详解航空涡轮发动机

详解航空涡轮发动机
详解航空涡轮发动机

详解航空涡轮发动机(一)

【字体大小:大中小】引言

古往今来,人类飞上天空的梦想从来没有中断过。古人羡慕自由飞翔的鸟儿,今天的我们却可以借助

飞机来实现这一理想。鸟儿能在天空翻飞翱翔,靠的是有力的翅膀;而飞机能够呼啸驰骋云端,靠的是强劲的心脏航空涡轮发动机。

航空涡轮发动机,也叫喷气发动机,包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机等几大类,是由压气机、燃烧室和涡轮三个核心部件以及进气装置、涵道、加力燃烧室、喷管、风扇、螺旋桨和其它一些发动机附属设备比如燃油调节器、起动装置等组成的。其中,压气机、燃烧室和涡轮这三大核心部件构成了我们所说的”核心机"。每个部件的研制都要克服巨大的技术困难,因而航空涡轮发动机是名副其实的高科技产品,是人类智慧最伟大的结晶,其研制水平是一个国家综合国力的集中体现。目前世界上只有美、俄、法、英等少数几个国家能独立制造拥有全部自主知识产权的航空涡轮发动机。

2002年5月,中国自行研制的第一台具有完全自主知识产权、技术先进、性能可靠的航空涡轮发动机一一”昆仑"涡喷发动机正式通过国家设计定型审查,它标志着我国一跃成为世界第五大航空发动机设计生产国。”昆仑"及其发展型完全可以满足今后若干年内我军对中等偏大推力涡喷发动机的装机要求,将来在其基础上发展起来的小涵道比涡扇发动机还可以满足我国未来主力战机的动力要求,是我国航空涡轮发动机发展史上的里程碑。

要了解航空涡轮发动机,首先要从它的最关键部分--核心机开始。核心机包括压气机、燃烧室和涡轮

三个部件,它们都有受热部件,工作条件极端恶劣,载荷大,温度高,容易损坏,因此航空涡轮发动机的设计重点和瓶颈就在于核心机的设计。

详解航空涡轮发动机(二)

【字体大小:大中小】压气机

压气机的作用是将来自涡轮的能量传递给外界空气,提高其压力后送到燃烧室参与燃烧。因为外界空气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的含氧量。所以如果外界空气不经过压缩,

那么发动机的热力循环效率就太低了。

在航空涡轮发动机上使用的压气机按其结构和工作原理可以分为两大类,一类是离心式压气机,一类

是轴流式压气机。离心式压气机的外形就像是一个钝角的扁圆锥体。由于其迎风面积大,现在已经不在主流航空涡喷/涡扇发动机中使用了,仅在涡轴发动机中有一些应用。轴流式压气机因其中主流的方向与压气

机轴平行而得名,它是靠推动气流进入相邻叶片间的扩压信道来实现气流增压的。轴流式压气机具有体积小、流量大、效率高的特点,虽然轴流式压气机单级增压比不大(约 1.3?1.5),但是可以将很多级压气

机叶片串联起来,一级一级增压,其乘积就是总的增压比。轴流式压气机的这些优点,使其成为现代航空涡轮发动机的首选。

压气机的主要设计难点在于要综合保证效率、增压比和喘振裕度者三大主要性能参数满足发动机的要求。

压气机效率是衡量压气机性能好坏的重要指标,它反映了气流增压过程中产生能量损失的大小,如果效率太低,能量损失过大,压气机就是岀力不讨好。

增压比是指压气机岀口气压与进口气压之比,这个参数决定了压气机给后面的燃烧室提供的”服务质量"的好坏以及整个发动机的热力循环效率。目前人们的目标是提高压气机的单级增压比。比如在GE公司的J-79涡喷发动机上用的压气机风扇有17级之多,平均单级增压比为1.16,这样17级叶片的总增压比大约在12.5左右;而F-22的F-119涡扇发动机的压气机中,3级风扇和6级高压压气机的总增压比就达到了25左右,平均单级

增压比为 1.43。

但随着压气机的增压比越来越高,压气机喘振的问题凸显了岀来。

喘振是发动机的一种不正常的工作状态,是由压气机内的空气流量和压气机转速偏离设计状态过多而

引发的。喘振是发动机的致命故障,严重时可能导致发动机空中停车甚至发动机致命损坏。衡量发动机喘振性能的指标叫做”喘振裕度",就是说发动机的进气口流量变化多少会引发喘振,这个值一般都要求达到15 %甚至20 %以上。航空涡轮发动机性能要先进,稳定工作范围宽,首先要求喘振裕度要大,压气机工作点距离喘振边界远。其次,发动机抗畸变能力要强。进气口的气有时是不均匀的,尤其是飞机做大机动动作时,进气道唇口气流发生分离,造成压气机进口畸变,气流不均匀。这时发动机的喘振裕度就会减小,加减速又会把一部分喘振裕度消耗掉,也可能造成停车,所以喘振裕度必须足够,对畸变不敏感。导弹的尾焰也容易造成温度场畸变,使发动机停车,所以要有武器发射防喘自动控制系统。

早期的轴流式压气机多数为单转子轴流式压气机,即各级压气机是装在同一根传动轴上、由同一个涡轮驱动并以相同转速工作的。这种压气机结构比较简单,但是当单转子的发动机在工作中转速突然下降时

(比如猛收小油门),气流容积容量过大而形成堵塞,从而导致前面各级(低压压气机)叶片处于小流量大攻角的工作状态。这时,就像飞机在大攻角飞行时出现失速一样,气流在压气机叶片后面开始分离,这种分离严重到一定程度,就会岀现喘振。在单转子轴流式压气机中,为了降低低压部分在这种情况下的攻角,只好在压气机前加装可调导流叶片以降低气流攻角,或者在压气机的中间级上进行放气,即空防掉一部分已经增压的空气来减少压气机低压部分的攻角。

