1.5km单管调频发射机电路。电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。工作电流为60--80mA。但以上三极管难以购到,且价格较高,假货较多。笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出 88--108MHz范围。其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将

简易无线电发射与接收电路

简易无线电发射与接收电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒 2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。MICRF002为完整的单片超外差接收电路,基本实现了“天线输入”之后“数据直接输出”,接收距离一般为200米。

无线电通信基本原理(最重要~!~!~!~!~!~!~!~~!~!~!~!)

内部资料注意保存无线电通信基本原理 资料来源于《HAM’s CQ 业余无线电家》 2005年第2期(总44期)、2005年第3期(总45期)、 2005年第4期(总46期)、2006年第1期(总47期)、 2006年第2期(总48期)

【编者按】本教材是北京市无线电管理委员会(现北京市无线电管理局)在1988年编印的。全部内容共分八章,简明扼要、深入浅出地阐述了无线电通信的概念、电磁波基本知识、收发信机的组成,电波传播以及干扰等无线电基础知识,曾被北京市无线电管理委员会作为培训北京市各机关、企、事业单位通信管理人员的专用教材。《业余无线电家》将从本期起分三次刊登该教材的部分内容,供广大无线电爱好者自学、参考。该教材由原武汉通信学院郑兴国编写,北京市无线电管理委员会审定,国家体委无线电运动学校(现中国无线电运动协会)校对。 【文档制作说明】本文档根据《HAM’s CQ 业余无线电家》2005年第2期(总44期)、2005年第3期(总45期)、2005年第4期(总46期)、2006年第1期(总47期)、2006年第2期(总48期)所刊登的资料扫描整理制作而成。为了方便阅读,在原文件的基础上重新编排了页码,添加了目录。每一页下方椭圆背景中的页码为原刊物页码,后边的两位为新添加的页码。 本文档仅供业余无线电爱好者个人学习之用,请勿用作其他用途。本资料版权归原版权人所有。 2011年3月16日

目录 第一章绪论 (01) §1-1通信的基本概念 (01) §1-2通信的基本模型 (03) §1-3通信的工作方式 (04) 一、单向通信 (04) 二、单工通信 (05) 三、半双工通信 (05) 四、双工通信 (05) §1-4模拟通信与数字通信 (06) §1-5通信的发展概况 (08) 第二章交流电与电磁波 (09) §2-1交流电的有关参量 (09) 一、交流电的瞬时值、最大值与有效值 (10) 二、交流电的频率、周期和角频率 (11) 三、交流电的相位 (11) §2-2电磁波 (11) 一、电磁场与电磁波 (11) 二、电波的极化 (13) 三、频率和波长的关系 (13) 四、电磁波谱 (14) §2-3无线电波的波段划分 (14) 第三章发射机 (16) §3-1发送设备与发射机的组成 (16) 一、无线电发送设备的组成 (16) 发射机 (16) 天线及馈线设备 (16) 电源设备 (16) 二、话音电流及其频谱 (16) 三、发送设备的任务 (17) 四、发射机的基本组成 (17) (一)振荡器 (17) (二)调制器 (17) (三)高频功率放大器 (18) (四)滤波器 (18) §3-2振幅调制 (18) 一、调幅及调幅发射机 (18) 振荡器 (18) 缓冲放大器 (18) 激励放大器 (18)

几款无线电电路

本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。 单声道调频发射电路 图1是较为经典的1.5km单管调频发射机电路。电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。工作电流为60--80mA。但以上三极管难以购到,且价格较高,假货较多。笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m 的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。

短波通信原理

短波通信原理 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三: 一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比; 二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波; 三、与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。 这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。1、短波通信的一般原理 1.1.无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。 无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: 地波(地表面波)传播 沿大地与空气的分界面传播的电波叫地表面波,简称地波。地波的传播途径如图1.1 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。直射波传播 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。 限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。 天波传播 天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波。电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。

