光敏电阻应用电路

光敏电阻应用电路
光敏电阻应用电路

光敏电阻的应用

1.光控开关电路

图2-38所示是一种光控开关电路,这一光控开关电路可以用在一些楼道、路灯等公共场所。通过光敏电阻器,它在天黑时会自动开灯,天亮时自动熄灭。电路中,VS1是晶闸管,Rl是光敏电阻器。

当光线亮时,光敏电阻器Rl阻值小,220V交流电压经VD1整流后的单向脉冲性直流电压在RP1和Rl分压后的电压小,加到晶闸管VS1控制极的电压小,这时晶闸管VS1不能导通,所以灯HL回路无电流,灯不亮。

当光线暗时,光敏电阻器Rl阻值大,RPI和Rl分压后的电压大,加到晶闸管VS1控制极的电压大,这时晶闸管V S1进入导通状态,所以灯HL回路有电流流过,灯点亮。

2.灯光亮度自动调节电路

图2-39所示是灯光亮度自动调节电路,这一电路能根据外界光线的强弱来自动调节灯光亮度。电路中,VS1是晶闸管,N是氖管,HL是灯,R3是光敏电阻器。

电路中,晶闸管VS1和二极管VD1~VD4组成全波相控电路,用氖管N作为VS1的触发管。

220V交流电通过负载HL加到VD1~VD4桥式整流电路中,整流后的单向脉冲直流电压加到晶闸管VS1阳极和阴极之间,VS1导通与截止受控制极上的电压控制。整流后的电路还加到各电阻和电容上。

直流电压通过Rl和RP1对电容Cl进行充电,Cl上充到的电压通过氖管N加到晶闸管VS1控制极上,当Cl上电压上升到一定程度时,氖管N启辉,将电压加到晶闸管VS1控制极上,使晶闸管VS1导通,灯HL点亮。

电容Cl上平均电压大小决定了晶闸管VS1交流电一个周期内平均导通时间长短,从而决定了灯的亮度。

当外界亮度高时,光敏电阻器R3阻值小,Cl的充电电压低,晶闸管VS1平均导通时间短,HL灯光就暗。

当外界亮庋低时,光敏电阻器R3阻值大,Cl的充电电压高,晶闸管VS1平均导通时间长,HL灯光就亮。

由于R3的阻值是随外界光线强弱自动变化的,所以灯HL的亮度也是受外界光线强弱自动控制的。

调节可变电阻器RP1阻值可以改变对电容Cl的充电时间常数,即改变VS1的导通角,调节HL灯光的亮度。

3.停电自动报警电路

图2—41所示是停电自动报警电路。电路中,VD2是

交流电电源指示灯,VD4是红色发光二极管,R4是光敏电阻器,BL1是扬声器,VT1、VT2和周围元器件构成一个低频振荡器。

有交流市电时,220V交流电压通过VD半波整流和Cl 滤波,得到的直流电压通过Rl加到VD2上,使之发光指示交流电供电正常。同时,通过R2加到VD3上,使VD3发光。

由于VD3发光,光线照射到光敏电阻器R4上,R4阻值小。这时,+3V直流电压通过R3和R4分压的电压加到VT1基极,因为R4阻值小,VT1截止,这时报警电路不工作。

当交流电断电时,VD3不发光,R4阻值明显增大,使VT1进入放大状态,这时VT1、VT2等周围元器件构成的低频振荡器电路工作,扬声器BL1发出声响报警,同时VD4发光显示断电。

电路中,R5和C2构成低频振荡器中的正反馈电路。

4.熙相机电子测光电路

图2-43所示是照相机电子测光电路。在中档照相机中,光敏电阻器作为电子测光元件。电路中,Rl是光敏电阻器,R2是热敏电阻器,VD1和VD2是发光二极管。

从电路中可以看出,VT1是VD1的驱动管,VT2是VD2的驱动管,VT1和VT2两端的电路对称,但是基极偏置电路有所不同。VT2基极由固定电阻R6、R7构成分压式偏置电路,而VT1基极则由R1、RP1和R2构成分压式偏置电路。

光线从孔板照射在光敏电阻器上,ITR9707移动密度板时可以改变光线照射到光敏电阻器Rl上的强弱,从而可以改变Rl的阻值大小,改变Rl、RP1和R2分压电路输出电压,即改变了加到VT1基极的直流电压,进而改变了发光二极管V