为了提高压气机的工作效率并增加发动机喘振裕度,人们想到了用双转子来解决问题,即让发动机的低压压气机和高压压气机工作在不同的转速之下,这样低压压气机与低压涡轮联动形成低压转子,高压压气机与高压涡轮联动形成高压转子。由于低压压气机和高压压气机分别装在两个同心的传动轴上,当压气机的空气流量和转速前后矛盾时,它们就可以自动调节,推迟了前面各级叶片上的气流分离,从而增加了喘振裕度。

然而双转子结构的发动机也并不是完美的。在双转子结构的涡扇发动机上,由于风扇通常和低压压气

机联动,风扇为了迁就压气机而必须在高转速下运行,高转速带来的巨大离心力就要求风扇的叶片长度不能太大,涵道比自然也上不去,而涵道比越高的发动机越省油。低压压气机为了迁就风扇也不得不降低转速和单级增压比,单级增压比降低的后果就是不得不增加压气机的级数来保持一定的总增压比。这样一来压气机的重量就难以下降。

为了解决压气机增压比和风扇转速的矛盾,人们很自然的想到了三转子结构。所谓三转子就是在双转

子发动机上又多了一级风扇转子。这样,风扇、低压压气机和高压压气机都自成一个转子,各自都有各自的转速。因此,设计师们就可以相对自由地设计发动机风扇转速、风扇直径以及涵道比。而低压压气机的转速也就可以不再受风扇的掣肘。

但和双转子发动机相比,三转子发动机的结构进一步变得复杂。三转子发动机有三个相互套在一起的

共轴转子,支撑结构更加复杂,轴承的润滑也更加困难。三转子发动机比双转子发动机多了很多工程上的难题,可是英国的罗尔斯?罗伊斯公司还是对它情有独钟。罗?罗公司的RB-211涡扇发动机上用的就是三转

子结构,转子数量的增加带来了风扇、压气机和涡轮的优化。该型发动机装备在许多型号的客机上。

三转子的RB-211与同一技术时期推力同级的波音747用双转子JT9D涡扇发动机相比,JT9D的风扇叶片有46片,而RB-211只有33片;压气机、涡轮的总级数JT9D为22级,而RB-211只有19级;压气机叶片JT9D有1486片,RB-211只有826片;涡轮转子叶片RB-211是522片,而JT9D多达708 片;但从支撑轴承上看,RB-211有8个轴承支承点,而JT9D只有4个。

为了千方百计提高压气机的喘振裕度,除了采用双转子压气机外,中间级放气以及机匣处理等措施已

逐渐被广泛运用。在很多现代化的发动机上人们都保留了放气活门以备不时之需。比如在JT9D涡扇发动

机上,普拉特?惠特尼公司就分别在高、低压压气机的第4、9、15级上保留了三个放气活门。”昆仑"发动机也采用了先进的机匣处理措施,以及数字式防喘控制系统。详解航空涡轮发动机(三)

【字体大小:大中小】燃烧室

压气机后面紧跟的是燃烧室。经过压气机压缩后的高压空气与燃料混合之后将在燃烧室中燃烧,产生高温高压燃气来推动燃气涡轮运转并从尾喷口高速喷岀从而产生推力。航空发动机对燃烧室的要求是:第一,燃烧室单位容积的发热量或者说是热容强度要很高。通俗的说,就是要燃烧室在尽可能小的容积里完成高压空气与燃料的混合与充分燃烧。第二,要保证足够高的燃烧效率。第三,保证经过燃烧室后的气体达到所需的温度并要求岀口温度场相当均匀。燃烧室的后面是涡轮,如果气流温度不均匀,有的地方特别热,有的地方特别冷(相对的冷,温度仍在千度左右),涡轮就会受不了--同一个涡轮叶片,转到热的地

方就膨胀,转到冷的地方就收缩,一来二去,叶片很快就会发生金属疲劳,降低了使用寿命。

燃烧室的设计难点在于,油气二相混合物的流动特性既不同于液态,又不同于气态,这种流场很难建

立精确的数学模型。所以,燃烧室的设计过程很大程度上是通过实验来进行的,需要完善的试验设备和较长的试验时间。这也是我们为"昆仑"发动机走完全设计过程而额手称庆的原因之一--这说明我们的发动机

试验和测试技术装备有了很大进步。

在喷气发动机上最常用的燃烧室有两种,一种是环管燃烧室,一种是环形燃烧室。早期的航空涡轮发

动机上还采用过单管燃烧室。

环管燃烧室是很常见的设计。这种设计中,燃烧室被分割成在垂直于发动机轴向的平面内环形布置的若干个火焰筒,燃烧就被限制在这个空间内进行。为了满足发动机对燃烧室的要求,火焰筒进行了巧妙的设计。火焰筒面向压气机来流方向的顶端安装了扰流器,燃油通过供油系统从火焰筒顶端的喷油嘴雾化喷岀。高压气流分两股进入燃烧室:第一股气流通过扰流器进入火焰筒与雾化燃油混合直接参与燃烧,而大量的(约占总流量60%?70%)第二股气流则进入火焰筒与燃烧室外壳之间的空腔。这股气流有两个作用,

其一是冷却、隔热;其二是通过火焰筒壁上经过精心设计角度的大量小孔以特定的速度和方向,分批分期地进入火焰筒补充燃烧并控制燃烧区域长度和燃烧室岀口温度场,从而确保燃气以相当均匀的温度场进入涡轮部件。

各火焰筒之间装有联焰管,用来传播火焰以减少所需的点火装置,还起到连通各个火焰筒,保证各火

焰筒压力大致相等的作用。

环形燃烧室是由两个与发动机同轴的套筒组成,原先火焰筒的功能则由内套筒代替完成。环形燃烧室的气流分布类似于环管燃烧室,一股气流进入内套筒参与燃烧,另一股气流则进入内外套筒之间的空腔,然后再分期分批进入内套筒,同样起到补充燃烧并控制燃烧区域长度和燃烧室岀口温度场的作用。环形燃烧室不像环管燃烧室那样由多个火焰筒组成,而是一个整体,因此环形燃烧室的岀口燃气场的温度要比环管燃烧室均匀,而且环形燃烧室所需的燃油喷嘴也比环管燃烧室少一些。另外,由于其暴露在高温燃气中的面积较小,在冷却和隔热方面也比环管燃烧室有优势,而且,进入的空气可以更多地参加燃烧和搀混,从而大大提高了燃烧效率和涡轮前温度,使发动机推力得到提高。