无线电遥控器原理

无线电遥控器工作原理介绍 无线电遥控器的分类和组成 要了解无线电遥控就必须首先知道什么是无线电遥控,无线电遥控就是利用电磁波在远距离上,按照人们的意志实现对物体对象的无线操纵和控制,这种无线控制的方式就叫做无线电遥控。 无线电遥控遥控技术的诞生,起源于无线电通讯技术,最初的构想是无线电电报技术的建立,真空电子管的发明使得无限电技术的应用和普及很快应用在民用和军用等各个领域。在第一次世界大战时,无线电遥控应用较多的是在军事上,将遥控装置安装在鱼雷,当鱼雷发射后利用遥控鱼雷去攻击敌方的船只和舰艇,使得鱼雷的命中率大大的提高。到了第二次世界大战时,纳粹德国又将无线电遥控系统安装在V——2火箭上,对英国伦敦进行了大规模的轰炸,在那时可以说无线电遥控技术发挥到了极至。后来随着晶体管的发明和集成电路的诞生,无线电遥控技术达到了更加完善的程度,现如今我们所知道导弹、卫星、航天飞机等高科技技术都是利用无线电遥控技术的结晶,它已经不再是军事领域唯一成员,我们的日常生活可以说是已经离不了无线电遥控,如:遥控监视、报警、遥控电视、遥控玩具等等。那么,无线电遥控是怎样划分的呢?又是怎样工作的呢?下面我们就来谈谈这个问题。 从无线电遥控的定义上看,所有能够实现无线遥控的控制系统,都应视为无线电遥控装置,为此我们按其发射和接收波谱频率上分,有音频声控、可见光控、红外线控、射频电磁波控和载频电磁波控等;按发射和接收的传输方式上分,有再生式、超再式、外差式、超外差式、等幅、调幅式和调频式等等;如果按发射和接收的载体性质上分,有单音频式遥控、双单音频式遥控、脉冲数字式遥控等等;如果我们按发射和接收的动作类型上分,有开关式、占空比式、脉宽式、脉位式、复合式、时分比例式和混合比例式等等;如果按发射和接收的通道数量上分,有单通道、双通道、四通道、八通道和十通道以上的多通道等等;如果再按发射和接收频率波长上分,有长波、中波、短波或低频、高频和甚高频等等;从发射和接收的电路组成上看,有分立元件、集成电路、模拟电路、数字电路、混合电路等等。可以说从广义上看无线电遥控技术的种类和方式多种多样,我们不能一一的详尽。为了能使大家对无线电遥控有更加深刻的了解,我们先介绍一下模型用无线电遥控设备和电路的组成。 无线电遥控模型的设备一般都包括以下几个部分遥控发射机、遥控接收机、执行舵机、电子调速器组成。 1.遥控发射机 就是我们所说的遥控器,它是来操控我们的车模或船模的,由于它外部有一个长长的天线,遥控指令都是通过机壳外部的控制开关和按钮,经过内部电路的调制、编码,再通过高频信号放大电路由天线将电磁波发射出去。目前模型常用的遥控发射机有三种类型:一种是盒式按键手持用的小型遥控发射机;一种是便携杆式遥控发射机;另一种是手持枪式遥控发射机。前一种多为开关式模拟电路的遥控系统,为一般普通的玩具遥控车模、船模或航模使用,电路的设计和制作比较简单,动作的指令都为“开”和“关”两种,虽然通道的数量可以很多,遥控的性能和距离较低。而发射机为杆式和枪式两种通常为比例式的无线电遥控器,在动态仿真模型中是当今最为流行的遥控操作系统,由于这两种在调制、编码和电路的组成等方式的不同,其性价比有很大的差异,所以在价格上也不同。 比例遥控杆式发射机有两个操纵杆,左边的杆用来控制模型车的速度及刹车(前进或后退),右边的杆控制模型车的方向。枪式发射机用一个转轮(方向盘)和一个类似手枪扳机的操纵杆来分别控制方向和速度。除了这些基本功能之外,一些较高级发射机还运用了先进的电脑技术,增加了许多附加的功能,如储存多种模型车、船的调整数据,一机多用;有计时、计圈功能,方便练习和比赛;有大型液晶显示屏幕,可显示工作状态和各种功能。 这两种遥控发射机的基本原理大体上是相同的,只是遥控发射机的外形和操控方式不同罢了,也许有要人问:那种类型的好?其实关键是你自己的习惯,喜欢那种操控方式,一旦你选好了类型,最好不要在中途随便更换发射机的类型,这样会改变你的操控习惯。 2.遥控接收机

