建模优化问题的解决

建模优化问题的解决
建模优化问题的解决

0 引言

解决最优化问题已经有很多比较成熟的算法,如遗传算

法、神经网络、模拟退火法等,各有其优劣。模式搜索法作为一

种解决最优化问题的直接搜索方法,因为在计算时不需要目标

函数的导数,所以在解决不可导或者求导异常麻烦时比较有

效。随着模式搜索法的发展,人们在Hooke-Jeeves 模式搜索法

的基础上设计了变步长搜索策略,使得模式搜索方向更接近于

最优下降方向,并且同时采用了插值技术和非单调技术,不仅

改善了方法的局部寻优能力,而且改善了方法的收敛性。现在

已有很多软件将这一算法集成到程序中,如Matlab 已经将它

添加到工具箱中,使用时只要调用相应的函数就可以用模式搜

索法解决问题,大大提高了工作效率,降低了编程工作量。

1 模式搜索法的基本原理

模式搜索就是寻找一系列的点X0,X1,X2,…,这些点都越

来越靠近最优值点,当搜索进行到终止条件时则将最后一个点

作为本次搜索的解。利用模式搜索法解决一个有N 个自变量

的最优化问题。①要确定一个初始解X0,这个值的选取对计算

结果影响很大;②确定基向量用于指定搜索方向,如对于两个

自变量的问题可设为V(0,1;1,0;-1,0;0,-1)即按十字方向搜

索;③确定搜索步长它将决定算法的收敛速度,以及全局搜索

能力。

具体步骤为:①计算出初始点的目标函数值f(Xi),然后计

算其相邻的其它各点的值f(Xi+V(j)*L),j∈(1,2. . .2N);②如

果有一点的函数值比更优则表示搜索成功,那么Xi+1=Xi+V(j)

*L,且下次搜索时以Xi+1

为中心,以L=L*δ为步长(δ>1,扩大搜

索范围),若没有找到这样的点则表示搜索失败,仍以Xi

为中

心,以L=L*λ为步长(λ<1,缩小搜索范围);③重复②的操作直

到终止条件为止,终止条件可以是迭代次数已到设定值或者误

差小于规定值等。

2 模式搜索法的改进

随着模式搜索法被逐渐认可与应用,人们对模式搜索法做

了许多改进。如在搜索方向上,用模式搜索法解决一个有N 个

自变量的问题时,共有Z*N 个基向量,这样如果对每个方向

都搜索就会大大的增加计算量,对此人们提出了正基向量的概

念,具体可参照I.D.Coope,C.J.Price 编写的《Positive bases in numerical optimization》一文,正__________基向量的应用与有运动矢量场自适应快速搜索法(MVFAST),增强预测区域搜索(EPZS)、非

对称十字多层六边形搜索法(UMHexagonS)的提出在满足全局

搜索能力的情况下,大大降低了计算量。另外在步长控制方面,

出现了变步长模式搜索方法,推动了模式搜索法的发展。

3 Matlab模式搜索法工具箱应用及实例

Matlab 的工具箱里的patternsearch 就是基于模式搜索算

法的优化工具箱,有两种方法可以调用patternsearch 工具箱,

一种是GUI 即图形界面形式的,用户可以直接在窗口中操作,

另一种就是在程序中调用patternsearch 函数来进行模式搜索,

本文主要介绍后面一种。Patternsearch 函数的完整格式为[X,FVAL] =PATTERNSEARCH (FUN,X0,A,b,Aeq,beq,LB,UB,NONLCON,options)FVAL,X 分别为取得的最优值及所在的

点,FUN 为m 文件句柄该,该m 文件就是要进行最优化的函

数,options 为对搜索方式的设置。A,b,Aeq,beq,LB,UB 为对x 取值的限制条件,具体的为:

A*x≤B;

Aeq*x=Beq;

Lb≤x≤Ub

≤≤≤

≤≤≤

≤;