虽然与环管燃烧室相比,环形燃烧室也存在着一些不足,但是这些不足不是性能上的而是制造工艺上

的。随着科技的进步,环形燃烧室的机械强度和调试问题如今都已得到了比较圆满的解决。由于环形燃烧室固有的优点,在20世纪80年代之后研发的新型航空涡轮发动机采用的几乎都是环形燃烧室,”昆仑"发

动机上就采用了环形燃烧室的技术。

详解航空涡轮发动机(四)【字体大小:大中小】涡轮

经过了这么多”热身”,高温高压气流终于可以大显身手,进入涡轮做功了。不过,在”工作”之前。先要排好队--在燃烧室中产生的高温高压燃气首先要经过一道燃气导向叶片,高温高压燃气在经过燃气导向叶片时会被整流并通过在收敛管道中将部分压力能转化为动能而加速,最后被赋予一定的角度以更有效地冲击涡轮叶片。

从"航空涡轮发动机”这个称呼上,就可以看岀涡轮在发动机里的重要性。涡轮实际上是一个"风车",在燃烧室来流的冲击下转动。涡轮的作用就是将一部分高温高压燃气的能量通过传动轴传递给前面的压气机,使其能够正常工作。在涡扇/涡桨发动机中,涡轮还要驱动风扇和螺旋桨叶片。涡轮是航空涡轮发动机三大核心部件中的”苦力”,它"干的活最重”、”自身压力最大"而且”工作环境最差”。说它"干的活最重”,是指每级涡轮要发岀很大的功率,在现代航空涡轮发动机上,通常只有不超过三级的涡轮,可是就这么几级的涡轮却要发岀上万匹马力的功率;”自身压力最大”是说涡轮叶片在高速旋转时由于其本身的重量,会受

到相当大的离心力,大到涡轮全速旋转时其离心力相当于在每个叶片上吊挂了一辆5吨卡车;说它”工作环

境最差"则是指,涡轮的工作条件可以用"高温"、"高压"、"高速"三个"高"来形容。现代航空涡轮发动机的涡轮进口温度最高达到1800K甚至2000K (约1727摄氏度,超过大多数金属材料的熔点);涡轮进口气压高达几十个大气压;在涡轮叶片边缘的气流速度通常可以接近甚至超过音速,只有这样的气流冲击到涡轮上,才能使涡轮发岀足够大的功率。换句话说,能在"三高"条件下稳定工作就是现代航空涡轮发动机对

涡轮性能提岀的最基本要求。对于气流而言,温度、速度和压力使密切相关的三个参量,于是,"三高"要求最终就体现在尽可能提高涡轮进口温度上面了,而涡轮进口温度也就成了衡量发动机性能好坏的一个关键性指标。矛盾恰好也在这里,涡轮进口温度提高使发动机性能得到改善,但与此同时,涡轮开始叫苦不迭了。

如何提高涡轮的耐热性能呢?有这样几个办法。

第一,强制冷却。发动机设计人员在涡轮叶片上设计了很多细小的管道,高压冷空气通过这些管道流

经高温叶片,起到强制冷却作用,这就是”空心气冷叶片”。最早的涡扇发动机--英国罗?罗公司的"康维"发

动机就使用了空心气冷叶片。除了在燃烧室中使用的气膜冷却之外,在涡轮的燃气导向叶片和涡轮叶片上大多还使用了对流冷却和空气冲击冷却。对流冷却就是在空心叶片中不停地有冷却气流流动,以带走叶片上的热量。空气冲击冷却(也叫气膜冷却)实际上是一种被加强的对流冷却,即用一股或多股高速冷却气流强行喷射在要求被冷却的表面。冲击冷却一般用在燃气导向叶片和涡轮叶片的前缘上,由空心叶片的内部向叶片的前缘喷射冷却气体以强行降温。冲击冷却后的气体会从燃气导向叶片和涡轮叶片前缘的孔隙中流岀,被燃气带动在叶片的表面形成冷却气膜。但是开在叶片前缘的冷却气流孔隙会使叶片更加难以制造,

而且这些孔隙还会导致应力集中,对叶片的寿命产生负面影响。可是由于气膜冷却要比对流冷却的效果好的多,所以人们还是不惜代价地在叶片上采用气膜冷却。

从某种意义上来说,在燃气导向叶片和涡轮叶片上使用更科学合理的冷却方法,可能要比开发更先进

的耐高温合金更实际一些。因为采用空心冷却技术要比开发新合金投资少、见效快。现在涡轮进口温度的提升其一半的功劳要归功于冷却技术的提高。由于采用冷却技术,目前各涡轮叶片实际所承受的温度要比涡轮进口温度低200?350摄氏度,所以说叶片冷却技术对提高涡轮工作温度功不可没。

第二,采用新的耐热材料制造涡轮叶片。一些先进航空发动机公司已经开始探索用耐热性能更好的陶瓷等材料制造涡轮叶片。可是如果没有深厚的科学基础作保证,高性能的涡轮材料研制也就无从谈起。当今有实力研制高性能涡轮的国家都把先进的涡轮盘和涡轮叶片的材料配方和生产工艺当作最高机密,也正是这个小小的涡轮减缓了一些国家成为航空大国的步伐。

普通的碳钢在800?900 'C时强度就大大降低了。但是在其中加入其它一些金属成分,尤其是镍、铬、钨等,制成耐热合金,耐高温水平就可以不断提高。我国在五十年代刚开始研制航空涡轮发动机时的耐热合金的最高水平是800 C,在做了大量研究试验工作后提高到了900 C。后来几十年,经过大量试验、研