D1发光强弱,达到正确曝光的目的。

电路中的热敏电阻R2 (lkΩ)起温度补偿作用,以补偿光敏电阻器Rl的温度变化而引起的误差。

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

光敏电阻特性测试实验

实验系列二、光敏电阻特性测试实验 光通路组件 图1-2 光敏电阻实验仪光通路组件 功能说明: 分光镜:50%透过50%反射镜,将平行光一半给照度计探头,一半给等测光器件,实验测试方便简单,照度计可实时检测出等测器件所接收的光照度。 1、实验之前,J4通过彩排线缆与光通路组件的光源接口相连,连接之后电路部分方可对光源对行控制。光照度计与照度计探头相连(颜色要相对应) 2、BM2拨向上时,光源发光为脉冲光,脉冲宽度由“脉冲宽度调节电位器”进行调节(用于做光敏电阻时间响应特性实验)。 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 二、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 8、精密的暗激发开关电路设计实验 三、实验仪器 1、光敏电阻综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、2#迭插头对(红色,50cm ) 10 根 5、2#迭插头对(黑色,50cm ) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台

四、实验原理 1. 光敏电阻的结构与工作原理 它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性。无光照时,光敏电阻值很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值急剧减小,电路中电流迅速增大。 2. 光敏电阻的主要参数 光敏电阻的主要参数有: (1)光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。 (2)光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。 (3)亮电流与暗电流之差称为光电流。 3. 光敏电阻的基本特性 (1) 伏安特性 在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。图2-2为硫化镉光敏电阻的伏安特性曲线。由图可见,光敏电阻在一定的电压范围内,其I-U 曲线为直线。 (2)光照特性 光敏电阻的光照特性是描述光电流I 和光照强度之间的关系,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。图2-3为硫化镉光敏电阻的光照特性。 (3) 光谱特性 光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。图2-4 为几种不同材料光敏电阻的光谱特性。 对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。 五、实验步骤 1、光敏电阻的暗电阻、暗电流测试实验 (1)将光敏电阻完全置入黑暗环境中(将光敏电阻装入光通路组件,不通电即为完全黑暗),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R 暗。 (注:由于光敏电阻个性差异,某些暗电阻可能大于200M 欧,属于正常。) (2)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 4030 2010 I / m A 10010001 x 500 mW 1001 x 200 101 x 0.05 0.100.150.200.250.300.350.40I / m A S r / (%) 20 40 60 80 100 0 1.53

光敏电阻的工作原理及应用

光敏电阻的工作原理是基于内光电效应。在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻,为了增加灵敏度,两电极常做成梳状。用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体 光敏电阻原理图 及梳状欧姆电极,接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将复合,光敏电阻的阻值也就恢复原值。在光敏电阻两端的金属电极加上电压,其中便有电流通过,受到波长的光线照射时,电流就会随光强的而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也加交流电压。半导体的导电能力取决于半导体导带内载流子数目的多少。 编辑本段应用 概述 光敏电阻属半导体光敏器件,除具灵敏度高,反应速度快,光谱特性及r值一致性好等特点外,在高温,多湿的恶劣环境下,还能保持高度的稳定性和可靠性,可广泛应用于照相机,太阳能庭院灯,草坪灯,验钞机,石英钟,音乐杯,礼品盒,迷你小夜灯,光声控开关,路灯自动开关以及各种光控玩具,光控灯饰,灯具等光自动开关控制领域。下面给出几个典型应用电路。 光敏电阻调光电路 图(1)是一种典型的光控调光电路,其工作原理是:当周围光线变弱时引起光敏电阻的阻值增加,使加在电容C上的分压上升,进而使可控硅的导通角增大,达到增大照明灯两端电压的目的。反之,若周围的光线 图(1) 变亮,则RG的阻值下降,导致可控硅的导通角变小,照明灯两端电压也同时下降,使灯光变暗,从而实现对灯光照度的控制。 上述电路中整流桥给出的是必须是直流脉动电压,不能将其用电容滤波变成平滑直流电压,否则电路将无法正常工作。原因在于直流脉动电压既能给可控硅提供过零关断的基本条件,又可使电容C的充电在每个半周从零开始,准确完成对可控硅的同步移相触发。 光敏电阻式光控开关

光敏电阻的应用

1. 举例说明光敏电阻的应用(画出原理图及工作过程) 路灯自动点熄控制 由两部分组成:电阻R 、电容C 和二极管D 组成半波整流滤波电路;RCds 光敏电阻和继电器组成光控继电器。路灯接在继电器常闭触点上,由光控继电器来控制路灯的点燃和熄灭.光暗时,光敏电阻的阻值很高,继电器关,灯亮;光亮时,光敏电阻的阻值降低,继电器开,灯灭。 2. 硅光电池的工作原理和等效电路为下图: (a )光电池工作原理图 (b )光电池等效电路图 (c )进一步简化 从图(b )中可以得到流过负载R L 的电流方程为: )1()1(/0/0--=--==KT qV s E KT qV s p D p e I E S e I I I I I - 其中,S E 为光电池的光电灵敏度,E 为入射光照度,I s0是反向饱和电流,是光电池加反向偏压后出现的暗电流。 当I L =0时,R L =∞(开路),此时曲线与电压轴交点的电压通常称为光电池开路时两端的开路电压,以V OC 表示,由式(1)解得:

??? ? ??+=1ln 0 I I q kT U p OC 当Ip 》Io 时,)/ln()/(0I I q kT U p OC ≈ 当R L =0(即特性曲线与电流轴的交点)时所得的电流称为光电流短路电流, 以Isc 表示,所以 Isc =I p =Se ·E 从上两式可知,光电池的短路光电流Isc 与入射光照度成正比,而开路电压Uoc 与光照度的对数成正比。 3. 光外差检测只有在下列条件下才可能得到满足: ①信号光波和本征光波必须具有相同的模式结构,这意味着所用激光器应该单频基模运转。 ②信号光和本振光束在光混频面上必须相互重合,为了提供最大信噪比,它们的光斑直径最好相等,因为不重合的部分对中频信号无贡献,只贡献噪声。 ③信号光波和本振光波的能流矢量必须尽可能保持同一方向,这意味着两束光必须保持空间上的角准直。 ④在角准直,即传播方向一致的情况下,两束光的波前面还必须曲率匹配,即或者是平面,或者有相同曲率的曲面。 ⑤在上述条件都得到满足时,有效的光混频还要求两光波必须同偏振,因为在光混频面上它们是矢量相加。 4.光电检测系统的定义:是指对待测光学量或由非光学待测物理量转换成的光学量,通过光电变换和电路处理的方法进行检测的系统。 光电检测系统的构成:光源,照明光学系统,,被测对象,光学变换,光信号匹配处理,光电转换,电信号的放大与处理,计算机,控制,存储和显示等部分。 5.在微弱辐射作用下,光电导材料的光电灵敏度有什么特点?为什么把光敏电阻

实验报告-光敏电阻基本特性的测量

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期: 光敏电阻基本特性的测量 【实验目的】 1.了解光敏电阻的工作原理及相关的特性。 2.了解非电量转化为电量进行动态测量的方法。 3.了解简单光路的调整原则和方法. 4.在一定照度下,测量光敏电阻的电压与光电流的关系。 5.在一定电压下,测量光敏电阻的照度与光电流的关系。 【实验原理】 1 光敏电阻的工作原理 在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加。电导率的改变量为: (1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。当光敏电阻两端加上电压U后,光电流为 (2) 式中A为与电流垂直的截面积,d为电极间的距离。 用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中.

本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。 2 光敏电阻的基本特性 光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图: 【实验数据记录、实验结果计算】 1测量光敏电阻的电压与光电流的关系 在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图:

光敏电阻的特性与应用

光敏电阻器的特性和应用 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。 光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。 用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。光敏电阻的原理结构如图所示。在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光

电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直 流电压,也可以加交流电 压。 基本特性及其主要参数 1、暗电阻、亮电阻 光敏电阻在室温和全暗条件下测得的稳定电阻值称为暗电阻,或暗阻。此时流过的电流称为暗电流。例如MG41-21型光敏电阻暗阻大于等于0.1M。 光敏电阻在室温和一定光照条件下测得的稳定电阻值称为亮电阻或 亮阻。此时流过的电流称为亮电流。MG41-21型光敏电阻亮阻小于等于1k。 亮电流与暗电流之差称为光电流。 显然,光敏电阻的暗阻越大越好,而亮阻越小越好,也就是说暗电流要小,亮电流要大,这样光敏电阻的灵敏度就高。 2、伏安特性 在一定照度下,光敏电阻两端所加的电压与流过光敏电阻的电流之间的关系,称为伏安特性。 由图2.6.2可知,光敏电阻伏安特性近似直线,而且没有饱和现象。受耗散功率的限制,在使用时,光敏电阻两端的电压不能超过最高工作电压,图中虚线为允许功耗曲线,由此可确定光敏电阻正常工作电压。

实验10(光敏电阻)实验报告

实验十-光敏电阻及光敏二极管的特性实验 实验1:光敏电阻的特性实验 一、实验目的 了解光敏电阻的光照特性和伏安特性。 二、实验原理 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻愈小。基于这种效应的光电器件称光敏电阻。光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。实验原理图如图10-1。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流 表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。 四、实验接线图 五、实验数据记录和数据处理 1:亮电阻和暗电阻测量