软件导刊

Software Guide

第8卷%第8期

2009年8 月

Vol.8 No.8

Aug. 2009

若没有限制则可以设为空即[],下面用patternsearch 工具箱计

算带噪声的具有多个极小值的函数的最小值x21

函数具体表达式为:

f(x1,x2)=

x21

+x21

-25+m*rand;x21

+x22

≤25

x21

+(x2-9)2-16+m*rand;x21

+(x2-9)2≤16

m*rand;其它情

≤≤≤

≤≤≤

≤况

Rand 为(0 1)之间的随机数,m 为振幅,两者乘机代表噪

声大小(本算例取自matlab 软件包的help 文件,原算例没有带

噪声)。当m 取为1 时利用matlab 画出该函数的图形如图1,由

图可知当引入噪声后,图形变的很复杂,若利用一般的算法由

于无法求导则该问题变得很复杂,由于patternsearch 的工作原

理使得其在解决这类问题时有很大优势。解决步骤:

(1)编写m 函数,m 函数就是要计算的函数,具体如下:

function y = myfun(z,noise)

y=zeros(1,size(z,1));noise=1;

for i=1:size(z,1)

x=z(i,:);

if x(1)^2+x(2)^2<=25

y(i)=x(1)^2+x(2)^2-25+noise*randn;

elseif x(1)^2+(x(2)-9)^2<=16

y(i)=x(1)^2+(x(2)-9)^2-16+noise*randn;

else y(i)=0+noise*randn;

end end end

z 为矢量是目标函数的自变量,大小为自变量的个数,y 是

对应与自变量的目标函数的取值。

图1 m=1 时,函数(1)的图形

(2)确定初始点,这对运算速度也结果有很大影响,这里取

为X0=[-8,8];再就要确定搜索边界条件,一般要视具体问题

来确定,若选的过大则搜索速度变慢,过小则会影响全局搜索

能力。这里取为-10≤x1≤10;-10≤x2≤15

(3)编写主程序

X0 = [-8 8]; % Starting point.

LB = [-10 -10]; %Lower bound

UB = [10 15]; %Upper bound

range = [LB(1) UB(1); LB(2) UB(2)];

Objfcn = @myfun; % Handle to the objective function.

clf;showSmoothFcn (Objfcn,range); hold on; % Plot the

smooth objective function

title('objective function')

fig = gcf;

PSoptions = psoptimset ('Display','iter','OutputFcn',

@psOut);

[x,z] = patternsearch (Objfcn,X0,[],[],[],[],LB,UB,

PSoptions)

figure(fig);

hold on;

plot3 (x (1),x(2),z,'dr','MarkerSize',12,'MarkerFaceColor','

r');

hold off

搜索过程:

Iter f-count f(x) MeshSize Method

0 1 -0.563815 1

1 2 -14.0315 2 Successful Poll

2 2 -14.0315 1 Refine Mesh

。。。。。。(只列出了前两次结果)

32 112 -27.0133 9.537e-007 Refine Mesh

图2 搜索结果模型

结果如图2 所示,可以看出模式搜索法有很好的全局搜索

能力,尽管图形毫无规律,并且有无穷多的极小值点,但是模式

搜索法通过31 次迭代就找到了最小值点[-0.1250 ,0.1250],

搜索精度已经达到数量级。而相比之下matlab 优化工具箱中

的Fmincon 函数则搜索不到最小值点,如图Fmincon 函数找到

的点已远远偏离了最小值点,由此我们可以看出模式搜索的强

大功能。

参考文献:

[1]张明,毕笃彦.自适应可变模式搜索算法[J].计算机工程,2008 (7).