究,差不多每年都能提高二三十度,现在大约是1200?1300 C,相当于1473?1573K,加上耐热涂层、

气动冷却和精密铸造的应用,我国先进航空涡轮发动机的涡轮前温度可以达到1800?1900K,达到了世界

先进水平。

第三,通过改进叶片的制造工艺,挖掘现有叶片材料的耐热潜力。早在航空涡轮发动机诞生之初,人

们就在涡轮的表面涂一层耐烧蚀的表面涂层来延长涡轮叶片的使用寿命。在JT3D涡扇发动机的涡轮叶片上,普?惠公司就用渗透扩散法在涡轮叶片上”镀"上一层铝、硅涂层。这种扩散渗透法与我们日常应用的手工钢锯条渗碳工艺有点类似。经过渗透扩散铝、硅的JT3D —级涡轮叶片其理论工作寿命高达15900小时精密铸造技术也是推动涡轮叶片技术进步的重要手段。比如说单晶体叶片,就是通过精铸工艺使整个

涡轮叶片成为一个单晶体,避免了晶格缺陷,比之传统工艺的叶片,其高温强度提高8倍以上。技术难度

稍低而性能与单晶叶片接近的是定向凝固叶片,”昆仑”发动机上就采用了先进的复合气冷定向凝固无余量

精铸涡轮叶片。该叶片要求一次成型合格,不需要再加工,而且要求厚度非常均匀。这项技术具有世界先进水平,被称为现代航空涡轮发动机技术"皇冠上的一颗明珠”,而这颗明珠如今已被中国科研人员牢牢摘

得。

要生产岀符合要求的先进涡轮叶片,需要许多基础工业技术如材料、冶金、机械加工、工艺和检测等的全面进

步。有人甚至说,像中国这样的大国,集中人力物力可以在短时间内搞岀"两弹一星”,但是由于基础工业的薄弱,很难在短时间内研制岀一种能批量生产的先进航空涡轮发动机。因此,”昆仑”的研制成功的确反映了我国以基础工业为代表的综合国力的全面提高。

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

大修航空发动机涡轮叶片的检修技术正式样本

文件编号:TP-AR-L9234 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 大修航空发动机涡轮叶片的检修技术正式样本

大修航空发动机涡轮叶片的检修技 术正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 介绍了涡轮叶片的清洗、无损检测、叶型完整性 检测等预处理,以及包括表面损伤修理、叶顶修复、 热静压、喷丸强化及涂层修复等在内的先进修理技 术。 涡轮叶片的工作条件非常恶劣,因此,在性能先 进的航空发动机上,涡轮叶片都采用了性能优异但价 格十分昂贵的镍基和钴基高温合金材料以及复杂的制 造工艺,例如,定向凝固叶片和单晶叶片。在维修车 间采用先进的修理技术对存在缺陷和损伤的叶片进行 修复,延长其使用寿命,减少更换叶片,可获得可观

的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。

大修航空发动机涡轮叶片的检修技术示范文本

大修航空发动机涡轮叶片的检修技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大修航空发动机涡轮叶片的检修技术示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测 等预处理,以及包括表面损伤修理、叶顶修复、热静压、 喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的 航空发动机上,涡轮叶片都采用了性能优异但价格十分昂 贵的镍基和钴基高温合金材料以及复杂的制造工艺,例 如,定向凝固叶片和单晶叶片。在维修车间采用先进的修 理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿 命,减少更换叶片,可获得可观的经济收益。为了有效提 高航空发动机的工作可靠性和经济性,涡轮叶片先进的修 理技术日益受到发动机用户和修理单位的重视,并获得了

广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测 在修理前,使用先进的检测仪器对叶片的叶型完整性

航空发动机总资料

第一章概论 航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。P3 空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。P4 燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。 由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。P5 航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。涵道比小于1为小涵道比,大于4为大涵道比,大于1小于4为中涵道比,加力式涡扇发动机涵道比一般小于1,甚至0.2~0.3。P8~9 喷气时代(主流),服役战斗机发动机推重比从2提高到7~9,定型投入使用的达9~11,我国到8。民用大涵道比涡扇发动机的最大推力已超过50000daN 巡航耗油率从20世纪50年代涡喷发动机 1.0kg(daN·h)-1下降到0.55kg(daN·h)-1,噪声下降20dB,NO X下降45%。服役的直升飞机用涡轴发动机的功重比从2Kg/daN提高到4.6kW/daN~7.1kw/daN。发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2/1000EFH~0.4/1000EFH(发动机飞行小时),民用发动机为0.002/1000EFH~0.02/1000EFH。战斗机发动机热端零件寿命达

航空涡轮飞机简答题

简答题: 1.航空燃气涡轮发动机主要包括哪些要素?P5 涡轮喷气发动机WP 涡轮风扇发动机WS 涡轮螺旋桨发动机WJ 桨扇发动机涡轮轴发动机WZ 涡轮桨扇发动机JS (垂直/短距起降动力装置) 2. 航空燃气涡轮发动机主要性能参数有哪些?P8 推力(功率1daN=10N) 推重比(功重比)daN/kg 耗油率kg/(Hp巡航·h) 增压比涵道比 涡轮前燃气温度 3、CFM56—3发动机主要用于那几型飞机上?P20 简述CFM56—3发动机低压转子和高压转子的组成方式。 B737—300、B737—400 、B737—500; 低压转子的组成方式:一级风扇及三级低压压气机和四级低压涡轮组成。 高压转子的组成方式:九级高压压气机和一级高压涡轮组成。 4、请简述发动机推力的定义。P55 我们把流过发动机内部和外部的气体与发动机壳体,内、外壁面及部件之间的作用力的合力,在发动机轴线方向方向的分力成为推力F 5、涡轮风扇发动机有哪几部分组成? P68 进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管组成。 6、涡轮风扇发动机的主要参数包括哪些?P71 1)涵道比Y: Y=Qmout/Qmin Qmout内涵道质量流量 Qmin外涵道质量流量 2)EPR发动机压比: EPR=低压涡轮后总压/压气机(或风扇)进口总压 7、进气道是指什么?进气道的功用是什么?P73 进气道是指飞机进口(或发动机短舱进口)至发动机的压气机进口这段管道。进气道使气流速度下降,压力提高,功用是: 1)将一定数量的空气以较少的流动损失,顺利地引入发动机。 2)当飞行马赫数Ma大于压气机进口处气流的Ma时,通过冲压作用压缩空气,提高空气压力。 8、压气机包括哪几类型?航空燃气涡轮发动机主要采用哪种压气机?其优点有哪些?P89 离心式压气机(用的少,结构简单,工作可靠,稳定工作范围较宽、单级增压比高),主要用于教练机、导弹、靶机上的小型动力装置和飞机辅助动力装置中。轴流式压气机(效率高,增压比高,用的较多,单位面积空气流量大、迎风阻力小,在相同外轮廓尺寸条件下可获得更大的推力),在大、中推力发动机上普遍采用。 混合式压气机(单级增压比高,避免轴流式压气机当叶片高度很小时损失增大的缺点)。 航空燃气涡轮发动机主要采用轴流式压气机。

