糖尿病动物模型简介

糖尿病动物模型简介
糖尿病动物模型简介

糖尿病动物模型

转载请注明来自丁香园

发布日期: 2006-07-10 19:22 文章来源: 丁香园

关键词: 糖尿病糖尿病动物模型

2.7 db/db小鼠

db/db小鼠糖尿病发病系瘦素受体突变所致,呈常染色体隐性遗传。该鼠在10~14日龄时就出现多食、高胰岛素血症,但4周龄时血糖仍维持正常,随后该鼠体重逐渐增加,出现高血糖。2~3月龄时尽管胰岛素水平为正常时的6~10倍,但血糖水平可达22~33mmol/L;约3~6月龄时胰岛素水平逐渐下降至低于正常水平,该期小鼠体重明显下降,并出现酮症,组织学显示显著的β细胞坏死,如缺乏胰岛素治疗,该小鼠存活不超过10月。db/db小鼠另一个特点为:其血清胰高糖素的水平较正常对照升高2倍以上[22.23]。db/db小鼠是适用于研究2型糖尿病发病机制的动物模型。

2.8 ob/ob小鼠

ob/ob小鼠为2型糖尿病动物模型,属常染色体隐性遗传。ob/ob小鼠糖尿病发病是由于ob基因突变,造成其编码的蛋白leptin缺乏,引起肝脂肪生成和肝糖原异生显著增加,高血糖又刺激胰岛素分泌,引起胰岛素抵抗,刺激脂肪的形成,ob/ob小鼠体重可达90克之多。ob/ob小鼠症状的轻重取决于遗传背景,纯合体动物表现为肥胖,明显的高血糖及高胰岛素血症,而ob/ob/6J小鼠胰岛素水平可达正常小鼠的10~50倍,但其血糖常只有轻度的升高。组织学显示ob/ob小鼠胰岛β细胞显著增生、肥大,而胰岛A细胞、D细胞及PP细胞数量明显减少[24.25]。

2.9 KK鼠

KK小鼠是日本学者培育的一种轻度肥胖型2型糖尿病动物,后与C57BL/6J小鼠杂交,并进行近亲繁殖,得到Toronto-KK(T-KK)小鼠。将黄色肥胖基因(即Ay)转至KK小鼠,得KKAy鼠,与KK小鼠相比,KKAy鼠有明显的肥胖和糖尿病症状。KK小鼠有明显的多食,从5周龄起,血糖、血胰岛素水平逐步升高,至5月龄时体重可达50克,非空腹血糖常低于17mmol/L,非空腹血胰岛素可达1200ug/mL,1岁龄时,多食、高血糖、高胰岛素血症、肥胖及肝脏对胰岛素的敏感性可自发恢复正常,但糖尿病KK小鼠生命常明显缩短。此外,KK小鼠空腹胰高糖素水平升高,且不受葡萄糖抑制。组织学显示B细胞有脱颗粒和糖原浸润,随后出现胰岛肥大和肝脂肪化和脂肪组织增多[26.27]。

【其他DM动物模型】

1.激素性DM动物模型:注射垂体前叶提取物、生长素、肾上腺皮质激素、甲状腺素或胰高血糖素均可直接或间接产生DM。

2.病毒性DM动物模型:利用脑-心肌炎病毒(EMC-M病毒)和柯萨基病毒等使某些种属的小鼠胰岛β细胞脱颗粒、坏死,导致胰岛β细胞破坏,产生类似的1型DM。

3.免疫性DM动物模型:静脉注射抗胰岛素抗体或用同种或异种胰岛素的弗氏佐剂复合物及抗血清免疫;或用同种或异种胰腺+弗氏佐剂免疫动物均可在数小时后产生一过性高血糖。其机制是内源性胰岛素与输入的抗体结合导致内源性胰岛素降低而致DM。

4.下丘脑性DM动物模型:用电凝法或注射硫代葡萄糖金损伤丘脑下部腹内侧核(VMH)饱中枢,可使成熟动物产生过度摄食、肥胖,直至产生DM。

【转基因糖尿病动物模型】

糖尿病(diabetes mellitus ,DM)已成为严重危害人类健康的公共卫生问题,DM及其并发症不仅严重影响糖尿病患者的生活质量,同时也是致残、致死的重要原因。因此,建立合适的糖尿病动物模型,阐明DM及其并发症的发病机制就显得尤为重要。目前,DM动物模型制备方法主要有:①手术切除胰腺;②化学药物诱导;③自发性糖尿病动物模型;④转基因动物等。

【切除胰腺的DM模型】

常采用狗、猫和大鼠等造模,全部或大部分切除实验动物的胰腺,但保存胰十二指肠动脉吻合弓。如果连续两天血糖值超过11.1mmol/L或行葡萄糖耐量试验120min时的血糖值仍未恢复到注射前水平则认为DM 造模成功。其机制是全部或大部分切除胰腺后,β细胞缺如而产生永久性DM。

【化学药物诱发的DM模型】

采用链脲佐菌素腹腔注射或四氧嘧啶静脉注射可诱发DM,常用动物有小鼠、大鼠、家兔和狗。链脲佐菌素(streptozotocin STZ)的参考剂量为50~150mg/kg;四氧嘧啶(alloxan)的参考剂量为60~110mg/kg。

STZ是一种含亚硝基的化合物,进入体内可通过以下机制特异性地破坏胰岛β细胞:①STZ直接破坏胰岛β细胞:主要见于注射大剂量STZ后。STZ注射后可引起β细胞内辅酶I(NAD)的浓度下降,NAD依赖性能量和蛋白质代谢停止,导致β细胞死亡。②通过诱导一氧化氮(NO)的合成,破坏胰岛β细胞;③STZ 激活自身免疫过程,进一步导致β细胞的损害:小剂量注射STZ可破坏少量胰岛β细胞,死亡的胰岛β细胞可作为抗原被巨噬细胞吞噬,产生TH1刺激因子,使TH1细胞系占优势而产生IL-2及IFN-γ,在胰岛局部促使炎性细胞浸润,并活化释放IL-1、TNF-α、IFN-γ、NO和H2O2等物质杀伤细胞。死亡细胞又可作为自身抗原,再次递呈给抗原递呈细胞进行处理,释放细胞因子,放大细胞损伤效应,最终诱发DM[1]。

四氧嘧啶进入体内后能迅速被胰岛β细胞摄取,影响细胞膜的通透性和细胞内ATP的产生,抑制葡萄糖介导的胰岛素分泌。四氧嘧啶主要通过产生氧自由基破坏β细胞结构,导致细胞的损伤及坏死,从而阻碍胰岛素的分泌,使血清胰岛素水平降低。因四氧嘧啶同时也造成肝、肾组织中毒性损害;另外,部分采用四氧嘧啶制造的DM动物模型可自发缓解,故目前已经很少应用。

【自发性糖尿病动物模型】

该模型绝大多数采用有自发性DM倾向的近交系纯种动物,如BB(Biobreeding)鼠、NOD(non-obesity diabetes)小鼠、GK(Goto-kakisaki)鼠和中国地鼠(chinese hamster)等动物造模。自发性DM动物模型是指动物未经过任何有意识的人工处置,在自然情况下发生DM的动物模型。已用于研究的自发性DM 动物约有20种,可分为两类:一类为缺乏胰岛素,起病快、症状明显,并伴有酮症酸中毒,如BB(Biobreeding)鼠、NOD(non-obesity diabetes)小鼠和LETL大鼠,它们可以作为1型DM的动物模型使用。这些动物没有肥胖,发病之初呈现胰腺炎的症状,人类组织相关性抗原(MHC)参与发病过程,这些都与人1型DM 的特征相似。利用这些模型可以对人1型DM的发病机制进行深入研究。另一类为胰岛素抵抗性高血糖症,其特点是病程长,不合并酮症,为 2型DM动物模型。常用的2型DM自发性动物模型有中国地鼠(Chinese hamster)、GK(Goto-Kakisaki Wistar rats)大鼠、NSY (Nagoya-Shibata-Yasuda) 鼠和OLETF大鼠。