通信原理课程设计 :无线电调频对讲机设计

通信原理课程设计 2010 级通信工程专业班级 题目无线电调频对讲机设计 姓名学号 指导教师 2012年12月23日

1任务书 设计并制作一个无线对讲机,要求采用调频方式工作,至少10米以上通话距离。 2设计方案选择 2.1 设计方案的确定 此方案主要应用高频电子线路与模拟电子技术中的低频放大和集成运放等知识,根据无线电信号的传输原理,将涉及分为发射部分和接受部分。并通过研究分析两个部分的原理框图,以及对高频放大电路、低频放大电路,混频电路、鉴频电路、天线等,最后确定对讲机的电路图。 2.1.1、电路原理分析: 本实验大致分为两个模块,一是调频收音机,二是调频对讲机。下面分别介绍它们的原理。 (1)调频收音机 收音机的基本功能就是把空中的无线电波转换成高频信号,这一切是有接收天线来实现。然后解调,即把调制在高频载波上的音频信号卸下来,常称作鉴频实现这一功能的电路叫鉴频器。最后鉴频出来的音频信号经放大来推动扬声器或耳机,既把声音恢复。 (2)调频对讲机 发射机由音频(话筒)放大器,调频调制器,高频载波振荡器,高频放大器,高频功率放大器,天线匹配回路,发射天线组成。音频放大器,将话简送来的声音电信号进行放大,以达到一定的幅度,去控制频率调制器,实现频率调制。 调频调制器中的变容管,其电容量会随着其变容管两端电压的变化而改变。当变容管两端的电压变化是由音频信号控制时,其变容管的容量也将随着音频信号的变化发生改变。调制器中的变容管是高频载波振荡器组成中的一部分,其电

容量发生改变时,高频载波的频率也作相应的变化,从而实现频率调制(载波调频)。 2.2、电路原理系统框图 收音、对讲机实验板原理图 2.2.1芯片概述 本套件采用了la1800和2822这两种芯片,它们的内部结构如图3和图4所示。核心芯片为 la1800,它作为收音接收专用集成电路,功放部分选用2822。对讲的发射部分采用两级放大电路,第一级为振荡兼放大电路;第二级为发射部分,采用专用的发射管使发射效率和对讲距离大大提高。它具有造型美观、体积小、外围元件少、灵敏度极高、性能稳定、耗电省、输出功率大等优点。只要按要求装配无误, 装好后稍加调试即可收到电台,无需统调,是电子技术改进更新的理想套件。它既能收到电台又能相互对讲。

无线电发射与接收电路

简易无线遥控发射接收设计 --- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。 MICRF002为完整的单片超外差接收电路,基本实现了“天线输入”之后“数据直接输出”,接收距离一般为200米。