世界各国航空发动机大全

D-18A 涡轮风扇发动机外形 牌号D-18A 结构形式双转子 推力范围1765daN 现状研制中 装机对象 研制情况 D-18A 是波兰航空研究所研制的一种全新双转子涡轮风扇发动 机,1992 年4 月16 日首次试车。 K-15 涡喷发动机外形 牌号K-15 结构形式单转子 推力范围1470daN 现状生产 装机对象波兰1-22 串列双座教练机、侦察机和对地攻击机。 研制情况 K-15 是波兰航空研究所研制的单转子涡轮喷气发动机。计划于1988 年中公布,目前正由波兰热舒夫工厂生产。 SO-1/SO-3 牌号SO-1/SO-3 结构形式单转子 推力范围980~1080daN UnRegistered 现状停产 产量SO-1 共生产30 台,SO-3 共生产580 台 装机对象SO-1 TS-11 教练机。 SO-3B TS-11 教练机。 SO-3W22 I-22 教练机、侦察机和对地攻击机。 研制情况 SO-1 单转子涡轮喷气发动机是波兰航空研究所设计的,由波兰 热舒夫工厂生产。保证翻修寿命为200h。SO-3 是由SO-1 改进而来,适用于热天气候工作,对压气机、燃烧室和涡轮作了少量修改,外廓尺寸不变。翻修寿命400h。燃油喷嘴和火焰筒经修改后出口温度场 更均匀。 TWD-10B 涡桨发动机外形 牌号TWD-10B 结构形式自由涡轮式单转子 推力范围754kW 现状生产 装机对象安-28 短距起落轻型运输机。 研制情况 TWD-10B 涡桨发动机是波兰热舒夫工厂按前苏联鄂木斯克/格 鲁申柯夫设计局设计的ТВД-10Б涡桨发动机的许可证制造的。翻修寿命1000h。

航空燃气涡轮发动机典型制造工艺

《航空燃气涡轮发动机典型制造工艺》课程教学大纲 执笔:XXX审核:XXX编写日期:2017.05 一、课程的性质和任务 本课程是为高等院校航空发动机制造专业基础课程之一,是航空发动机类专业技术人员的必修课程,也是从事地面燃气轮机、蒸汽轮机、风机、以及其它热旋转动力机械装置的专业技术人员可以选修的课程。通过了解航空燃气涡轮发动机主要零部件的制造工艺、装配和试车技术等,可以在学生的飞行器动力设计知识结构和制造工艺之间架起一座桥梁,通过对工艺知识的了解和掌握,提升工程设计的技术水平。 二、课程的基本内容及要求 要求学生通过各教学环节的学习,达到以下要求:了解航空发动机常用材料、典型零件金属成形工艺及无损检测基本类型;掌握航空燃气轮机的盘、轴、叶片、机匣类零件的制造工艺;掌握航空燃气轮机的装配工艺;了解航空燃气轮机的试车工艺。 1、工艺基础知识 了解航空发动机常用材料 掌握航空发动机的典型零件金属成形工艺 了解航空发动机常用无损检测基本类型 2、叶片制造工艺 掌握航空发动机叶片的结构特点 掌握航空发动机叶片的锻压成形、精密铸造、机械加工、特种加工、表面工程技术和叶片检测。 3、盘类零件制造工艺 掌握航空发动机盘类零件的结构特点

掌握航空发动机盘类零件的毛坯制造、典型加工工艺、鼓筒盘组件的成形及加工工艺、整体叶盘制造工艺、盘类件热处理及表面处理工艺和盘类件、焊接鼓筒盘组件的技术检测 4、轴类零件制造工艺 掌握航空发动机轴类零件的结构特点 掌握航空发动机轴类零件的毛坯制造、加工工艺、热处理、表面处理工艺及检测 5、机匣制造工艺 掌握航空发动机机匣类零件的结构特点 掌握航空发动机机匣类零件的成形工艺、机械加工、热处理工艺、特种工艺及检测 6、装配工艺 掌握航空发动机装配概念、方法、方案、工艺流程、选配、修配、试验、检验方法 掌握航空发动机装配工艺技术准备、典型装配工艺、组合件和部件装配、发动机整机装配及分解 7、试车工艺 了解航空发动机试车工艺 三、成绩考核方式 1、考核方式:本门课程为考试课,采用闭卷形式、笔试方式,考试时间为120分钟。 2、成绩综合评定:总成绩为百分制,包括平时成绩和期末考试卷面成绩两部分,其中平时成绩包括出勤、学习态度、作业、测验和课堂讨论等,占总成绩的30%,期末考试卷面成绩占总成绩的70%。 四、学时分配建议 1、理论学时安排表