实验数据如下: 2:光照特性测量 实验数据如下: 实验数据拟合图像如下: 3:伏安特性测量 实验数据如下: 实验数据拟合图像如下: 六、实验思考题

1:为什么测光敏电阻亮阻和暗阻要经过10 秒钟后读数,这是光敏电阻的缺点,只能应用于什么状态? 答:稳定态 实验2:光敏二极管的特性实验 一、实验目的 了解光敏二极管工作原理及特性。 二、实验原理 当入射光子在本征半导体的p-n 结及其附近产生电子—空穴对时,光生载流子受势垒区电场作用,电子漂移到n 区,空穴漂移到p 区。电子和空穴分别在n 区和p 区积累,两端便产生电动势,这称为光生伏特效应,简称光伏效应。光敏二极管基于这一原理。如果在外电路中把p-n 短接,就产生反向的短路电流,光照时反向电流会增加,并且光电流和照度基本成线性关系。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏二极管、发光二极管、庶光筒 四、实验接线图 将上图中的光敏电阻更换成光敏二极管(注意接线孔的颜色相对应即+、-极性),按上图安装接线,测量光敏二极管的暗电流和亮电流。 五、实验数据记录和数据处理 1:光照特性 亮电流测试实验数据如下: 实验数据拟合图像如下:

光敏电阻原理及应用大全

光敏电阻的应用 光敏电阻可广泛应用于各种光控电路,如对灯光的控制、调节等场合,也可用于光控开关,下面给出几个典型应用电路。 1、光敏电阻调光电路 图1是一种典型的光控调光电路,其工作原理是:当周围光线变弱时引起光敏电阻R G的阻值增加,使加在电容C上的分压上升,进而使可控硅的导通角增大,达到增大照明灯两端电压的目的。反之,若周围的光线变亮,则R G的阻值下降,导致可控硅的导通角变小,照明灯两端电压也同时下降,使灯光变暗,从而实现对灯光照度的控制。 图1光控调光电路 注意:上述电路中整流桥给出的是必须是直流脉动电压,不能将其用电容滤波变成平滑直流电压,否则电路将无法正常工作。原因在于直流脉动电压既能给可控硅提供过零关断的基本条件,又可使电容C的充电在每个半周从零开始,准确完成对可控硅的同步移相触发。 2、光敏电阻式光控开关 以光敏电阻为核心元件的带继电器控制输出的光控开关电路有许多形式,如自锁亮激发、暗激发及精密亮激发、暗激发等等,下面给出几种典型电路。 图2是一种简单的暗激发继电器开关电路。其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升激发VT1导通,VT2的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制。

图2 简单的暗激发光控开关 图3是一种精密的暗激发时滞继电器开关电路。其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升使运放IC的反相端电位升高,其输出激发VT导通,VT的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制。 图3精密的暗激发光控开关 光敏电阻原理及应用简介 1、光敏电阻器是利用的制成的一种电阻值随入射光的强弱而改变的电阻器;入射 光强,电阻减小,入射光弱,电阻增大。 2、结构。光敏电阻器都制成薄片结构,以便吸收更 多的。当它受到光的照射时,半导体片(光敏层) 内就激发出电子—空穴对,参与导电,使电路中 电流增强。为了获得高的灵敏度,光敏电阻的常 采用梳状图案,它是在一定的掩膜下向光电导薄膜上蒸镀金或铟等金属形成的。一般光敏电阻器结构如右图所示。光敏电阻器通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。光敏电阻器在电路中用字母“R”或“RL”、“RG”表示。

光敏电阻应用电路

光敏电阻的应用 1.光控开关电路 图2-38所示是一种光控开关电路,这一光控开关电路可以用在一些楼道、路灯等公共场所。通过光敏电阻器,它在天黑时会自动开灯,天亮时自动熄灭。电路中,VS1是晶闸管,Rl是光敏电阻器。 当光线亮时,光敏电阻器Rl阻值小,220V交流电压经VD1整流后的单向脉冲性直流电压在RP1和Rl分压后的电压小,加到晶闸管VS1控制极的电压小,这时晶闸管VS1不能导通,所以灯HL回路无电流,灯不亮。 当光线暗时,光敏电阻器Rl阻值大,RPI和Rl分压后的电压大,加到晶闸管VS1控制极的电压大,这时晶闸管V S1进入导通状态,所以灯HL回路有电流流过,灯点亮。 2.灯光亮度自动调节电路 图2-39所示是灯光亮度自动调节电路,这一电路能根据外界光线的强弱来自动调节灯光亮度。电路中,VS1是晶闸管,N是氖管,HL是灯,R3是光敏电阻器。