无线电发射与接收电路

简易无线遥控发射接收设计--- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

FM无线发射电路设计

基于BH1417芯片的FM无线发射电路设计 发布:2011-06-08 | 作者: | 来源: guozhangfu | 查看:691次 | 用户关注: 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 引言 BH1417是FM无线发射芯片,它可工作于87MHz~108MHz频段,与简单的外围电路配合使用,可发射音频FM信号,它可以将计算机声卡、游戏机、CD、DVD、MP3、调音台等立体声音频信号进行立体声调制发射传输,配合普通的调频立体声接收机就可实现无线调频立体声传送。适用于生产立体声的无线音箱、无线耳机、CD、MP3、DVD、PAD、笔记本电脑等的无线音频适配器。 BH1417的原理特性 FM发射电路采用稳定频率的锁相环系统。这一部分由高频振荡器、高频放大器及锁相环频率合成器组成。调频由变容二极管组成的高频振荡器实现,高频振荡器是锁相环的VCO,立体声复合信号通过它直接进行调频。高频振荡器由第9引脚外部的LC回路与内部电路组成,振荡信号经过高频放大器从11引脚输出,同时输送到锁相环电路进行比较后,从第7引脚输出一个信号,对高频振荡器的值进行修正,确保频率稳定。一但超过锁相环设定的频率,第7引脚将输出的电平拉高;如果低于设定频率,它将输出的电平拉低;相同的时候,它的电平将不变。 1) 将预加重电路、限幅电路、低通滤波电路(LPF)一体化,使音频信号的质量比分立元件的电路(如BA1404、NJM2035等)有很大改进。 2) 采用锁相环锁频,并与调频发射电路一体化,使得发射的频率非常稳定。 3) 采用了4位拔码开关进行频率设定,可设定14个频点,使用非常方便。 BH1417的内部结构如图1所示。它由5部分组成:音频预处理电路(加重、限幅和低通滤波);基频产生电路(晶振、分频);锁相环电路(相位检测、锁频);频率设定电路(高低电平转换);调频发射电路。外围电路主要有拔码开关组成的频率控制电路、压控振荡器组成的载波产生电路、定时器以及一些耦合电容。 应用电路 音频输入端的限幅电路设计

通信原理答案第四章

第四章 4-1 设一条无线链路采用视距传播方式通信,其收发天线的架设高度都等于40m,若不考虑大气折射的影响,试求其最远通信距离。 解:45 D km =≈ 4-2 设一条天波无线电信道,用高度等于400km的F 2 层反射电磁波,地球的等效半径等于(6370?4/3)km,收发天线均架设在地面,试求其通信距离大约能达到多少千米? 解:(图略)。 设地球的等效半径为r,F 2 层的高度为h,最大通信距离(直线距离)的一半为d: r = 式中,400 h km =, 4 6374 3 r km =?,2d即为所求。 4-3 设有一平流台距离地面29km,试按上题给定的条件计算其覆盖地面的半径等于多少千米。 解:将上式中的400 h km =改为29 h km =即可。 4-4 设一个接收机输入电路的等效电阻等于600Ω,输入电路的带宽等于6MHz,环境温度为27?C,试求该电路产生的热噪声电压有效值。 解:7.72 V V μ === 4-5 某个信息源有A、B、C和D等四个符号组成。设每个符号独立出现,其出现的概率分别为14、14、316、516,经过信道传输后,每个符号正确接受的概率为1021/1024,错 为其他符号的条件概率(/) i j P x y均为1/1024,画出此信道的模型,并求出该信道的容量C 等于多少b/符号。 解:此信源的平均信息量(熵)为 4 2222 1 113355 ()()log()2log log log 4416161616 1.977(/) i i i H x P x P x b = =-=-?-- = ∑ 符号 (/)10211024(1,2,3,4) i i P y x i == (/)11024() i j P y x i j =≠