航空发动机作业第四章燃气涡轮

第四章燃气涡轮 1.航空燃气涡轮发动机中,涡轮有哪两种基本类型? 答:按流动的方向,燃气涡轮分为轴流式涡轮与径向式涡轮两类。 3.从截面翼型的厚薄、曲率、叶冠或凸台、榫头、材料、冷却的几个方面看,涡轮工作叶片与压气机工作叶片的区别有哪些? 答: 5.涡轮转子连接的基本要求是什么? 答: (一)盘与轴联接:足够刚度,强度,不削弱盘与轴,以便能传负荷;盘与轴在装配及工作时应可靠的定心;联接处高热阻,减少盘向轴传热。 (二)盘与盘联接:除了强度与刚性,可靠定心之外,还要考虑级数与联接部分较多对整个涡轮转子的影响(减小热应力,便于拆装,减小振动); (三)叶片与盘联接:要承受巨大的离心力、气体力和振动负荷,此外,还要求允许榫头自由膨胀,以减小热应力;另一方面,榫头传热要好。 7.列举枞树型榫头的优点。 答: (一)叶根与轮缘部分的材料利用合理,承力截面积大,承拉截面接近等强,因此这种榫头重量较轻; (二)榫头在轮缘所占的周向尺寸较小,因为在轮盘上可安装较多的叶片; (三)这种榫头可以有间隙地插入榫槽,允许榫头与轮缘受热后自由膨胀; (四)可以利用榫头的装配间隙通入冷却空气,对榫头和轮缘进行冷却; (五)拆装及更换叶片方便 9.涡轮机匣和压气机机匣相比的结构特点是什么? 答:压气机机匣通常是圆柱形或圆锥形壳体,有整体式、分半式和分段式机匣。 涡轮机机匣和压气机机匣相比还借前后安装边分别与燃烧室及喷管连接。另外涡轮的径向间隙沿圆周均匀,并且要尽量减少机匣与涡轮叶片的径向间隙。 11.涡轮冷却系统的冷却对象有哪些? 答:涡轮冷却系统的冷却对象有叶片榫头、涡轮盘、涡轮轴、涡轮叶片、第一级涡轮导向叶

航空发动机基础知识

航空发动机基础知识 航空发动机基础知识 涡轮喷气发动机的诞生 涡轮喷气发动机的诞生 二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。 这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。 涡轮喷气发动机的原理 涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。 随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

涡轮发动机飞机结构与系统1

上册(A卷)选择题(1×100=100分) 1、飞机在水平面内作匀速圆周时( ) A、升力大于重力 B、升力等于重力 C、升力小于重力 D、都有可能 2、飞机有下俯角加速度,在机头部件的附加过载( ), A、为负值 B、小于1 C、大于1 D、为正值 3、结构强度是指在外力的作用下( ) A、抵抗变形的能力 B、抵抗破坏的能力 C、保持原有的平衡形式的能力 D、都包含4、飞机在正常平飞情况下,机翼结构的上壁板沿展向承受( ) A、拉力 B、压力 C、剪力 D、弯矩 5、机翼的剪力主要是由()承受的 A、翼肋 B、桁条 C、梁腹板 D、蒙皮 6、机翼蒙皮厚度分布情况( ) A、翼尖和前缘区域较厚 B、翼尖和后缘区域较厚 C、翼根和后缘区域较厚 D、翼根和前缘区域较厚 7、单块式机翼与梁式机翼相比,其优点有( )

A、易于开口 B、易于承受集中载荷 C、易于保持外形 D、易于与机身连接 8、单块式机翼翼梁主要功用有() A、承受弯矩和剪力 B、承受扭矩和剪力 C、承受局部气动力和弯矩 D、承受局部气动力和扭矩 9、单块式机翼结构的特点是( ): A、蒙皮较厚, 桁条较少且较弱, 翼梁缘条较弱; B、蒙皮较薄, 桁条较多且较强, 翼梁缘条较强; C、蒙皮较厚, 桁条较多且较强, 翼梁缘条较弱; D、蒙皮较薄, 桁条较少且较弱, 翼梁缘条较强。 10、液压传动中的输出速度取决于( ) A、压力 B、流量 C、负载 D、工作介质的种类 11、现代民航客机液压系统的压力大多为( ) A、2400大气压 B、2400PSI C、8000PSI D、3000PSI 12、按液压系统的分系统划分,液压系统分为( ): A、液压源系统、执行系统、控制调节系统 B、动力系统、控制调节系统和辅助系统 C、液压源系统、工作系统 D、执行系统、控制调节系统 13、液压油的物理稳定性是指( ) A、液压油燃点较高

涡轮轴发动机的诞生

涡轮轴发动机的诞生 涡轮轴发动机首次正式试飞 是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。 在1950年时,透博梅卡(Turbomeca)公司研制成“阿都斯特 -1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),成为世界上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生产的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。 涡轮轴发动机的原理 涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而其他形式的涡轮喷气发动机一般没有自由涡轮。 涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,产生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机内,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。 涡轮轴发动机剖视示意图