电路中,晶闸管VS1和二极管VD1~VD4组成全波相控电路,用氖管N作为VS1的触发管。 220V交流电通过负载HL加到VD1~VD4桥式整流电路中,整流后的单向脉冲直流电压加到晶闸管VS1阳极和阴极之间,VS1导通与截止受控制极上的电压控制。整流后的电路还加到各电阻和电容上。 直流电压通过Rl和RP1对电容Cl进行充电,Cl上充到的电压通过氖管N加到晶闸管VS1控制极上,当Cl上电压上升到一定程度时,氖管N启辉,将电压加到晶闸管VS1控制极上,使晶闸管VS1导通,灯HL点亮。 电容Cl上平均电压大小决定了晶闸管VS1交流电一个周期内平均导通时间长短,从而决定了灯的亮度。 当外界亮度高时,光敏电阻器R3阻值小,Cl的充电电压低,晶闸管VS1平均导通时间短,HL灯光就暗。 当外界亮庋低时,光敏电阻器R3阻值大,Cl的充电电压高,晶闸管VS1平均导通时间长,HL灯光就亮。 由于R3的阻值是随外界光线强弱自动变化的,所以灯HL的亮度也是受外界光线强弱自动控制的。 调节可变电阻器RP1阻值可以改变对电容Cl的充电时间常数,即改变VS1的导通角,调节HL灯光的亮度。 3.停电自动报警电路 图2—41所示是停电自动报警电路。电路中,VD2是

光敏电阻特性测试实验(精)

光敏电阻特性测试实验 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 三、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光敏电阻及封装组件 1套 4、光照度计 1台 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。 光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最

光敏电阻器的特性和应用(精)

光敏电阻器的特性和应用 光敏电阻是采用半导体材料制作,利用内led/' target='_blank'>光电效应工作的led/' target='_blank'>光电元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。 光敏电阻是采用半导体材料制作,利用内led/' target='_blank'>光电效应工作的led/' target='_blank'>光电元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。 用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。光敏电阻的原理结构如图所示。在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。 基本特性及其主要参数 1、暗电阻、亮电阻 光敏电阻在室温和全暗条件下测得的稳定电阻值称为暗电阻,或暗阻。此时流过的电流称为暗电流。例如MG41-21型光敏电阻暗阻大于等于0.1M。 光敏电阻在室温和一定光照条件下测得的稳定电阻值称为亮电阻或亮阻。此时流过的电流称为亮电流。MG41-21型光敏电阻亮阻小于等于1k。 亮电流与暗电流之差称为光电流。 显然,光敏电阻的暗阻越大越好,而亮阻越小越好,也就是说暗电流要小,亮电流要大,这样光敏电阻的灵敏度就高。 2、伏安特性

光敏电阻

光敏电阻

————————————————————————————————作者:————————————————————————————————日期:

光敏电阻 光敏电阻又称光导管,为纯电阻元件,其工作原理是基于光电导效应(半导体材料受光照射后,其导电率发生变化的现象)。常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻 器的阻值迅速下降。半导体材料受到光照时会产生电子一空穴对,使其导电性能增强,其阻值随光照增强而减小,光线越强,阻值越低。光敏电阻是一种没有极性的电阻器件。光敏电阻的响应时间一般为2---50ms 。光敏电阻器通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。光敏电阻器在电路中用字母“R ”或“RL ”、“RG ”表示。 光敏电阻的工作原理 当光照射到光电导体上时,若光电导体为本征半导体材料,而且光辐射能量又足够强,光导材料价带上的电子将激发到导带上去,从而使导带的电子和价带的空穴增加,致使光导体的电导率变大。为实现能级的跃迁,入射光的能量必须大于光导体材料的禁带宽度Eg ,即 h ν= = ≥Eg (eV) 式中ν和λ—入射光的频率和波长。 一种光电导体,存在一个照射光的波长限λC ,只有波长小于λC 的光照射在光电导体上,才能产生电子在能级间的跃迁,从而使光电导体电导率增加。 光敏电阻的灵敏度易受湿度的影响,因此要将导光电导体严密封装在玻璃壳体中。如果把光敏电阻连接到外电路中,在外加电压的作用下,用光照射就能改变电路中电流的大小,其连线电路如图所示。 光敏电阻具有很高的灵敏度,很好的光谱特性,光谱响应可从紫外区到红外区范围内。而且体积小、重量轻、性能稳定、价格便宜,因此应用比较广泛。 光敏电阻分类 按半导体材料分:本征型光敏电阻、掺杂型光敏电阻。后者性能稳定,特性较好,故目前大都采用它。 根据光敏电阻的光谱特性,可分为三种光敏电阻器: 1、紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,用于探测紫外线。 2、红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。锑化铟等光敏电阻器,广泛用 A 玻 半导体 (a ) R Rg (b)电 (c)实 λc h ?λ 24.1