1.1型糖尿病动物模型

1.1 BB大鼠

BB鼠是常用的1型DM动物模型,是由加拿大渥太华Biobreeding实验室培育而成。大约50%~80%BB 鼠可发生DM,雄性与雌性大鼠发病率相当。BB大鼠一般于60~120日龄时发生DM,发病前数天可见糖耐量异常及胰岛炎。发病的大鼠具有1型DM的典型特征:体重减轻、多饮、多尿、糖尿、酮症酸中毒、高血糖、低胰岛素、胰岛炎、胰岛β细胞减少。需依赖于胰岛素治疗才能生存。BB大鼠另一个特点是其血液中淋巴细胞减少,易于感染。此外,BB大鼠发生淋巴细胞甲状腺炎的频率较高,其血清常可检测出抗平滑肌、骨骼肌、抗壁细胞和抗甲状腺球蛋白的自身抗体[2.3]。

1.2 NOD小鼠

NOD小鼠为一自发性非肥胖DM小鼠,其发病年龄和发病率有着较为明显的性别差异,雌鼠发病年龄较雄鼠明显提早,发病率亦远高于雄鼠,NOD小鼠3-5周龄时开始出现胰岛炎,浸润胰岛的淋巴细胞常为CD4+或CD8+淋巴细胞,于13~30周龄时发生明显DM。与BB大鼠不同的是,NOD小鼠一般不出现酮症酸中毒,无外周血淋巴细胞减少,但同样需要胰岛素治疗以维持生存。在NOD鼠胰岛炎初期,血浆和胰岛灌注液中胰岛素的基础值和对葡萄糖的反应值均减低,同时胰高血糖素和胰高血糖素样物质的免疫活性增加。NOD 小鼠葡萄糖激酶、丙酮酸激酶等活性下降,葡萄糖-6-磷酸脱氢酶和丙酮酸激酶的活性增加,肝组织中转氨酶、乳酸脱氢酶、支链氨基酸以及肾脏组织中的β-N-乙酰氨基葡萄糖苷酶、α-葡萄糖苷酶和α-甘露糖苷酶等活性也均降低[4.5]。NOD小鼠伴发DM是遗传、免疫和自由基损伤多因素综合作用的结果,NOD小鼠这些特点与1型DM患者相似,是研究关于1型DM遗传学、免疫学、病毒学特征及其预防和治疗等方面的良好动物模型。

1.3 LETL(long evans tukushima lean)大鼠

LETL也是一种1型DM的动物模型,通常于8~20周龄时发生DM,雄性大鼠发病率约为21%,雌性大鼠发病率约为15%,如果在5~7周龄时使用环磷酰胺处理大鼠则其在16周龄时,DM发病率增加一倍。LETL 大鼠无外周血淋巴细胞减少,在明显DM症状发生前4~5天,胰岛可见有明显的淋巴细胞浸润[6.7]。

2.2型糖尿病动物模型

2.1 嗜沙肥鼠(Psammonys Obesus,PO)

PO大鼠是生活在沙漠地区的啮齿类动物,该鼠具有明显的胰岛素抵抗,在高热量饮食条件下(数天~两周),90% 的PO大鼠可自发出现高胰岛素血症,并伴有明显的高血糖,随后出现胰岛素水平降低。PO 大鼠的DM发病大致可分为以下四个阶段:①起始阶段:该阶段内血糖及血清胰岛素水平均正常;②高胰岛素血症期:该期血糖仍保持正常,但血清胰岛素明显升高;③高胰岛素和高血糖期:该期内血糖>

11.1mmol/L;④低胰岛素高血糖期:该期由于胰岛β细胞分泌功能损害导致低胰岛素和高血糖,大鼠需应用胰岛素治疗以维持生存[8~10]。Duhault等[11]发现PO大鼠在2型DM晚期呈胰岛素依赖性,胰腺组织学显示有胰岛炎存在,说明其具有迟发1型DM(Latent autoimmune diabetes mellitus in adult,LADA)的特点,故PO大鼠可能适用于LADA的研究。

2.2 中国地鼠

自发性DM地鼠模型是将健康的中国地鼠通过近亲繁殖而获得,这种模型以轻、中度高血糖为特征,动物为非肥胖型,血清胰岛素表现多样,胰岛病变程度不一,类似于人类的2型DM。多数地鼠DM发病在1岁龄以内,群体发病率约为20.88%[12]。

2.3 GK大鼠(Goto-Kakisaki Wistar Rats)

GK大鼠是一个常用的自发性非肥胖2型DM模型,GK雌、雄鼠发病率相当,一般于3~4周龄时发生明显的DM,在高血糖发生前,常有一段血糖正常时期(从出生后到断奶),相当于人类的DM前期。其特征有:葡萄糖刺激的胰岛素分泌受损,β细胞数目减少60%,肝脏对胰岛素的敏感性降低,导致肝糖生成过多;肌肉和脂肪组织呈中度胰岛素抵抗。GK大鼠血压也较正常wistar大鼠高(低盐摄入约高15mmHg,高盐摄入约高24mmHg);此外,GK大鼠具有与人类2型DM微血管并发症相似的改变如运动神经传导速率减慢、神经纤维有节段性脱髓鞘、轴突变性、视网膜血管内皮生长因子(VEGF)表达增加、视网膜局部血流减少、白蛋白尿、肾小球基底膜增厚、肾小球肥大和硬化等[13~15]。

2.4 Zucker DM肥胖(zucker diabetic fatty,ZDF )大鼠

ZDF大鼠是常用的2型DM动物模型,该鼠由于瘦素受体突变导致多食、肥胖同时伴有高胰岛素血症、高脂血症和中度高血压。雄性ZDF大鼠一般于8~10周出现DM,有DM的典型症状如多饮、多尿和体重增加缓慢,并可出现神经病变;雄性ZDF大鼠肌肉GLUT4表达明显降低,其胰岛β细胞GLUT2表达也明显下调,这可能是ZDF大鼠发生2型糖尿病的机制。组织学研究发现,6周龄大鼠胰岛即表现有结构紊乱和纤维化,胰岛β细胞脱颗粒,胰岛β细胞数量远低于相同周龄的非DM ZDF大鼠[16]。

2.5 NSY(Nagoya-Shibata-Yasuda)小鼠

NSY小鼠是从jcl ICR远交系小鼠根据葡萄糖耐量选择繁殖产生的,具有年龄依赖性自发发生DM的特征。该鼠在任何年龄都无严重的肥胖,也无很高水平的高胰岛素血症,但在第24周龄出现显著的葡萄糖刺激的胰岛素分泌功能的减弱,病理学上未见胰岛增生或炎性改变等形态学异常,提示NSY小鼠发生2型DM 的原因可能是胰岛β细胞对葡萄糖诱发的胰岛素分泌功能改变,胰岛素抵抗可能在其发病机理中发挥一定的作用[17]。NSY小鼠将有助于人们对2型DM遗传学倾向及病理发生的进一步研究。

2.6 OLETF(Ostuka Long-Evans Tokushima Fatty)大鼠

OLETF大鼠是河野等利用Long-Evans系大鼠建立的自发性2型DM动物模型。该鼠由于胆囊收缩素(CCK)-A受体mRNA的表达完全缺失,导致其食欲亢进和肥胖,消化道对CCK-8刺激无反应,胰腺的内、外分泌功能均降低。此模型具有2型DM的特征如多食、肥胖、多饮和多尿,能缓慢地自然产生2型DM。OLETF 大鼠自8周龄起血清甘油三酯、胆固醇和餐后血糖均明显高于对照鼠,随着年龄的增长,血清甘油三酯和餐后血糖不断升高。12周龄起出现明显的胰岛素抵抗;18周龄时,胰岛素敏感性约为对照组的20%;24周龄时,血浆胰岛素代偿性增加;30周龄时,血TG水平达到对照组的5倍;40周龄以后,胰岛的分泌功能降低;65周以后,血糖值高达25mmol/L,而免疫反应性胰岛素(IRI)水平却低于40pmol/L。OLETF大鼠尿蛋白自30周龄起明显增多,且随年龄的增加而迅速增加,雄性鼠55周龄时,尿蛋白含量可达800mg/d以上。组织学研究发现,OLETF大鼠胰腺呈进行性纤维化。20周龄时,胰腺即有明显的纤维化、胰岛增大;40周龄时,胰岛被结缔组织取代;70周龄时,胰腺极度萎缩,胰腺组织被脂肪和结缔组织代替。此外,OLETF 大鼠在22周龄时,即可出现肾小球基底膜增厚;40周龄以后,雄性OLETF大鼠肾小球增大,肾小球膜基质增生及肾小球基底膜增厚;70周龄时,几乎在每一个肾小球周围都可见被扩张的毛细血管包围的PAS-阳性结节,这种结节性的改变膨胀到肾小球膜基质,OLETF大鼠的肾脏变化很类似人的DM结节性肾小球硬化症[18~21]。以上胰腺和肾脏不同阶段的病理变化,与临床2型DM患者的病理表现极为相似,为研究2型DM及其并发症的发病机制和胰岛素抵抗干预措施的评价提供了良好的实验动物模型。