《涡轮发动机飞机结构与系统》(电气与电子系统)习题

《涡轮发动机飞机结构与系统》(飞机电气与电子系统)习题集 一、填空题 1.铅蓄电池的容量与_________________有关。 2.当主电源为交流电源时,二次电源的变换器件是_________________。 3.无刷交流发电机实现无电刷的关键部件是采用了_________________。 4.三相交流发电机的相序取决于_________________和发电机输出馈线的________________。 5.PWM型晶体管调压器的调压方法是改变_________________的时间。 6.电源系统中的差动保护区间是发电机电枢绕组及输出馈线的_________________。 7.在变压整流器中输入滤波器的作用是_________________。 8.静止变流器的作用是把低压直流电变为_________________。 9.飞机灯光照明系统包括机内照明、机外照明和_________________。 10.民用飞机上发动机和APU舱防火都采用_________________和_________________。 11.飞机客舱内采用的灭火方式是_________________。 12.飞机防冰系统中放射性同位素结冰信号器的组成_________________、放大器和_________________。 13.风档玻璃的防冰主要采用_________________。 14.对无线电系统来说,_________________实际起着运载低频信号的运输工具作用,所以称为载波。 15.甚高频系统的有效传播距离一般限于视线范围,且与_________________有关。 16.选择呼叫系统用于供地面塔台通过高频或_________________通信系统呼叫指定的飞机。 17.为了利用卫星通信系统实现全球通信,必须配置_________颗等间隔配置的静止卫星的信号。 18.与惯性导航系统相比,无线电导航系统的最大优点是____________不会随飞行时间的增加而增大。 19.ILS系统由________________、下滑信标和_______________三个分系统组成,以保障飞机的安全着陆。 20.机载指点信标接收机所接收的是_________________信号。 21.无线电高度表所发射的是_________________或脉冲信号。 22.近地警告系统发出警告的工作方式是由飞机的构型与_________________等因素决定的。 23.大气数据计算机根据动压计算得到的没有任何补偿的空速称为_________________。 24.陀螺的支点是指自转轴、内框轴和外框轴的轴线的_________________。 25. 在惯性基准系统的完成对准前,必须将_________________输入系统。 26.飞行数据记录器可记录最后_________________小时的飞行数据。. 27.蓄电池在飞机上的功能是用作__________________。 28.飞机上常用的交流电网形式是__________________。 29.三级式与两级式无刷交流发电机的区别是有无__________________。 30.两台频率不相等的恒速恒频交流电源并联以后会造成__________________不均衡。 31.在发电机的故障保护装置中设置延时的目的是__________________。 32.飞机在夜间或复杂气象条件下飞行或准备时,使用__________________和__________________。 33.飞机上火警探测系统中烟雾探测器用于__________________和厕所。 34.对于电器设备、电线或电流引起的C类火最好使用灭火剂是__________________。 35.飞机防冰系统中灵敏度是指当结冰信号器发出结冰信号时所需__________________。 36.气热防冰的结构形式主要包括双层壁式热空气__________________和__________________。 37.无线电通信发射机所发射的是__________________信号。 38.惯性导航系统的突出优点是__________________,不依赖外界系统而进行导航。 39.测距机在__________________时的询问重复频率较高。 40.现代机载气象雷达的MAP工作方式用于观察__________________。 41.GPS工作模式有__________________、__________________、跟踪模式和辅助模式。 42.马赫数的大小决定于__________________,与气温无关。

航空涡轮发动机及航空器排放规定

航空涡轮发动机及航空器排放 规定

目录 A章总则 (4) 第34.1条定义 (4) 第34.3条缩写词和符号 (6) 第34.5条总则 (8) 第34.7条专用测试程序 (9) 第34.9条航空器安全性 (9) 第34.11条豁免 (9) 第34.13条不适用 (10) 第34.15条排放审定的衍生型发动机 (11) B章燃油排泄 (13) 第34.21条适用范围 (13) 第34.23条燃油排泄标准 (13) C章亚音速飞机发动机排气排出物要求 (15) 第34.31条适用范围 (15) 第34.33条亚音速飞机涡喷和涡扇发动机排气排出物标准 (15) 第34.35条亚音速飞机涡桨发动机排气排出物标准 (17) D章超音速飞机发动机排气排出物要求 (18) 第34.41条适用范围 (18) 第34.43条烟雾 (18) 第34.45条气态排出物 (18) E章飞机二氧化碳排出物要求 (20) 第34.51条适用范围 (20) 第34.53条飞机二氧化碳排出物 (20) [F章备用] (21) G章航空涡轮发动机排气排出物测试程序 (22) 第34.71 条说明 (22) 第34.73 条航空涡轮发动机燃油规范 (23) 第34.75 条航空发动机排气排出物的测试程序 (24)

第34.77 条气态排出物及烟雾与非挥发性颗粒物的测试和分析程序 (25) 第34.79 条对气态排出物及烟雾与非挥发性颗粒物标准的符合性 (25)

航空涡轮发动机及航空器排放规定 A章总则 第34.1条定义 在本规定中使用的有关名词术语含义如下: 局方指中国民用航空局(以下简称民航局)和中国民用航空地区管理局。 航空发动机指已安装在航空器上或为预期安装在航空器上而制造的发动机。 航空涡轮发动机指涡喷、涡扇、涡桨和涡轴航空发动机。 在用航空涡轮发动机指在役的航空涡轮发动机。 新的航空涡轮发动机指从未使用过的航空涡轮发动机。 发动机型别指具有相同的总序号、排气量和设计特性,并由同一型号合格证批准的所有航空涡轮发动机。 排放审定的衍生型发动机指与原型号合格审定发动机属于同一型号,保留了原型号的核心机和燃烧室设计,并经局方判定没有其他因素的更改,与原型号发动机有相同或相似排放特性的发动机。 豁免指虽然不满足适用的标准,但在民航局的批准下可以生产、销售和使用一定期限和一定的数量。

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

涡轮发动机飞机结构与系统

飞机系统 液压系统 1.变量泵为什么要装释压阀?P92 ?变量泵具有自动卸荷功能,因此设计系统时不用再考虑其卸荷问题。但为了系统的安全,回路上同样需加装安全阀,以防泵内压力补偿活门损坏或斜盘作动筒卡滞时造成系统压力过高。 2.液压系统渗漏检查方法?P129 (一)内漏检查法:流量表法和电流表法。 (1)流量表法操作: ?关闭所有关断活门,保持规定压力(用电动泵),读出流量表读书Q0; ?按手册要求,依次打开分系统隔离活门,读出相应流量Q1,Q2,Q3 …… Qn; ?计算各分支系统内漏量: ?用实际泄漏量与维护手册给定的数值比较,应在规定范围内。如果超出规定值,则该分支存在超标泄漏。 (2)电流表法操作: ?在电动马达驱动泵的供压线路上加装电流表; ?启动、保持系统达到额定压力; ?记录初始电流I0; ?按手册要求,依次打开分系统隔离活门,分别记录相应电量值I1,I2,I3……In; ?对照EMDP电流---流量曲线,分别查出对应的Q0,Q1,Q2,Q3 …… Qn; ?分别计算每个分支系统的内漏量; ?用实际泄漏量与维护手册给定的数值比较,应在规定范围内。如果超出规定值,则该分支存在超标泄漏。 (二)外漏检查: ?接近发生外漏的部件; ?清洁部件上外漏的油污; ?为系统加压; ?测量外漏泄漏速率,根据该机型的放行标准确定是否放行。 3.液压泵功率公式的推导?P92 4.液压油显示"过热"的原因及排除方法?P122