实验一--光敏电阻特性实验

实验一 光敏电阻特性实验 实验目的: 1. 了解光敏电阻的工作原理及相关的特性。 2. 了解非电量转化为电量进行动态测量的方法。 3. 了解简单光路的调整原则和方法。 4. 在一定照度下,测量光敏电阻的电压与光电流的关系。 5. 在一定电压下,测量光敏电阻的照度与光电流的关系。 实验原理 : 1. 光敏电阻的结构与工作原理 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻, 种均质的半导体光电器件 ,其结构如图 1-1 所示。光敏电阻没 有极性,纯粹是一个电阻器件,使用时既可加直流电压,也 可以加交流电压。光敏电阻采用梳状结构是由于在间距很近 的电阻之间有可能采用大的灵敏面积 ,提高灵敏度。 无光照时, 光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。 当光敏电阻受到一定波长范围的光照时, 它的阻值 (亮电阻) 急剧减小,电路中电流迅速增大。 一般希望暗电阻越大越 好,亮电阻越小越好, 此时光敏电阻的灵敏度高。实际光 敏电阻的暗电阻值一般在兆欧量级, 亮电阻值在几千欧以 下。 2. 光敏电阻的主要参数 (1) 暗电阻:光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的 电流称为暗电流。 (2) 亮电阻:光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流 称为亮电流。 (3) 光电流:亮电流与暗电流之差称为光电流。 3. 光敏电阻的基本特性 (1) 伏安特性 光敏电阻的伏安特性如图 1-2 所示,不同的光照度可以得到不同的伏安特性,表明电阻 值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电 压和电流都不能超过规定的最高额定值。 图 1-2 光敏电阻的伏安特性曲线 又称为光导管。 是

光敏电阻的原理及应用

(一)光敏电阻的概念 光敏电阻器(photovaristor)又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。一般光敏电阻器结构如图所示。 (二)光敏电阻的分类 根据光敏电阻的光谱特性,可分为三种光敏电阻器: 紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,用于探测紫外线。 红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红外通信等国防、科学研究和工农业生

产中。 可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。 (三)光敏电阻的材料及原理 用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。 在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的 数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。 (四)光敏电阻的应用 光敏电阻可广泛应用于各种光控电路,如对灯光的控制、调节等场合,也可用于光控开关,下面给出几个典型应用电路。

光敏电阻器的特性和应用

光敏电阻器的特性和应用 站长2006-4-2 15:05:30 光敏电阻是采用半导体材料制作,利用内光电效应工作的光电 元件。它在光线的作用下其阻值往往变小,这种现象称为光导效应,因 此,光敏电阻又称光导管。 用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化 物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄 的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。光敏电阻的原理结构如图所示。在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。 基本特性及其主要参数 1、暗电阻、亮电阻 光敏电阻在室温和全暗条件下测得的稳定电阻值称为暗电阻,或暗阻。此时流过的电流称为暗电流。例如MG41-21型光敏电阻暗阻大于等于0.1M。 光敏电阻在室温和一定光照条件下测得的稳定电阻值称为亮电阻或亮阻。此时流过的电流称为亮电流。MG41-21型光敏电阻亮阻小于等于1k。 亮电流与暗电流之差称为光电流。 显然,光敏电阻的暗阻越大越好,而亮阻越小越好,也就是说暗电流要小,亮电流要大,这样光敏电阻的灵敏度就高。 2、伏安特性 在一定照度下,光敏电阻两端所加的电压与流过光敏电阻的电流之间的关系,称为伏安特性。 由图2.6.2可知,光敏电阻伏安特性近似直线,而且没有饱和现象。受耗散功率的限制,在使用时,光敏电阻两端的电压不能超过最高工作电压,图中虚线为允许功耗曲线,由此可确定光敏电阻正常工作电压。

实验1光敏电阻基本特性实验

实验一 光敏电阻特性实验 一.实验目的: 1.认识学习光敏电阻,掌握光敏电阻的基本工作原理。 2.掌握使用本仪器测定光敏电阻的各种特性。 3.达到会用光敏电阻器件进行光电检测方面应用课题的设计。 二.实验原理: 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示,光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在日常生活中随处可见,当内光电效应发生时,光敏电阻电导率的改变量为: p n p e n e σμμ?=???+??? 图(1) 在上式中,e 为电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率,当两端加上电压U 后,光电流为: ph A I U d σ= ??? 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻在未受到光照射时的阻值称为暗电阻,此时流过的电流称为暗电流,光敏电阻受到光照射时的阻值称为亮电阻,此时流过的电流称为亮电流,亮电流与暗电流之差称为光电流,一般暗电阻越大,亮电阻越小,光敏电阻的灵敏度越高,光敏电阻的暗电阻一般在兆欧数量级,亮电阻在几千欧以下,暗电阻与亮电阻之比一般在102 ~106 之间。 一般光敏电阻(如硫化铅、硫化铊)的伏安特性曲线如图(2)所示,由该曲线可知,所加的电压越高,光电路越大,而且没有饱和现象,在给定的电压下,光电流的数值将隋光照增强而增大,在设计光敏电阻变换电路时,应使光敏电阻的工作电压或电流控制在额定功耗线之内。