转基因动物(transgenic animal)技术是通过遗传工程的手段对动物基因组的结构或组成进行人为的修饰或改造,并通过相应的动物育种技术使得这些经修饰改造后的基因组在世代间得以传递和表现。利用这一技术,人们可以在动物基因组的特定位点引入所设计的基因突变,模拟造成人类遗传性疾病的基因结构或数量异常;可以通过对基因结构进行修饰,在动物发生、发育的全过程中研究体内基因的功能及其结构/

功能的关系。有关1型、2型DM和青少年发病的成人型糖尿病(maturity-onset diabetes of youth,MODY)的转基因DM动物均有报道。

⒈MKR小鼠是由Fernández等培育出的2型DM转基因动物模型,该小鼠骨骼肌过度表达失活的IGF-1受体,失活的IGF-1受体与内源性IGF-1受体及胰岛素受体形成杂合受体,干扰这些受体的正常功能,导致明显胰岛素抵抗;该小鼠2周龄即有明显的的高胰岛素血症,5周龄后空腹及进食后血糖逐渐升高,7~12周龄即有明显糖耐量异常;PPAR- 激动剂 WY14,643治疗可纠正MKR小鼠糖代谢异常[28.29]。

⒉MODY2动物模型 zhang等利用基因敲除技术制得肝脏葡萄糖激酶(GCK) )-/-小鼠,发现随着时间延长,该鼠血糖逐渐升高,糖耐量减退,6周龄小鼠空腹血糖显著高于对照组小鼠,这种肝细胞GCK活性减退所引起的疾病与人MODY相似,可作为MODY的动物模型[30]。

3.线粒体糖尿病 Silva等发现β细胞Tfam(mitochondrial transcriptionfactor A)突变的小鼠,大约5周龄时发生糖尿病,表现为严重mtDNA耗竭,氧化磷酸化不足和7~9周时胰岛内可观察到异常的线粒体,呈现线粒体糖尿病的改变[31]。

4.GDM(妊娠糖尿病)模型妊娠期胰岛素抵抗可引起妊娠糖尿病,患者胎儿典型特征是巨大儿,成年后患肥胖和2型糖尿的概率上升。Yama等发现杂合体C57BL/PKsJ-db/+小鼠发生GDM,妊娠引起PI3K与IRS-1解离,与IR结合活性增加,胰岛素介导的精氨酸磷酸化增多而IRS-1表达及其酪氨酸磷酸化减少从而使IRS-1结合及激活PI3K能力下降,胰岛素功能不能发挥,出现胰岛素抵抗[32]。

5.为了研究B淋巴细胞在1型DM发病中的作用,Wong等利用转基因技术制得了NOD-RIP-B7-1(Nonobese Diabetic-Rat Insulin Promoter-B7-1)转基因小鼠,该小鼠由于过度表达辅助刺激因子B7.1而致DM发病时间较正常NOD小鼠明显提前,在12周龄即发生DM[33]。

随着对DM研究的逐步深入,相应的DM动物模型发展势在必然,转基因动物的建立将为DM研究提供更科学有效的工具。

参考文献(略)

糖尿病动物模型简介

糖尿病动物模型 转载请注明来自丁香园 发布日期: 2006-07-10 19:22 文章来源: 丁香园 关键词: 糖尿病糖尿病动物模型 2.7 db/db小鼠 db/db小鼠糖尿病发病系瘦素受体突变所致,呈常染色体隐性遗传。该鼠在10~14日龄时就出现多食、高胰岛素血症,但4周龄时血糖仍维持正常,随后该鼠体重逐渐增加,出现高血糖。2~3月龄时尽管胰岛素水平为正常时的6~10倍,但血糖水平可达22~33mmol/L;约3~6月龄时胰岛素水平逐渐下降至低于正常水平,该期小鼠体重明显下降,并出现酮症,组织学显示显著的β细胞坏死,如缺乏胰岛素治疗,该小鼠存活不超过10月。db/db小鼠另一个特点为:其血清胰高糖素的水平较正常对照升高2倍以上[22.23]。db/db小鼠是适用于研究2型糖尿病发病机制的动物模型。 2.8 ob/ob小鼠 ob/ob小鼠为2型糖尿病动物模型,属常染色体隐性遗传。ob/ob小鼠糖尿病发病是由于ob基因突变,造成其编码的蛋白leptin缺乏,引起肝脂肪生成和肝糖原异生显著增加,高血糖又刺激胰岛素分泌,引起胰岛素抵抗,刺激脂肪的形成,ob/ob小鼠体重可达90克之多。ob/ob小鼠症状的轻重取决于遗传背景,纯合体动物表现为肥胖,明显的高血糖及高胰岛素血症,而ob/ob/6J小鼠胰岛素水平可达正常小鼠的10~50倍,但其血糖常只有轻度的升高。组织学显示ob/ob小鼠胰岛β细胞显著增生、肥大,而胰岛A细胞、D细胞及PP细胞数量明显减少[24.25]。 2.9 KK鼠 KK小鼠是日本学者培育的一种轻度肥胖型2型糖尿病动物,后与C57BL/6J小鼠杂交,并进行近亲繁殖,得到Toronto-KK(T-KK)小鼠。将黄色肥胖基因(即Ay)转至KK小鼠,得KKAy鼠,与KK小鼠相比,KKAy鼠有明显的肥胖和糖尿病症状。KK小鼠有明显的多食,从5周龄起,血糖、血胰岛素水平逐步升高,至5月龄时体重可达50克,非空腹血糖常低于17mmol/L,非空腹血胰岛素可达1200ug/mL,1岁龄时,多食、高血糖、高胰岛素血症、肥胖及肝脏对胰岛素的敏感性可自发恢复正常,但糖尿病KK小鼠生命常明显缩短。此外,KK小鼠空腹胰高糖素水平升高,且不受葡萄糖抑制。组织学显示B细胞有脱颗粒和糖原浸润,随后出现胰岛肥大和肝脂肪化和脂肪组织增多[26.27]。 【其他DM动物模型】 1.激素性DM动物模型:注射垂体前叶提取物、生长素、肾上腺皮质激素、甲状腺素或胰高血糖素均可直接或间接产生DM。 2.病毒性DM动物模型:利用脑-心肌炎病毒(EMC-M病毒)和柯萨基病毒等使某些种属的小鼠胰岛β细胞脱颗粒、坏死,导致胰岛β细胞破坏,产生类似的1型DM。 3.免疫性DM动物模型:静脉注射抗胰岛素抗体或用同种或异种胰岛素的弗氏佐剂复合物及抗血清免疫;或用同种或异种胰腺+弗氏佐剂免疫动物均可在数小时后产生一过性高血糖。其机制是内源性胰岛素与输入的抗体结合导致内源性胰岛素降低而致DM。 4.下丘脑性DM动物模型:用电凝法或注射硫代葡萄糖金损伤丘脑下部腹内侧核(VMH)饱中枢,可使成熟动物产生过度摄食、肥胖,直至产生DM。