5.液压油滤滤芯分几类?各有什么作用?P115 ?常见的滤芯有三种:表面型滤芯、深度型滤芯、和磁性滤芯。 ?表面型滤芯:一般是金属丝编织的滤网,过滤能力低,一般作为粗滤安装在油箱加油管路上 ?磁性油滤依靠自身的磁性吸附油液中的铁磁性杂质颗粒,应用在发动机滑油系统管路中。 ?深度滤芯:液流通过的过滤介质有相当的厚度,在整个厚度内到处能吸收污染物。其过滤介质有—缠绕的金属丝网、烧结金属、纤维纺织物、压制纸等。 6.液压油温度与粘度的关系,对总效率的影响?P92 ?温度过高,会导致油液黏度下降。油液粘度过低时,会增加泵的内漏并降低油液的润滑性,继而导致容积效率和机械效率下降。 ?温度过低,会导致油也黏度上升。油液粘度过高时,油泵吸油阻力增大,油泵吸油困难,不能完全充满油腔,降低填充效率。黏度过高同样会造成油泵转动阻力增大,并增加流体的流动阻力,降低机械效率。 7.液压保险的作用?P106 液压系统某些传动部分的导管或附件损坏时,系统油液可能漏光,使得整个系统不能工作。为了防止这种现象,可在供油管上设置安全装置,这就是液压保险。在管路漏油时,当油液的流量或消耗量超过规定值时,自动堵死管路,防止系统内油液大量流失。 8.对恒压变量泵,当发动机驱动泵的开关在“开”和“关”位时,泵是怎样工作的?工作原理,开关原理?(124页) ?在电门在“开”位时,发动机驱动泵EDP在泵内补偿活门控制下进行供压或进行自动卸荷;当泵发生故障时,将电门扳到“关”位,电磁活门线圈通电,使泵的出口压力在很低的情况下就能推动补偿活门作动,使油泵卸荷,即为“人工关断”。 9.油滤的压差活门控制的是什么参数?怎么控制的? ?压力参数。活门前压力和活门后压力参数差值。 ?当一定压力时候通过传感器,以电信号方式传递到驾驶舱。注意:可能有人认为可能是地面给人看的那个燃油油滤,其实不然,这个是指驾驶舱的那个。 10.液压系统包括几个部分,各操纵那些部件? ?有两种阐述方法:一种是按组成系统的液压元件的功能类型划分;另一种是按组成整个系统的分系统功能划分。 ?按液压元件的功能划分: a)动力元件:指液压泵,其作用是将电动机或者发动机产生的机械能转换成液体的 压力能 b)执行元件:其功能是将液体的压力能转换成为机械能,执行元件包括液压作动筒 和液压马达

大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367 大修航空发动机涡轮叶片的检修技术 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技 术通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

飞机发动机原理——涡轮风扇发动机

通俗简单的说就是:如果不用风扇出口导叶,风扇后边的气流是螺旋向后吹的,这种气流的推力较小且会使发动机产生了有害的扭转力。安装风扇出口导叶,可以起到支撑机匣,校正气流方向的作用;且风扇出口导叶有一定倾斜角度,这样气流在流过导叶时可以增加一定推力 此类发动机如何启动? 14 hshshs8121 2006年12月10日 星期日 上午 08:47 | 回复 刚启动时,要使发动机的压气机和涡轮开始工作就得用辅助 动力装置(APU )来带动压气机旋转。辅助动力装置(APU ) 是靠电瓶启动的。 1、风扇的气流为什么要分别内外函道?全部进入内涵道有什 么不可? 2、是不是在不同的飞行条件下,进入内外函道的气 流是不是也不同?如果是,他们之间是什么关系? 3、外函道 的气流对飞机推动有没有作用? 4、我对涡扇发动机能提高效 率还是有些不明白。比如说,不考虑发动机的是涡扇还是涡喷, 飞机获得的推力一定喷口气体的反作用力,出口气流越大,其 反作用力也越大。出口气流越大,其损失的动能也越大,但反 作用也越大,是不是提高出口气体速度率与燃油消耗率是非线 性的关系?在相同出口气流速度的前提下,单位时间消耗的燃 油越少效率越高。涡扇就必须在相同推力的情况下比窝喷耗油 底,增加涡扇后为什么能提高效率呢?是不是将气体加压的原 因?但加压本身是要消耗能量的。提高涡轮前的温度是怎么实 现的?是增压原因?增加燃油燃烧的原因?请大侠指教? 24 hshshs8121 2007年06月21日 星期四 上午 10:13 | 回复 1、气流分为内外涵道是涡轮风扇发动机的特征。气流流经风 扇以后分为两股,一股由外涵直接排出,一股由内涵进入压 气机。涡扇发动机的推力75%来自外函。 气体可以都流进内 涵道,这样的发动机叫涡轮喷气发动机,也就是常说的涡喷 发动机。 2、内外涵的气流都是来自于同一个进气道,所以 不管什么飞行条件,它们的状态都是一样的,唯一的区别就 是外涵气流直接排出,内涵气流进入压气机继续压缩。 3、 风扇其实就是一个放大了的压气机,所以它对发动机会产生 一个向前的推力。 25 hshshs8121 2007年06月21日 星期四 上午 10:13 | 回复 4、讨论任何问题的时候都有一定的前提条件,要不然就没法 讨论了, 而对于效率“小武”把最重要的前提条件给忽略了,那就是发动机的类型!涡扇发动机和涡喷发动机产生推力的 主要原理是不一样的!总的来说,涡喷发动机主要是靠改变 气流流经发动机前后的速度来产生反作用力,进而产生推力 的。而对于涡扇发动机,发动机的主要推力来自于风扇,核 心机的主要作用是体供维持发动机运转所需的功,所以由内 涵排出的气流速度是很低的,它对发动机推力的贡献是很有

相关文档
最新文档