[2]杨春,倪勤.变步长非单调模式搜索法[J].高等学校计算机学报,

0 引言

水利工程大部分在山区, 位置偏僻, 交通不便,

水、电设施需要在施工前备齐。工程建设过程中需要

的宿舍、办公楼、材料仓库、成品半成品加工场地等

临时工程和辅助设施需要修建。临时工程、辅助设施

科学合理的选址不仅能够减少费用和运行期间材料

运输费用, 大幅度降低运行成本, 而且能为施工生产

部门带来方便、快捷的服务。

在考虑施工辅助设施位置布置时, 若地址位置

平面坐标( x1,x2) 是以建造费用和运行费用为目标函

数的变量, 该函数的导数很难求得, 或者根本不存

在, 利用传统的解析法不能得出解答。模式搜索法的

迭代步骤简单, 收敛速度较快, 可以很方便地得出满

意解。

1 模式搜索法求极值的优化理论

模式搜索法是一种最优化算法, 当目标函数

f(x1,x2,?,xn)的解析表达式十分复杂甚至写不出具体

表达式、用解析法无法解答时, 它可以方便地求出极

值。求解目标函数极值问题的计算步骤为:

( 1) 任选初始近似点B1, 以它为初始基点进行

探索。

( 2) 为每一独立变量xi( i=1, 2, ?, n) 选定步长

缩小到要求的精度时, 即可停止迭代, 确定已找到最

优点。

2 模式搜索法优化施工方案

施工某场址平面图和剖面图见图1、图2。现要

确定其混凝土生产系统合适的位置, 使修建费用最

少。在场址范围的西南角设置坐标原点, 建立坐标

系统。由于各种线路的长短不同, 以及桩的长短不

同( 桩的最小长度为20m, 差别在于超过20m 以上

的部分) 。因工厂位置不同, 其修建费用就有差别。

2.1 目标函数

列出目标函数即修建总费用C 为:

C( x1,x2) =45x2+9[(5000- x1)2+x2

2]1/2+15[x2

1+(x2-

2000)2]1/2+12[(x1- 200)2+(5600- x2)2]1/2+

36[(3000- x1)2+(4800- x2)2] 1/2+45×15(x2/100)

地理范围的约束条件为: 0≤x1≤5000;

0≤x2≤6000- (2/5)x1。

2.2 以探索法解算

给定起点坐标(x1, x2), 采用模式探索法进行解

算。搜索步长定为100m, 即!1=(0,100)。搜索过程及

计算结果见表1。

从表1 的计算结果可以看到, 无论初始点在最

终结果附近( 见表1 中的1 点) , 还是在最终结果的

上、下、左、右( 见表1 中的3, 4, 5 点) , 均可以找到最从表1 的计算结果可以看到, 无论初始点在最

终结果附近( 见表1 中的1 点) , 还是在最终结果的

上、下、左、右( 见表1 中的3, 4, 5 点) , 均可以找到最表1 搜索过程及结果

Table 1 Sear ching process and r esult

起点坐标/m

x1 x2

1

2

3

4

5

佳的结果。即使给出的初始点离最佳点较远, 是一些

极不合理的点( 见表1 中的2 点) , 用模式搜索法同

样可以找出最优位置点。从以上的计算结果, 可以看

到该方法的合理性和优越性。这说明, 用模式搜索法

确定施工场址, 只需给定场址范围, 在简化后的平面

图或剖面图中建立相应坐标系, 找出目标函数( 总费

用) 与纵、横坐标变量的关系, 编制相应程序, 然后给

定一个初始点, 经过一系列的迭代过程, 就能确定出

满足目标函数f(x1,x2)的最优位置。

对于比较复杂的目标函数, 为了防止把局部极

值误认为全局最优值, 应分区域进行探查, 或者从任

意选取的不同点开始, 至少引入两个独立的搜索。如

果它们都收敛于同一点, 则这个点作为最优点的把

握就大大增加了。

另外, 运行期的运输费用也是关于场址坐标(x1,

x2)的函数, 统筹考虑建造费用和运行费用的全局最

优, 根据预算的运行期各材料运输总量和相应运输

单价, 利用模式搜索法进行优化, 能得到满意解。

3 结语

施工企业主要建筑物的选址是一个复杂的多目

标决策问题, 由于目标间存在矛盾性和不可公开性,

因此, 如何确定主要建筑物的最佳地址, 是施工总布

置需要认真研究的课题。而通过一定的简化, 建立数

学模型, 利用模式搜索法求出最优解是可行的。

参考文献:

[ 1] 钱颂迪, 甘应爱. 运筹学[M] . 北京: 清华大学出版社, 1990.