糖尿病小鼠模型的制备

、糖尿病的概念及分类 糖尿病已成为全人类继恶性肿瘤和心脑血管病之后的严重威胁人类健康的第三大非传染 性疾病。目前我国己成为世界第一糖尿病大国。 糖尿病是一类由遗传、环境、免疫等因素引起的、具有明显异质性的慢性高血糖症及其并 发症所组成的综合征,并非单一病因所引起的单一疾病(多原因引起的综合症)。糖尿病分 为:i型糖尿病、n型糖尿病和其它特异性糖尿病。I型糖尿病即胰岛B细胞大量破坏,常导 致胰岛素绝对性缺乏,以往称为胰岛素依赖型糖尿病、青年发病型糖尿病,“三多一少”症状明显。本型病因及发病是由于胰岛B细胞受到细胞介导性自身免疫性破坏。n型糖尿病由于胰 岛素抵抗并胰岛素分泌不足所致,以高血糖高血脂为显著特点。以往称为非胰岛素依赖型糖尿病、成年发病型糖尿病,常伴有明显的遗传因素,但遗传机制尚未阐明。其它特异性糖尿病 包括,B细胞功能的基因缺陷、胰岛素作用的基因缺陷、胰腺外分泌疾病、内分泌疾病、药物或化敏学制剂所致的糖尿病、感染、非常见型免疫介导性糖尿病以及有时并发糖尿病的其它遗传综合症。 (糖尿病是无法根治的,现在随着人们生活水平的提高,饮食习惯,生活方式的改变糖尿病的发病率节节攀升,成为威胁人类健康的一大难题。人们曾经一度把糖尿病称为富贵病这也是有一定道理的。为了提高人们的生活质量,近几年对糖尿病的研究日益加深) 二、糖尿病模型的建立 近年来,随着国内外对糖尿病治疗药物研究的深入开展,建立比较理想的糖尿病动物模型 显得尤为重要。目前常用的动物模型有实验性动物模型和自发性动物模型。自发性模型应用价 值较高,但因价格昂贵,饲养、繁殖条件要求严格,而不能得到广泛应用。实验性模型则应用比较广泛,实验性糖尿病动物模型的建立,是用各种方法损伤动物胰脏或胰岛B细胞导致胰岛 素的缺乏,或用化学药物对抗胰岛素作用,导致动物出现高血糖形成糖尿病。实验性糖尿病动 物模型的建立主要有6种方法:胰腺切除法致糖尿病、免疫性糖尿病、激素性糖尿病、下丘脑损伤性糖尿病、化学性糖尿病、病毒性糖尿病。由于化学性糖尿病动物模型诱发简便、来源广,应用较广泛。目前多采用注射化学诱导剂(链脲佐菌素或四氧嘧啶)的方法,引起短时间 内胰岛B细胞大量损害而诱发糖尿病动物模型的建立。 1糖尿病模型小鼠

糖尿病模型综述

糖尿病模型综述 糖尿病动物模型及中药治疗概况 第一部分糖尿病的动物模型 在介绍糖尿病的动物模型之前,首先简要说明一下糖尿病的分型[1]。糖尿病是一类由遗传、环境、免疫等因素引起的、具有明显异质性的慢性高血糖症及其并发症所组成的综合征,并非单一病因所引起的单一疾病。糖尿病分为:Ⅰ型糖尿病、Ⅱ型糖尿病和其它特异性糖尿病。Ⅰ型糖尿病即胰岛β细胞破坏,常导致胰岛素绝对性缺乏,以往称为胰岛素依赖型糖尿病、青年发病型糖尿病,本型病因及发病是由于胰岛β细胞受到细胞介导性自身免疫性破坏。Ⅱ型糖尿病由于胰岛素抵抗并胰岛素分泌不足所致,以往称为非胰岛素依赖型糖尿病、成年发病型糖尿病,常伴有明显的遗传因素,但遗传机制尚未阐明。其它特异性糖尿病包括,β细胞功能的基因缺陷、胰岛素作用的基因缺陷、胰腺外分泌疾病、内分泌疾病、药物或化敏学制剂所致的糖尿病、感染、非常见型免疫介导性糖尿病以及有时并发糖尿病的其它遗传综合症。 下面我将按照糖尿病的分型,介绍相应的糖尿病动物模型。 一、Ⅰ型糖尿病动物模型的建立 (一)手术方法(胰腺切除法[2]) 是最早的糖尿病动物模型复制方法。1890年,Mehring和Minkowski报道,在切除狗胰腺后,出现多尿,多饮,多食和严重的糖尿现象。一般选用较大的实验动物,如狗和家兔等,其次用大鼠。全部切除胰腺,可制成无胰性糖尿病动物模型,需补充外源性胰酶。全部切除胰腺,除可引起高血糖外,并可致酮症酸中毒和死亡,故一般主张切除75%~90%的胰。 (二)化学药物特异性破坏胰岛β细胞 1.四氧嘧啶(alloxan)四氧嘧啶产生超氧自由基而破坏β细胞,导致胰岛素合成减少,胰岛素缺乏。其作用可能与干扰锌的代谢有关。豚鼠具有抗药性。四氧嘧啶引起的血糖反应分三个时相,开始血糖升高,持续约2h,继而因β细胞残存的胰岛素释放引起低血糖约6h,12h后开始持久的高血糖。 ⑴小鼠给药剂量因给药途径不同而异(均需临用前配) 200mg/kg(ip) ,85-100 mg/ kg(iv)。四氧嘧啶制备小鼠糖尿病模型的影响因素很多。王柳萍等[3] 观察四氧嘧啶剂量、给药途径、给药次数及小鼠体重对糖尿病小鼠血糖、死亡率、转阴率的影响。结果发现,随剂量的增加,小鼠死亡率增高;小鼠体重增加,死亡率亦增高;静脉注射成模率比腹腔注射高;同等剂量分次给药,死亡率、转阴率均降低,认为四氧嘧啶以同等剂量分次给药小鼠糖尿病成模率高。黄敏等[4] 通过ip四氧嘧啶(ALX)建立速发型糖尿病小鼠模型观察不同禁食时间对ALX糖尿病小鼠模型的血清胰岛素和血糖的影响,结果表明ALX糖尿病小鼠造模的最佳时间为禁食12、18h后造模,禁食18h糖尿病小鼠模型组为最好。但陈建国等[5]观察各种因素对四氧嘧啶制备小鼠糖尿病模型的影响,结果表明,四氧嘧啶致小鼠高血糖模型最佳条件为:四氧嘧啶腹腔注射剂量为200mg/Kg,给药前小鼠禁食16h,选雌性小鼠更佳,选造模后第3天血糖值在15~30mmol/l小鼠为造模成功小鼠为宜。 ⑵大鼠Alloxan糖尿病大鼠是研究糖尿病治疗药物疗效的常用动物模型。但是,Alloxan糖尿病大鼠模型的制备受许多因素的影响,如饲料成分、给药次数、给药剂量、动物体重、个体差异等,如不能很好地控制这些因素,就会造成动物死亡率、转阴率高,以致模型的成功率降低,影响实验结果的可靠性。何学令等[6]观察四氧嘧啶制作大鼠糖尿病模型所需的最低剂量和不同给药途径对制作大鼠糖尿病模型的影响,结果表明,用四氧嘧啶制作大鼠糖尿病模型静脉给药优于腹腔给药;用四氧嘧啶以静脉给药方法成功制作大鼠糖尿病模型未禁食情况下需剂量≥40mg/kg。艾静等[7] 探讨四氧嘧啶致Wistar大鼠高血糖模型

型糖尿病动物模型研究进展

Ⅱ型糖尿病动物模型研究进展 摘要: 糖尿病是以高血糖为主要标志的内分泌代谢性疾病,是严重威胁人类健康的主要慢性病之一,而Ⅱ型糖尿病占糖尿病总数的90%~95%左右。建立合适的Ⅱ型糖尿病动物模型是阐明其发病机制的前提条件。因此,该文综述了目前国内外糖尿病研究中常用的动物模型,对发展新型Ⅱ型糖尿病动物模型的研究提供参考价值。 关键词:Ⅱ型糖尿病;动物模型;模型构建 Research Progress about the Construction of Type Ⅱ Diabetic Animal Model LIU Shu—Yun Abstract: Diabetes mellitus,the endocrine and metabolic diseases,is characterized by hyperglycemia. It is one of the most prevalent chronic diseases that threat to human health,and type 2 diabetes accounted for 90% -95% of the total diabetes. The animal model of type 2 diabetes provide the important precondition to many scholars in study of the pathogenesis and mechanism of diabetes.Therefore,this article reviews a number of animal models of T2DM commonly used according to the articles that have been published both inside country and abroad,which will provide reference for the development of type II diabetic animal models.Key Words:Type Ⅱ Diabetes Mellitus, Animal model,Model construction