光敏电阻及其参数

什么是光敏电阻及其参数分类 光敏电阻器是一种对光敏感的元件,它的电阻值能随着外界光照强弱(明暗)变化而变化。 光敏电阻器在电路中用字母“R”或“RL”、“RG”表示,图1-25是其电路图形符号。 (一)光敏电阻器的结构、特性及应用 1.光敏电阻器的结构与特性光敏电阻器通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成,如图1-26所示。 光敏电阻器是利用半导体光电导效应制成的一种特殊电阻器,对光线十分敏感。它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小。 2.光敏电阻器的应用光敏电阻器广泛应用于各种自动控制电路(如自动照明灯控制电路、自动报警电路等)、家用电器(如电视机中的亮度自动调节,照相机中的自动曝光控制等)及各种测量仪器中。 图1-27是光敏电阻器的应用电路。

(二)光敏电阻器的种类 光敏电阻器可以根据光敏电阻器的制作材料和光谱特性来分类。 1.按光敏电阻器的制作材料分类 光敏电阻器按其制作材料的不同可分为多晶光敏电阻器和单晶光敏电阻器,还可分为硫化镉(CdS)光敏电阻器、硒化镉(CdSe) 光敏电阻器、硫硫化铅(PbS) 光敏电阻器、硒化铅(PbSe) 光敏电阻器、锑化铟(InSb) 光敏电阻器等多种。 2.按光谱特性分类 光敏电阻器按其光谱特性可分为可见光光敏电阻器、紫外光光敏电阻器和红外光光敏电阻器。 可见光光敏电阻器主要用于各种光电自动控制系统、电子照相机和光报警器等电子产品中。 紫外光光敏电阻器主要用于紫外线探测仪器。 红外光光敏电阻器主要用于天文、军事等领域的有关自动控制系统中。 (三)光敏电阻器的主要参数 光敏电阻器的主要参数有亮电阻(RL)、暗电阻(RD)、最高工作电压(VM)、亮电流(IL)、暗电流(ID)、时间常数、温度系数灵敏度等。 1.亮电阻亮电阻是指光敏电阻器受到光照射时的电阻值。 2.暗电阻暗电阻是指光敏电阻器在无光照射(黑暗环境)时的电阻值。3.最高工作电压最高工作电压是指光敏电阻器在额定功率下所允许承受的最高电压。 4.亮电流视电流是指在无光照射时,光敏电阻器在规定的外加电压受到光照时所通过的电流。 5.暗电流暗电流是指在无光照射时,光敏电阻器在规定的外加电压下通过的电流。

光敏电阻原理及应用大全

光敏电阻原理及应用大全 The Standardization Office was revised on the afternoon of December 13, 2020

光敏电阻的应用 光敏电阻可广泛应用于各种光控电路,如对灯光的控制、调节等场合,也可用于光控开关,下面给出几个典型应用电路。 1、光敏电阻调光电路 图1是一种典型的光控调光电路,其工作原理是:当周围光线变弱时引起光敏电阻R G的阻值增加,使加在电容C上的分压上升,进而使可控硅的导通角增大,达到增大照明灯两端电压的目的。反之,若周围的光线变亮,则R G的阻值下降,导致可控硅的导通角变小,照明灯两端电压也同时下降,使灯光变暗,从而实现对灯光照度的控制。 图1光控调光电路 注意:上述电路中整流桥给出的是必须是直流脉动电压,不能将其用电容滤波变成平滑直流电压,否则电路将无法正常工作。原因在于直流脉动电压既能给可控硅提供过零关断的基本条件,又可使电容C的充电在每个半周从零开始,准确完成对可控硅的同步移相触发。 2、光敏电阻式光控开关 以光敏电阻为核心元件的带继电器控制输出的光控开关电路有许多形式,如自锁亮激发、暗激发及精密亮激发、暗激发等等,下面给出几种典型电路。 图2是一种简单的暗激发继电器开关电路。其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升激发VT1导通,VT2的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制。 图2 简单的暗激发光控开关 图3是一种精密的暗激发时滞继电器开关电路。其工作原理是:当照度下降到设置值时由于光敏电阻阻值上升使运放IC的反相端电位升高,其输出激发VT导通,VT的激励电流使继电器工作,常开触点闭合,常闭触点断开,实现对外电路的控制。