[ 2] 左兼金, 袁光裕.水利水电工程施工组织管理与系统分析[M] .北京: 水利电力出版社, 1986.

[ 3] 钟汉华, 薛建荣.水利水电工程施工组织与管理[M] .北京: 中国水利水电出版社, 2005.

[ 4] 席少霖, 赵凤治.最优化计算方法[M] .上海: 科学技术出版社, 1983.

[ 责任编辑杨道

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模习题

数学建模与数学实验课程练习 练习集锦 1简述数学建模的一般过程及建模过程中需要注意的问题。 2 简述数学模型及数学建模的特点。 3 简述数学建模的常用分类方法。 4求方程 06 /12 625 .05 .04 )(=------=x x x x f 的模最大的根的近似 值(精确到小数点后两位)。 5在抢渡长江模型中,如果水流速度 1.8/v m s =为常数,人的游泳速度 1.5/u m s =为常数,江面宽度为1200H m =,终点位置在起点下游 1000L m =处的条件,确定游泳者的最佳游泳路径及最短游泳时间。 6沿江的某一侧区域将建两个水厂,在江边建一个取水口。现需要设计最优的管线铺设方案,通过管线从取水口向水厂送水。水厂与江岸的位置见右图。 如果不用共用管线,城区单位建设费用是郊区的2倍。 (1) 对于最优方案,用α表示,βγ。 (2) 求最优取 水口位置。 7在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 (,0) P x

31/52a b P c d e f ?? ??=?? ???? , (1)确定矩阵P 的未知元素。 (2)求P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取)。 8在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取)。 9考虑下表数据 (1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 10考虑微分方程

数学建模 练习题1

2.14成绩与体重数学建模 一、问题 举重比赛按照体育运动员的体重分组,你能在一些合理、简单的假设下,建立比赛成绩与体重之间的关系吗?下面是下一届奥运会的成绩,可供检验你的模型。 一、问题分析 成绩与肌肉的力度有直接关系,随着力度的增加,成绩呈上升趋势。 假设力度与肌肉横截面积成正比,而截面积和体重都与身体的某个特征尺寸有直接关联。由此可以找到成绩和体重之间的关系。可以以此建立模型。

二、模型假设以及符号说明 1.本模型主要考虑运动员举重总成绩和体重的关系,所以假设运动员其他条件相差不大。 2.运动员的举重能力用其举重的总成绩来刻画 3.符号说明: 人的体重 W 人的身高 h 肌肉横截面积 S 人的体积 V 肌肉强度 T 举重成绩 C 非肌肉重量 W1 斜率 K 三、模型构成 模型一 1.题中给出举重比赛按照体育运动员的体重分组,所以我们猜测成绩与体重应该是正比关系。 2.画出坐标图,体重越重,成绩越好,进一步验证了正比关系。 最大体重

从上图可以看出,体重越大,举重总成绩相对越好,所以我们猜测举重总成绩与体重大概成线性关系。则,我们可以用一次函数C=kW+b对三个体重进行拟合,根据图中数据,可得: = = 2.66, = = 1.45, = = 1.17 把b代入得出三个一次函数为: = 2.66W+143.8, = 1.45W+75.1, = 1.17W+69.7, 用上述模型计算得到的理论值,并画出图表与原图表进行比较: 最大体重