糖尿病动物模型研究进展

糖尿病动物模型研究进展 糖尿病动物模型在糖尿病以及其并发症发病机制的研究中应用极其广泛,并且已有较长历史。除此之外,所有针对糖尿病治疗的措施,包括胰腺细胞的移植,甚至是预防策略,都要预先在动物模型上开展并观察。因此,对糖尿病动物模型进行研究和优化,使其更接近人类糖尿病发病过程,将有助于深入研究糖尿病及其并发症的发病机制,并为治疗和预防糖尿病奠定重要基础。 标签:糖尿病;实验性动物模型;自发性;诱导性 糖尿病是人类重要的代谢疾病,是继心脑血管疾病,癌症之后人类第三大杀手[1]。2011年国际糖尿病联盟(International Diabetes Federation,IDF)的调查结果表明全世界糖尿病患者已达3.66亿[2],其中发展中国家发病率逐渐高于发达国家。中国糖尿病的患病率更是在近10年翻了近两倍,已经成为世界第一糖尿病大国。目前,我国已经确诊的糖尿病患者人数高达9240万人,发病率高达9.7%[3]。动物模型在糖尿病以及其并发症发病机制的研究中有着举足轻重的作用,为了满足研究人员不同的需求,人们建立了大量的糖尿病动物模型。本文的主要目的是对糖尿病研究中常用的动物模型进行分类和整理,为研究者寻找和使用更适宜的糖尿病动物模型提供一些依据和资料。 1 1型糖尿病动物模型 人类1型糖尿病的特点是胰腺β细胞特定性的破坏,通常与免疫介导的损伤有关[4]。尽管这种破坏作用发生的悄无声息,但长此以往最后将导致胰腺β细胞的大量死亡以及内分泌的失调,最终导致胰岛素贫乏症。目前,根据造模方法和选择使用动物品系的不同,1型糖尿病动物模型可分为两大类:诱导性模型和自发性模型。 1.1 诱导性1型糖尿病模型 建立高血糖动物模型的最直接办法之一就是切除部分或者全部的胰腺。早在18世纪80年代,在研究肠道吸收脂肪的作用过程中,无意中发现被部分或全部切除胰腺的狗会出现尿多、骤渴等糖尿病的典型症状。至此之后,大量的类似实验在狗和兔子的身上开展起来。直至19世纪20年代初期Banting和Best在一只名为玛丽乔的胰腺切除的狗身上共同发现胰岛素[5]。 在19世纪60年代和80年代,研究人员发现通过注射链脲霉素(Streptozocin)[6]、四氧嘧啶(Alloxan)[7]、吡甲硝苯脲(Vacor)、二苯基硫代卡巴腙(Dithizone)和8-羟基喹啉(8-hydroxyquinolone)等化学毒素类物质,同样也可以破坏胰腺组织。 链脲霉素是一种能够抑制葡萄糖转运、葡萄糖激酶功能、诱导多DNA链断裂[10]的一种强烷基化药剂[8-10]。由于这类药物的毒素作用,一次性大剂量的

糖尿病小鼠模型的制备

一、糖尿病的概念及分类 糖尿病已成为全人类继恶性肿瘤和心脑血管病之后的严重威胁人类健康的第三大非传染性疾病。目前我国己成为世界第一糖尿病大国。 糖尿病是一类由遗传、环境、免疫等因素引起的、具有明显异质性的慢性高血糖症及其并发症所组成的综合征,并非单一病因所引起的单一疾病(多原因引起的综合症)。糖尿病分为:Ⅰ型糖尿病、Ⅱ型糖尿病和其它特异性糖尿病。Ⅰ型糖尿病即胰岛β细胞大量破坏,常导致胰岛素绝对性缺乏,以往称为胰岛素依赖型糖尿病、青年发病型糖尿病,“三多一少”症状明显。本型病因及发病是由于胰岛β细胞受到细胞介导性自身免疫性破坏。Ⅱ型糖尿病由于胰岛素抵抗并胰岛素分泌不足所致,以高血糖高血脂为显著特点。以往称为非胰岛素依赖型糖尿病、成年发病型糖尿病,常伴有明显的遗传因素,但遗传机制尚未阐明。其它特异性糖尿病包括,β细胞功能的基因缺陷、胰岛素作用的基因缺陷、胰腺外分泌疾病、内分泌疾病、药物或化敏学制剂所致的糖尿病、感染、非常见型免疫介导性糖尿病以及有时并发糖尿病的其它遗传综合症。 (糖尿病是无法根治的,现在随着人们生活水平的提高,饮食习惯,生活方式的改变糖尿病的发病率节节攀升,成为威胁人类健康的一大难题。人们曾经一度把糖尿病称为富贵病这也是有一定道理的。为了提高人们的生活质量,近几年对糖尿病的研究日益加深) 二、糖尿病模型的建立 近年来,随着国内外对糖尿病治疗药物研究的深入开展,建立比较理想的糖尿病动物模型显得尤为重要。目前常用的动物模型有实验性动物模型和自发性动物模型。自发性模型应用价值较高,但因价格昂贵,饲养、繁殖条件要求严格,而不能得到广泛应用。实验性模型则应用比较广泛,实验性糖尿病动物模型的建立,是用各种方法损伤动物胰脏或胰岛β细胞导致胰岛素的缺乏,或用化学药物对抗胰岛素作用,导致动物出现高血糖形成糖尿病。实验性糖尿病动物模型的建立主要有6种方法:胰腺切除法致糖尿病、免疫性糖尿病、激素性糖尿病、下丘脑损伤性糖尿病、化学性糖尿病、病毒性糖尿病。由于化学性糖尿病动物模型诱发简便、来源

糖尿病动物模型

糖尿病动物模型 糖尿病是一种终生的长期性的,以不能维持正常血糖稳态为特点的代谢性疾病。糖尿病分类繁多,但最主要的有I型糖尿病和II型糖尿病(Type 2 Diabetes Mellitus,T2DM)。目前认为II型糖尿病的基本机制是β细胞分泌胰岛素相对或绝对不足。动物模型被越来越多地用于研究T2DM,但是糖尿病动物模型众多,各有优劣。选择合适的动物模型对糖尿病研究至关重要。 在动物选择上,主要以哺乳动物为主,啮齿鼠类使用量最大,应用最广,主要用于药物筛选、病理改变等方面研究。家兔主要用于糖尿病性高脂血症等方面。近年来,小型猪产生兴趣,如Yucatan小型猪越来越受到重视,因为其消化系统的器官功能更接近人类,且具有自发性糖尿病倾向,只需单次注射四氧嘧啶200mg,常能诱发隐性遗传为显性遗传,发病1年内可产生眼底微血管增殖型改变等。 1.动物选择 主要以哺乳动物为主。啮齿鼠类使用量最大,应用最广;家兔主要用于糖尿病性高脂血症等方面的研究。近年来,如Yucatan小型猪因其与人类更加接近的消化系统而越来越受到重视,且小型猪有自发性糖尿病倾向。 2.几种常用的啮齿类动物模型 2.1.肥胖模型 2.1.1.瘦素相关基因改变诱导的动物模型 2.1.1.1.Lep ob/ob小鼠

背景为C57BL/6J,为位于6号染色体的Lepob等位基因突变形成自发性的纯合 子糖尿病小鼠。该小鼠从4周开始呈现出肥胖,之后体重急速增加。出现肥胖 后,该小鼠饮食过量,呈现高血糖、高胰岛素血症、妊娠能力低下、代谢低下 等特征。 2.1.1.2.Lep db/db小鼠 背景为C57BLKS/J, 为位于4号染色体的Lerpdb等位基因突变形成自发性的纯 合子糖尿病小鼠。该小鼠从3-4周开始呈现出肥胖体征.,血胰岛素从10-14天 开始增加,血糖值从4-8周开始急速增加。呈现出多饮,多食,多尿的临床表 现。血糖开始上升后, 胰岛的分泌胰岛素的β细胞消耗严重。这类小鼠平均寿命 约10个月,末梢神经系统,心血管系统,免疫系统,糖尿病性肾病等多个系 统均可观察到病理变化。 2.1.1. 3.Zucker肥胖大鼠/Zucker肥胖糖尿病大鼠 由Merck M-strain和sherman大鼠杂交而来的大鼠。其染色体的Lepr fa等位基因 突变形成自发性的纯合子糖尿病大鼠。4周开始呈现出肥胖,10周开始体重急 速增加,多伴有多食。该大鼠还有高脂血症、高胰岛素血症、高瘦素血症、妊 娠能力低下代谢低下等临床特征。该大鼠模型的脂肪细胞的数量和体积增加, 限制食物量也可以导致体重过度增加和过度的脂肪堆积。空腹时,血糖值一般 在正常范围内 2.1.2.多基因诱导的模型 2.1.2.1.KK-Aγ小鼠