2019高考物理总复习交变电流、传感器光敏电阻练习

光敏电阻 1.为解决楼道的照明,在楼道内安装一个传感器与电灯控制电路的相接。当楼道内有走动而发出声响时,电灯即与电源接通而发光,这种传感器为___________传感器,它输入的是___________信号,经传感器转换后,输出的是____________信号。 2.如图是观察电阻值随温度变化情况示意图。现把杯中的水由冷水变为热水,关于欧姆表的读数变化情况正确的是() A.如果R为金属热电阻,读数变大,且变化非常明显 B.如果R为金属热电阻,读数变小,且变化不明显 第7题 C.如果R为热敏电阻(用半导体材料制作),读数变化非常明显 D.如果R为热敏电阻(用半导体材料制作),读数变化不明显 3.当光照射到光敏电阻上时,光敏电阻的阻值(填“变大”、“不变”或“变小”).半导体热敏电阻是利用半导体材料的电阻率随变化而改变的特性制成的. 4.光传感器 (1)计算机的鼠标器:它内部的两个__________就是两个光传感器,分别负责x、y两个方向的移动信息. (2)火灾报警器:内部敏感元件是光电三极管,无光照射时呈__________状态,有光照射时其__________变小.这种变化被电路检测后就会发出警报. 5.传感器能够将感受到的物理量(如力、热、光、声)转换成便于测量的量,通常是电学量.如光敏电阻能够将信号转换成电信号(填“力”、“光”、“声”、“热”) 6.某种材料具有电阻率随温度变化的特性,利用这种材料可以制成() A.热敏电阻 B.光敏电阻 C.电容器 D.电感器 7.街旁的路灯,江海里的航标都要求在夜晚亮,白天不亮,利用半导体的电学特性制成了自动点亮、熄灭的装置,实现了自动控制,这是利用半导体的( ) A.压敏性 B.光敏性 C.热敏性 D.三种特性都利用 8.以下说法正确的是() A.光传感器把光照的强弱转变成电信号 B.热敏电阻随着温度的升高电阻增大 C.压力传感器把电信号转变为压力的传感器

(整理)光敏电阻简介

(1)光敏电阻的暗电阻、亮电阻、光电流 暗电流:光敏电阻在室温条件下,全暗(无光照射)后经过一定时间测量的电阻值,称为暗电阻。此时在给定电压下流过的电流。 亮电流:光敏电阻在某一光照下的阻值,称为该光照下的亮电阻。此时流过的电流。 光电流:亮电流与暗电流之差。 光敏电阻的暗电阻越大,而亮电阻越小则性能越好。也就是说,暗电流越小,光电流越大,这样的光敏电阻的灵敏度越高。 实用的光敏电阻的暗电阻往往超过1MΩ,甚至高达100MΩ,而亮电阻则在几kΩ以下,暗电阻与亮电阻之比在102~106之间,可见光敏电阻的灵敏度很高。 (2)光敏电阻的光照特性 下图表示CdS光敏电阻的光照特性。在一定外加电压下,光敏电阻的光电流和光通量之间的关系。不同类型光敏电阻光照特性不同,但光照特性曲线均呈非线性。因此它不宜作定量检测元件,这是光敏电阻的不足之处。一般在自动控制系统中用作光电开关。 (3)光敏电阻的光谱特性 光谱特性与光敏电阻的材料有关。从图中可知,硫化铅光敏电阻在较宽的光谱范围内均有较高的灵敏度,峰值在红外区域;硫化镉、硒化镉的峰值在可见光区域。因此,在选用光敏电阻时,应把光敏电阻的材料和光源的种类结合起来考虑,才能获得满意的效果。 (4)光敏电阻的伏安特性 在一定照度下,加在光敏电阻两端的电压与电流之间的关系称为伏安特性。图中曲线1、2分别表示照度为零及照度为某值时的伏安特性。由曲线可知,在给定偏压下,光照度较大,光电流也越大。在一定的光照度下,所加的电压越大,光电流越大,而且无饱和现 象。但是电压不能无限地增大,因为任何光敏电阻都受额定功率、最高工作电压和额定电流

的限制。超过最高工作电压和最大额定电流,可能导致光敏电阻永久性损坏。 (5)光敏电阻的频率特性 当光敏电阻受到脉冲光照射时,光电流要经过一段时间才能达到稳定值,而在停止光照后,光电流也不立刻为零,这就是光敏电阻的时延特性。由于不同材料的光敏, 电阻时延特性不同,所以它们的频率特性也不同,如图。硫化铅的使用频率比硫化镉高得多,但多数光敏电阻的时延都比较大,所以,它不能用在要求快速响应的场合。 (6)光敏电阻的稳定性 图中曲线1、2分别表示两种型号CdS光敏电阻的稳定性。初制成的光敏电阻,由于体内机构工作不稳定,以及电阻体与其介质的作用还没有达到平衡,所以性能是不够稳定的。但在人为地加温、光照及加负载情况下,经一至二周的老化,性能可达稳定。光敏电阻在开始一段时间的老化过程中,有些样品阻值上升,有些样品阻值下降,但最后达到一个稳定值后就不再变了。这就是光敏电阻的主要优点。 光敏电阻的使用寿命在密封良好、使用合理的情况下,几乎是无限长的。

相关文档
最新文档