C9018无线对讲机电路图

C9018无线对讲机电路图 https://www.360docs.net/doc/2511403031.html,发布时间:2009-9-7 11:14:46 电子爱好者都喜爱制作无线对讲机,今天我就为广大爱好者提供一款制作简单、实用的无线对讲电路。 工作原理: 如图,Q1高频管的集电集到发射极接有C4正反馈电容,这个正反馈信号会使用电路产生高频振荡,同时,由于天线会接收到空中的电磁波,并通过L加到T1,使得Q1能根据空间电磁破的变化而振荡也发生变化,起到灵敏度极高的超再生检波作用。超再生检波出来的音频信号通过R4C9传输到Q2进行前置放大,经过前置放大后的信号就可以再经Q3推动、Q4、Q5功率放大去推动SP扬声器发出声音了,这就是对讲机的接收过程。通过调节T1的磁芯、C1、C3、C4还可以改变接收信号的频率,当接收频率刚好等于当地广播电台的频率时,还可以当收音机用。 当需要讲话时,请接下“收”开关,这时,SP喇叭原本是接在输出发声的,现在变成了当作话筒来拾取音频信号了,SP的音圈随着声音的振动感应出微弱的电信号经过Q2放大,再经过经Q3推动、Q4、Q5功率放大后加到了Q1的集电集,Q1的集电极电压会随着声音的变化而变化,经过,导致了Q1的高频振荡信号幅射到空音的强弱也在随声音变化而变化,这时本机就相当于是一个小小的无线发射台了。 声控双工无线对讲机电路图 时间:2008-09-04 21:13:15 用本电路制作的无线对讲机为调频双工方式,工作频率为30MHz,采用声控电子开关,电路简单,方便节能。工作电压3~9V,发射功率1~5w。 声控双工无线对讲机分接收和发射两个相对独立的部分,天线匹配网络为发射与接收共用,具体电路如图所示。发射部分由话筒放大电路、电子开关、振荡与倍频电路、激励放大、功率放大以及天线匹配网络组成。接收部分由天线匹配网络、调频接收电路、电子开关和功放电路组成。

超再生接收电路及无线电发射器工作原理.doc

超再生接收电路和无线电发射器工作原理

超再生接收电路和无线电发射器工作原理 超再生无线电遥控电路由无线电发射器和超再生检波式接收器两部分组成。 无线电发射器:它是由一个能产生等幅振荡的高频载频振荡器(一般用 30~450MHz )和一个产生低频调制信号的低频振荡器组成 的。用来产生载频振东和调制振荡的电路一般有:多揩苦荡器、互补振荡器和石英晶体振荡器等。 由低频振荡器产生的低频调制 波,一般为宽度一定的方波。如果 是多路控制,则可以采用每一路宽 度不同的方波,或是频率不同的方 波去调制高频载波,组成一组组的 己调制波,作为控制信号向空中发 射,组成一组组的己调制波,作为 控制信号向空中发射。如图 2 所示。 超再生检波接收器:超再生检波电路实际上是一个受间歇振荡控制的高频振荡器,这 个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。而间歇振荡(又称淬装饰振荡)双是在高频振 荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。而间歇(淬熄)振荡的频率是由电路的参数决定的(一般为 1 百 ~ 几百千赫)。这个频率选低了,电路的抗干扰性能较好,但接收灵敏度较低:反之,频率选高了,接收灵敏度较好, 但抗干扰性能变差。应根据实际情况二者兼顾。 超再生检波电路有很高的增益,在未收到控制信号时,由于受外界杂散信号的干扰和电路自身的热搔动,产生一种特有的噪 声,叫超噪声,这个噪声的频率范围为0.3~5kHz之间,听起来像流水似的“沙沙”声。在无信号时,超噪声电平很高,经滤 波放大后输出噪声电压,该电压作为电路一种状态的控制信号,使继电器吸合或断开(由设计的状态而定)。 当有控制信号到来时,电路揩振,超噪声被抑制,高频振荡器开始产生振荡。而振荡过程建立的快慢和间歇时间的长短,受 接收信号的振幅 控制。接收信号振 幅大时,起始电平 高,振荡过程建立 快,每次振荡间歇 时间也短,得到的 控制电压也高;反 之,当接收到的信 号的振幅小时,得 到的控制电压也 低。这样,在电路 的负载上便得到 了与控制信号一 致的低频电压,这 个电压便是电路 状态的另一种控 制电压。 如果是多通道遥控电路,经超再生检波和低频放大后的信号,还需经选频回路选频,然后分别去控制相应的控制回路。 SP多用途无线数据收发模块

相关文档
最新文档