小鼠糖尿病模型建立的实验设计

发育生物学课程设计 北方民族大学 小鼠糖尿病模型实验设计方案 姓名:徐飞 学号:20103465 生物技术102班

小鼠糖尿病模型实验设计方案 徐飞 (北方民族大学生物科学与技术学院,生物技术,20103465) 【摘要】糖尿病是一种常见的具有遗传倾向的葡萄糖代谢和内分泌障碍,是由于绝对性或相对性胰岛素分泌不足引起的,近半个世纪来,糖尿病患病率和死亡率有明显上升趋势,在我国已成为继心血管疾病、肿瘤之后列第三位的常见病、多发病和慢性非传染性疾病。【关键词】糖尿病;动物模型;实验设计 【Abstract】Diabetes mellitus is a common genetic glucose metabolic and endocrinal disturbance caused by insulindeficiency absolutely or relatively. In the last half century, diabetes has the increasing rates of morbidity and mortality, and has become the third common, frequently occurring and chronic noninfectious disease after cardiovascular disease and cancer. 【key words】Diabetes; Models, animal; Experimental design 引言 糖尿病(diabetesmellitus,DM)属中医学“消渴”范畴,是以多饮、多食、多尿、身体消瘦,或尿浊、尿有甜味为特征的疾病。现代医学认为,糖尿病是一种由多种病因引起的慢性代谢性疾病,是由于体内胰岛素缺乏,或拮抗胰岛素的激素增高,或胰岛素在靶细胞内不能发挥正常生理作用而引起葡萄糖、蛋白质及脂质代谢紊乱的综合征。为探清糖尿病病因,建立理想的DM动物模型是十分必要的,动物模型也可以筛选降糖药物,可以为中医药治疗糖尿病提供实验依据。 动物疾病模型主要用于实验生理学、实验病理学和实验治疗学(包括新药筛选)研究。人类疾病的发展十分复杂,以人本身作为实验对象来深入探讨疾病发生机制,推动医药学的发展来之缓慢,临床积累的经验不仅在时间和空间上都存在局限性,而且许多实验在道义上和方法上也受到限制。而借助于动物模型的间接研究,可以有意识地改变那些在自然条件下不可能或不易排除的因素,以便更准确地观察模型的实验结果并与人类疾病进行比较研究,有助于更方便,更有效地认识人类疾病的发生发展规律,研究防治措施。 糖尿病模型的建立方法很多,如手术法、药物法、自发性DM、转基因动物法等。国外多

DM动物模型

糖尿病(diabetes mellitus ,DM)已成为严重危害人类健康的公共卫生问题,DM及其并发症不仅严重影响糖尿病患者的生活质量,同时也是致残、致死的重要原因。因此,建立合适的糖尿病动物模型,阐明DM及其并发症的发病机制就显得尤为重要。目前,DM动物模型制备方法主要有:①手术切除胰腺;②化学药物诱导;③自发性糖尿病动物模型;④转基因动物等。 【切除胰腺的DM模型】 常采用狗、猫和大鼠等造模,全部或大部分切除实验动物的胰腺,但保存胰十二指肠动脉吻合弓。如果连续两天血糖值超过11.1mmol/L或行葡萄糖耐量试验120min时的血糖值仍未恢复到注射前水平则认为DM造模成功。其机制是全部或大部分切除胰腺后,β细胞缺如而产生永久性DM。 【化学药物诱发的DM模型】 采用链脲佐菌素腹腔注射或四氧嘧啶静脉注射可诱发DM,常用动物有小鼠、大鼠、家兔和狗。链脲佐菌素(streptozotocin STZ)的参考剂量为50~150mg/kg;四氧嘧啶(alloxan)的参考剂量为60~110mg/kg。 STZ是一种含亚硝基的化合物,进入体内可通过以下机制特异性地破坏胰岛β细胞:①STZ直接破坏胰岛β细胞:主要见于注射大剂量STZ后。STZ注射后可引起β细胞内辅酶I(NAD)的浓度下降,NAD依赖性能量和蛋白质代谢停止,导致β细胞死亡。②通过诱导一氧化氮(NO)的合成,破坏胰岛β细胞;③STZ激活自身免疫过程,进一步导致β细胞的损害:小剂量注射STZ可破坏少量胰岛β细胞,死亡的胰岛β细胞可作为抗原被巨噬细胞吞噬,产生TH1刺激因子,使TH1细胞系占优势而产生IL-2及IFN-γ,在胰岛局部促使炎性细胞浸润,并活化释放IL-1、TNF-α、IFN-γ、NO 和H2O2等物质杀伤细胞。死亡细胞又可作为自身抗原,再次递呈给抗原递呈细胞进行处理,释放细胞因子,放大细胞损伤效应,最终诱发DM[1]。 四氧嘧啶进入体内后能迅速被胰岛β细胞摄取,影响细胞膜的通透性和细胞内ATP的产生,抑制葡萄糖介导的胰岛素分泌。四氧嘧啶主要通过产生氧自由基破坏β细胞结构,导致细胞的损伤及坏死,从而阻碍胰岛素的分泌,使血清胰岛素水平降低。因四氧嘧啶同时也造成肝、肾组织中毒性损害;另外,部分采用四氧嘧啶制造的DM动物模型可自发缓解,故目前已经很少应用。 【自发性糖尿病动物模型】 该模型绝大多数采用有自发性DM倾向的近交系纯种动物,如BB(Biobreeding)鼠、NOD(non-obesity diabetes)小鼠、GK(Goto-kakisaki)鼠和中国地鼠(chinese hamster)等动物造模。自发性DM动物模型是指动物未经过任何有意识的人工处置,在自然情况下发生DM的动物模型。已用于研究的自发性DM动物约有20种,可分为两类:一类为缺乏胰岛素,起病快、症状明显,并伴有酮症酸中毒,如BB(Biobreeding)鼠、NOD(non-obesity diabetes)小鼠和LETL大鼠,它们可以作为1型DM的动物模型使用。这些动物没有肥胖,发病之初呈现胰腺炎的症状,人类组织相关性抗原(MHC)参与发病过程,这些都与人1型DM的特征相似。利用这些模型可以对人1型DM的发病机制进行深入研究。另一类为胰岛素抵抗性高血糖症,其特点是病程长,不合并酮症,为2型DM动物模型。常用的2型DM自发性动物模型有中国地鼠(Chinese hamster)、GK(Goto-Kakisaki Wistar rats)大鼠、NSY (Nagoya-Shibata-Yasuda) 鼠和OLETF大鼠。 1.1型糖尿病动物模型 1.1 BB大鼠 BB鼠是常用的1型DM动物模型,是由加拿大渥太华Biobreeding实验室培育而成。大约50%~80%BB鼠可发生DM,雄性与雌性大鼠发病率相当。BB大鼠一般于60~120日龄时发生DM,发病前数天可见糖耐量异常及胰岛炎。发病的大鼠具有1型DM的典型特征:体重减轻、多饮、多尿、糖尿、酮症酸中毒、高血糖、低胰岛素、胰岛炎、胰岛β细胞减少。需依赖于胰岛素治疗才能生存。BB大鼠另一个特点是其血液中淋巴细胞减少,易于感染。此外,BB大鼠发生淋巴细胞甲状腺炎的频率较高,其血清常可检测出抗平滑肌、骨骼肌、抗壁细胞和抗甲状腺球蛋白的自身抗体[2.3]。 1.2 NOD小鼠 NOD小鼠为一自发性非肥胖DM小鼠,其发病年龄和发病率有着较为明显的性别差异,雌鼠发病年龄较雄鼠明显提早,发病率亦远高于雄鼠,NOD小鼠3-5周龄时开始出现胰岛炎,浸润胰岛的淋巴细胞常为CD4+或CD8+淋巴细胞,于13~30周龄时发生明显DM。与BB大鼠不同的是,NOD小鼠一般不出现酮症酸中毒,无外周血淋巴细胞减少,但同样需要胰岛素治疗以维持生存。在NOD鼠胰岛炎初期,血浆和胰岛灌注液中胰岛素的基础值和对葡萄糖的反应值均减低,同

糖尿病的动物模型

糖尿病的动物模型 糖尿病是一类由遗传、环境、免疫等因素引起的、具有明显异质性的慢性高血糖症及其并发症所组成的综合征,并非单一病因所引起的单一疾病。糖尿病分为:Ⅰ型糖尿病、Ⅱ型糖尿病和其它特异性糖尿病。Ⅰ型糖尿病即胰岛β细胞破坏,常导致胰岛素绝对性缺乏,以往称为胰岛素依赖型糖尿病、青年发病型糖尿病,本型病因及发病是由于胰岛β细胞受到细胞介导性自身免疫性破坏。Ⅱ型糖尿病由于胰岛素抵抗并胰岛素分泌不足所致,以往称为非胰岛素依赖型糖尿病、成年发病型糖尿病,常伴有明显的遗传因素,但遗传机制尚未阐明。其它特异性糖尿病包括,β细胞功能的基因缺陷、胰岛素作用的基因缺陷、胰腺外分泌疾病、内分泌疾病、药物或化敏学制剂所致的糖尿病、感染、非常见型免疫介导性糖尿病以及有时并发糖尿病的其它遗传综合症。 手术及药物联合制作糖尿病模型 通过手术切除实验动物较易切除的胰腺钩突及体尾部,然后局部或全身应用胰腺β细胞毒性药物(1.四氧嘧啶产生超氧自由基而破坏β细胞,导致胰岛素合成减少,胰岛素缺乏。其作用可能与干扰锌的代谢有关。豚鼠具有抗药性。四氧嘧啶引起的血糖反应分三个时相,开始血糖升高,持续约2h,继而因β细胞残存的胰岛素释放引起低血糖约6h,12h后开始持久的高血糖。2. 链脲佐菌素能够选择性损伤胰岛β细胞,引起实验性糖尿病。给猴、狗、大鼠和小鼠等注射链脲佐菌素后,血糖水平的改变也可分为三个时相:①早期高血糖相,持续约1~2小时,乃此药抑制胰岛释放所致;②低血糖相,持续约6~10小时,可能是由于胰岛β细胞破坏,大量胰岛素释放,是血糖显著降低;③24小时后出现稳定的高血糖相即糖尿病阶段,此时大部分胰岛β细胞已呈现不同程度的损伤和破坏。与四氧嘧啶糖尿病不同,链脲佐菌素引起的糖尿病高血糖反应及酮症均较缓和.),以破坏残留胰腺的β细胞,使其丧失功能,造成实验动物体内胰岛素缺乏,从而诱发实验动物出现糖尿病的临床症象。 使用这种方法克服了全胰切除所致的严重创伤和胰腺外分泌障碍的缺点,也避免了大剂量应用胰腺β细胞毒性剂给其他组织器官带来的严重损伤。

小鼠糖尿病模型建立的实验设计

V .. . .. 发育生物学课程设计 北方民族大学 小鼠糖尿病模型实验设计方案

姓名:徐飞 学号:20103465 生物技术102班

小鼠糖尿病模型实验设计方案 徐飞 (北方民族大学生物科学与技术学院,生物技术,20103465)【摘要】糖尿病是一种常见的具有遗传倾向的葡萄糖代谢和内分泌障碍,是由于绝对性或相对性胰岛素分泌不足引起的,近半个世纪来,糖尿病患病率和死亡率有明显上升趋势,在我国已成为继心血管疾病、肿瘤之后列第三位的常见病、多发病和慢性非传染性疾病。【关键词】糖尿病;动物模型;实验设计 【Abstract】Diabetes mellitus is a common genetic glucose metabolic and endocrinal disturbance caused by insulindeficiency absolutely or relatively. In the last half century, diabetes has the increasing rates of morbidity and mortality, and has become the third common, frequently occurring and chronic noninfectious disease after cardiovascular disease and cancer. 【key words】Diabetes; Models, animal; Experimental design 引言 糖尿病(diabetesmellitus,DM)属中医学“消渴”范畴,是以多饮、多食、多尿、身体消瘦,或尿浊、尿有甜味为特征的疾病。现代医学认为,糖尿病是一种由多种病因引起的慢性代谢性疾病,是由于体内胰岛素缺乏,或拮抗胰岛素的激素增高,或胰岛素在靶细胞内不能发挥正常生理作用而引起葡萄糖、蛋白质及脂质代谢紊乱的综合征。为探清糖尿病病因,建立理想的DM动物模型是十分必要的,动物模型也可以筛选降糖药物,可以为中医药治疗糖尿病提供实验依据。 动物疾病模型主要用于实验生理学、实验病理学和实验治疗学(包括新药筛选)研究。人类疾病的发展十分复杂,以人本身作为实验对象来深入探讨疾病发生机制,推动医药学的

糖尿病动物模型

糖尿病动物模型 一.【关键词】糖尿病动物模型 目前公认糖尿病不是唯一病因的疾病,而是复合病因的综合征,与遗传、自身免疫及环境因素有关糖尿病是由多种病因引起以慢性高血糖为特征的代谢紊乱。糖尿病的病因尚未被完全阐明。近年来,由于糖尿病的发病率上升,防治糖尿病已成为科学工作者的一个重要课题。故合适的糖尿病模型是人类研究糖尿病的重要手段。 糖尿病分为:Ⅰ型糖尿病、Ⅱ型糖尿病和其它特异性糖尿病。Ⅰ型糖尿病即胰岛β细胞破坏约占糖尿病的10%以下,常导致胰岛素绝对性缺乏,以往称为胰岛素依赖型糖尿病、青年发病型糖尿病,本型病因及发病是由于胰岛β细胞受到细胞介导性自身免疫性破坏。Ⅱ型糖尿病由于胰岛素抵抗并胰岛素分泌不足所致约占糖尿病的90%以上,以往称为非胰岛素依赖型糖尿病、成年发病型糖尿病,常伴有明显的遗传因素,但遗传机制尚未阐明。其它特异性糖尿病包括,β细胞功能的基因缺陷、胰岛素作用的基因缺陷、胰腺外分泌疾病、内分泌疾病、药物或化敏学制剂所致的糖尿病、感染、非常见型免疫介导性糖尿病以及有时并发糖尿病的其它遗传综合症。 下面我将按照糖尿病的分型,介绍相应的糖尿病动物模型。 二、Ⅰ型糖尿病动物模型的建立 (一)手术方法(胰腺切除法) 是最早的糖尿病动物模型复制方法。1890年,Mehring和Minkowski报道,在切除狗胰腺后,出现多尿、多饮、多食和严重的糖尿现象。一般选用较大的实验动物,如狗和家兔等,其次用大鼠。全部切除胰腺,可制成无胰性糖尿病动物模型,需补充外源性胰酶。全部切除胰腺,除可引起高血糖外,并可致酮症酸中毒和死亡,故一般主张切除75%~90%的胰。 (二)化学药物特异性破坏胰岛β细胞 四氧嘧啶诱发糖尿病模型 1[造模原理.]四氧嘧啶(alloxan)四氧嘧啶产生超氧自由基而破坏β细胞,导致胰岛素合成减少,胰岛素缺乏。其作用可能与干扰锌的代谢有关。豚鼠具有抗药性。四氧嘧啶引起的血糖反应分三个时相,开始血糖升高,持续约2h,继而因β细胞残存的胰岛素释放引起低血糖约6h,12h后开始持久的高血糖。 2【实验动物】成年小鼠,成年大鼠,小型猪,家兔,均以雄性为佳。 3【主要试剂】四氧嘧啶,用注射用水或生理盐水新鲜配制成1%~3% 4【造模评价】用四氧嘧啶诱发的糖尿病模型类似人类Ⅰ型糖尿病,方法简单,成模率高,但是具有刺激胰岛素分泌的药物及胰岛素增敏作用的药物在此模型无降低血糖作用,造模死亡率较高,同时也致肝、肾组织中毒性损害,部分动物高血糖自然缓解。 链脲佐菌素诱发大小鼠动物模型 1[造模原理]链脲佐菌素(streptozotocin,SZT)链脲佐菌素能够选择性损伤胰岛β细胞,引起实验性糖尿病。给猴、狗、大鼠和小鼠等注射链脲佐菌素后,血糖水平的改变也可分为三个时相:①早期高血糖相,持续约1~2小时,乃此药抑制胰岛释放所致;②低血糖相,持续约6~10小时,可能是由于胰岛β细胞破坏,大量胰岛素释放,是血糖显著降低;③24

II型糖尿病动物模型的制备综述

II型糖尿病家兔模型的建立 一、摘要: 糖尿病是一组由于遗传和环境因素相互作用,胰岛素相对或绝对缺乏以及靶组织对胰岛素敏感性降低(胰岛素抵抗)引起的碳水化合物、脂肪及蛋白质代谢紊乱的综合征,是一种持续高血糖为特征的、慢性、全身性代谢性疾病。其按病因学分为1型、2型、其他特殊类型糖尿病和妊娠型糖尿病;以2型为主,且其发病率呈逐年上升趋势,,病程缓慢,预防治疗仍不完善。所以动物模型在2型糖尿病研究中发挥了重要作用,对于深入研究糖尿病的发病、治疗、预防及其并发症的转归有重要意义。动物模型可以有诱导型动物模型、自发性遗传动物模型、胰腺部分切除动物模和转基因动物模型等几种常见的2型糖尿病动物模型的建立模型,本文主要就诱导型方法中的脂毒模型进行综述和评价。 二、作者单位: 湘南学院 三、作者姓名:杨某,张某、谢某、李某 四、关键字: 诱导型II型糖尿病家兔动物模型STZ脂毒模型 五、正文: 1、前言:2型糖尿病发病率呈逐年上升趋势,已严重威胁到人类健康,但其预防治疗仍 不完善。因此,建立理想的糖尿病模型对于深入研究糖尿病的发病、治疗、预防及其并发症的转归有重要意义。化学物质诱导糖尿病动物模型,是应用化学物质损伤胰腺B细胞,从而引起动物发生糖尿病。目前常用药物有四氧嘧啶(allocan,AL)和链脲佐菌素(streptozotocin,STZ),其作用机制都是选择性损伤胰腺B细胞,引起细胞坏死,导致血胰岛素不同程度下降伴血糖升高。因此主要用于复制1型糖尿病。但是研究发现用STZ处理的新生小鼠在成年后可呈现2型糖尿病的表现,血清中胰岛素水平可以不降低甚至增高,而主要表现为胰岛素抵抗和能量代谢紊乱。5天龄ICR小鼠,按100mg/kg体重腹腔注射STZ,5天后再补注STZ 60mg/kg体重,待小鼠断乳后,给予正常饲料喂养。4周后剪鼠尾采血,用罗氏血糖仪测血糖在10~15mmol/L之间,并且小鼠的肝糖原和肌糖原均降低[1]。另外有作者利用雄性2天龄Wistar大鼠腹腔注射STZ160mg/kg,8周后尿糖阳性者作为研究对象[2]进行2型糖尿病炎症反应的研究。因此,链脲佐菌素(streptozotocin,STZ)也可以用于家兔,并制备II型糖尿病模型。我们的设想就是用高脂毒模型进行II型糖尿病模型制备,并综述、分析。 2、研究对象与方法:家兔;灌胃给药法;数据统计法以及空白对照法。 3、研究原理: 单纯高脂高热量饮食::由于2型糖尿病是遗传因素和环境因素共同作用的结果,因此近年的研究中重视了饮食的重要性,尤其是高脂、高热量的不合理的饮食结构对代谢性疾病的发生发展起着推动作用。利用脂毒性原理使对胰岛素敏感性降低(IR)的形式,再用STZ联合CFA对胰岛B细胞的损害形成胰岛素分泌不足伴IR及高血糖、高血脂。高血压的II型糖尿病模型。 4、步骤及说明: 1)长期高脂肪喂养家兔,建立脂毒性模型:取20只大小相似,年龄相近,

糖尿病动物模型复制方法研究概况

糖尿病动物模型复制方法研究概况 [摘要]糖尿病主要是以高血糖为特征的代谢性疾病,其对人体的危害仅次于癌症。不同类型糖尿病发病机理各不相同,制作糖尿病动物模型的方法也不相同,常用的方法仍然为化学药物诱导法。随着科学技术的发展,基因敲除型,自发性动物模型等实验方法也逐渐应用。各种制作方法的优势及怎样制备,了解不同动物模型的特点并应用研究,对临床上如何更好的治疗糖尿病患者意义重大。 [关键词]糖尿病;动物模型;研究概况;综述 [中图分类号]R-332 [文献标识码]A [文章编号]2095-0616(2016)03-41-05 仅用空腹血糖指标作为新的糖尿病诊断标准是1997年美国糖尿病学会(ADA)建议提出的,即FPG<6.1mmol/L为正常人群[正常空腹血糖(NFG)],6.1mmol/L≤FPG<7.0mmol/L为空腹血糖升高(IFG),FPG≥7.0mmol/L为糖尿病人群(DM)。它是一种代谢性疾病,临床有1型、2型、特异性和妊娠糖尿病之分。青少年与儿童若发生糖尿病多为1型糖尿病。多以起病急,“三多一少”,乏力消瘦为特征。因为此类糖尿病的发病机制为体内胰岛素含量不足,所以需要用胰岛素控制病情。而2型糖尿病多在中

年发病,大多35岁以上,此类人体内胰岛素含量正常,但功能弱,治疗时可以利用药物刺激其分泌,但部分人仍需要胰岛素治疗。建立糖尿病模型,旨在更好的进行糖尿病及其相关疾病的研究。在实验室中如何做出糖尿病动物模型,现就各型糖尿病如何制作动物模型作以下总结。 1.手术切除胰腺法 1889年Minkowshi在手术切术大狗胰腺以后,首次制作出了多饮多食多尿及尿糖的糖尿病大狗。Kurup等也切除了BALB/c 小鼠的部分胰腺,同样诱导出类似2型糖尿病动物模型。袁晖等在1998年制作糖尿病犬模型时,手术切除大狗全部胰腺,在术后3d连续监测血糖,造模成功,血糖超过11.1mmol/L。但此种制作方法,注射量较大,死亡率较高,不能够真实的模拟糖尿病血糖情况。 2.化学药物诱导法 2.1四氧嘧啶法(Alloxan) Alloxan为一种胰岛β细胞毒剂,可以使其坏死,不能正常分泌胰岛素。通过产生H2O2等超氧自由基选择性地破坏胰岛β细胞,辅酶I含量下降,两者使得胰岛素减少发生在β细胞合成之前,最终导致血糖过高和糖尿病发生。 代小思在2011年设计实验选取健康150只SD大鼠,分别四种不同剂量经腹膜腔注射四氧嘧啶。24h后测血糖,结果显示剂量为150~160mg/kg四氧嘧啶的一组造模成。

1型糖尿病大鼠模型制备经验.

第18卷第3期2010年9月 四川解剖学杂志 SICHUAN JOURNAL OF ANATOMY Vol.18No.3 September2010 d oi:10.3969/j.is sn.1005-1457.2010.010 ?型糖尿病大鼠模型制备经验 李娜娜1马淑君2周立1 1(新乡医学院人体解剖学教研室,新乡4530032 2(新乡医学院检验系,新乡4530032 =摘要>目的探讨?型糖尿病大鼠模型制作方法和注意事项。方法一次性大剂量注射链脲佐菌素(ST Z诱导?型糖尿病大鼠模型。结果一般情况观察:大鼠多饮、多食、多尿、消瘦明显。体重:实验组在1、2、4、8、12周和对照组同期组比较有显著差异(P<0105;实验组内1、2、4、8、12周两两比较有显著差异(P<0105。尾静脉血糖:实验组在 1、2、4、8、12周和对照组同期组比较有显著差异(P<0105;实验组诱导前与1、2、4、8、12周比有显著差异(P<0105。 结论通过腹腔一次大剂量注射ST Z(55mg/kg可以严重损伤胰岛,引起与?型糖尿病相似的症状。 =关键词>链脲佐菌素;糖尿病;动物模型 =中图分类号>R332=文献标识码>A=文章编号>1005-1457(201003-30-03

Experience of Prepation for Type?Diabetic Rat Model Li Nana1Ma Shujun2Zhou Li1 1(Dep artment of H uman Anatomy,X inx iang M ed ica l Colleg e,X inx iang4530032,Ch ina 2(Dep artment of Insp ection,X inx iang M ed ic al Colleg e,X inx ian g4530032,China =Abstract>Objective T o ex plor e t he metho d of establishing ty pe?diabetic rat mo del.Methods SD r ats w ere injec-ted intraper itoneally w ith55mg/kg st reptozoto cin(ST Zonce to induce the ty pe?diabetes models.Results T he rats in ex per imenta l gr oups had ty pical t ype?diabetic symptoms,such as the incr ease of diet,drinking,urine and t he decrease of body w eig ht.Co mpa red w ith no rmal g ro ups,the weig ht o f rats was decreased sig nificantly in ex per imental gr oups(PStr epto zo tocin(ST Z;Diabetes mellitus;A nima l model ?型糖尿病是具有一定遗传基础,在多种环境因素触发下,由T淋巴细胞介导的自身免疫系统疾病。?型糖尿病致死致残率非常高,给人类的健康带来灾难,其发病机制以及病理生理过程复杂,预防和治疗一直是医学界的一大难题,因此?型糖尿病动物模型的研制对研究1型糖尿病的发病机理及治疗具有重要意义[1]。 1材料和方法 1.1主要试剂 链脲佐菌素(ST Z购于美国Sig ma公司。

相关文档
最新文档