通过比较两个图表,我们可以推测体重与成绩数据的推测图表和已知图标的拟合度并不是特别的理想,所以我们可以认为用线性函数对举重总成绩与体重进行拟合的模型过于简单、粗略,考虑的因素比较少。 模型二 我们这一次综合各种因素来进行分析建模。 通过查阅各种自然科学磁疗,我们可以近似以为:一般举重运动员的举重能力是用举重成绩来衡量,而举重运动员的举重能力与其肌肉强度近似成正比关系,从而举重运动员的举重总成绩与其肌肉强度近似成正比,即: C = T (为常数且>0) ○1从运动生理学得知,肌肉的强度与其横截面积近似成正比,即: T = S (为常数且>0) ○ 2综合○1,○2可得 C=T=S ○3通过查阅资料,我们可以假设肌肉的横截面积正比于身高的平方,人的体重正比于身高的三次方,即可得: S = , W = (,为常数且>0,>0) 综合上述所有算式,我们有: C= S = ○ 4 因为W = ,我们可以推测出举重运动员举重总成绩与其体重的关系为: C = 利用题目表格中所给的体重和举重总成绩数据,求出上述模型的常数M。利用题目表格中所给的体重和举重总成绩数据,运用最小二乘法求出上述模型的系数 K 。因为体重超过108千克的运动员的体重没有具体的数据,为了模型的准确性,故将这个数据舍去。经过代入9次运算得出平均常数,为=20.3,=9.6,=9.0。于是举重运动员的举重总成绩与体重的关系模型为

优化建模练习题解答

例1 (任务分配问题)某车间有屮、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,乂使加工费用最低? 解:设在甲车床上加工工件1、2、3的数量分别为在乙车床上加工工件1、2、3 的数量分别为七,召,心。建立以下线性规划模型: nin z = 13斗 + 9x2 + 10x3 + llx4 + 12x5 + 8x6 x{ + x4 = 400 x2 + x5 = 600 + x6 = 500 0.4Xj +1」兀+x3 <800 0.5X4+l.2x s + 1.3X6 < 900 兀n0J = 12 …,6 例2某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98眾计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%, II-时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各儿名?解:设需要一级和二级检验员的人数分别为州宀人,则应付检验员的工资为: 8x4xx t +8X3XX2 =32召 + 24 x2 因检验员错检而造成的损失为: (8x25x2% XX] +8x15 x5%xx2)x2 = 8x)+12x2 故LI标函数为: nin z = (32X] +24x?) + (8X] +12吃)=40“ +36x2 约束条件为: 8x25xx t +8xl5xx2 > 1800 8x25xx, <1800 8X15XX2 S1800 %! >0,x2 > 0 线性规划模型: min z = 40X] + 36x2

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模最优路径设计

2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名 参赛队员(打印并签名) :1 2 指导教师或指导教师组负责人(打印并签名):

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2015年7 月27 日赛区评阅编号(由赛区组委会评阅前进行编号):

2015高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数学建模:投资问题

投资的收益与风险问题 摘要 对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。 本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。 关键词:组合投资,两目标优化模型,风险偏好

2.问题重述与分析 3.市场上有种资产(如股票、债券、…)()供投资者选择,某公司有数额为的 一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。 购买要付交易费,费率为,并且当购买额不超过给定值时,交易费按购买计算(不买当然无须付费)。另外,假定同期银行存款利率是, 且既无交易费又无风险。() 1、已知时的相关数据如下: 试给该公司设计一种投资组合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。 2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。 本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。并给出对应的盈亏数据,以及一般情况的讨论。 这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模面试最优化问题

C题面试时间问题 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟): 这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司? 面试时间最优化问题 摘要: 面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数 根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。 关键词:排列排序0-1非线性规划模型线性优化 (1)

(一)问题的提出 根据题意,本文应解决的问题有: 1、这4名同学约定他们全部面试完以后一起离开公司。假定现在的时间是早晨8:00,求他们最早离开公司的时间; 2、试着给出此类问题的一般描述,并试着分析问题的一般解法。 (二)问题的分析 问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行)。 对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况: (一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。这一段等待时间必将延长最终的总时间。 (二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。同样的,这个也会延长面试的总时间。 以上两种情况,必然都会延长整个面试过程。所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。这也是我们想要的结果。 (三)模型的假设 1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关; 2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0; 3.参加面试的求职者事先没有约定他们面试的先后顺序; 4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。即:没有中途退出面试者; 5.面试者及各考官都能在8:00准时到达面试地点。 (四)名词及符号约束 1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间 甲乙丙丁分别对应序号i=1,2,3,4 2.xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻) (2)

优化建模练习题解答

例1(任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低? 解:设在甲车床上加工工件1、2、3的数量分别为321,,x x x ,在乙车床上加工工件1、2、3的数量分别为654,,x x x 。建立以下线性规划模型: 6543218121110913m in x x x x x x z +++++= ???? ???????=≥≤++≤++=+=+=+6 ,,2,1,09003.12.15.08001.14.0500600 400 ..6543216352 41 i x x x x x x x x x x x x x t s i 例2 某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的 检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名? 解: 设需要一级和二级检验员的人数分别为21,x x 人,则应付检验员的工资为: 因检验员错检而造成的损失为: 故目标函数为: 约束条件为: 线性规划模型: 212124323848x x x x +=??+??2 1211282)%5158%2258(x x x x +=????+???2121213640)128()2432(m in x x x x x x z +=+++=???????≥≥≤??≤??≥??+??0,0180015818002581800 158258212121x x x x x x 2 13640m in x x z +=

数学建模中的优化问题与规划模型

与最大、最小、最长、最短等等有关的问题都是优化问题。 解决优化问题形成管理科学的数学方法:运筹学。运筹学主要分支:(非)线性规划、动态规划、图与网络分析、存贮学、排队伦、对策论、决策论。 6.1 线性规划 1939年苏联数学家康托洛维奇发表《生产组织与计划中的数学问题》 1947年美国数学家乔治.丹契克、冯.诺伊曼提出线性规划的一般模型及理论. 1. 问题 例1 作物种植安排 一个农场有50亩土地, 20个劳动力, 计划种蔬菜,棉花和水稻. 种植这三种农作物每亩地分别需要劳动力1/2 1/3 1/4, 预计每亩产值分别为110元, 75元, 60元. 如何规划经营使经济效益最大. 分析:以取得最高的产值的方式达到收益最大的目标. 1. 求什么?分别安排多少亩地种蔬菜、棉花、水稻? x 1亩、 x 2 亩、 x 3 亩 2. 优化什么?产值最大 max f=10x 1+75x 2 +60x 3 3. 限制条件?田地总量 x 1+x 2 +x 3 ≤ 50 劳力总数 1/2x 1 +1/3x 2 +1/4x 3 ≤ 20 模型I : 设决策变量:种植蔬菜x1亩, 棉花x2亩, 水稻x3亩, 求目标函数f=110x1+75x2+60x3 在约束条件x1+x2+x3≤ 50 1/2x1+1/3x2+1/4x3 ≤20 下的最大值 规划问题:求目标函数在约束条件下的最值, 规划问题包含3个组成要素: 决策变量、目标函数、约束条件。 当目标函数和约束条件都是决策变量的线性函数时,称为线性规划问题, 否则称为非线性规划问题。 2. 线性规划问题求解方法 称满足约束条件的向量为可行解,称可行解的集合为可行域, 称使目标函数达最值的可行解为最优解. 命题 1 线性规划问题的可行解集是凸集. 因为可行解集由线性不等式组的解构成。两个变量的线性规划问题的可行解集是平面上的凸多边形。 命题2 线性规划问题的最优解一定在可行解集的某个极点上达到. 图解法:解两个变量的线性规划问题,在平面上画出可行域,计算目标函数在各极点处的值,经比较后,取最值点为最优解。 命题 3 当两个变量的线性规划问题的目标函数取不同的目标值时,构成一族平行直线,目标值的大小描述了直线离原点的远近。 于是穿过可行域的目标直线组中最远离(或接近)原点的直线所穿过的凸多边形的顶点即为取的极值的极点—最优解。 单纯形法: 通过确定约束方程组的基本解, 并计算相应目标函数值, 在可行解集的极点中搜寻最优解. 正则模型: 决策变量: x 1,x 2 ,…,x n . 目标函数: Z=c 1 x 1 +c 2 x 2 +…+c n x n . 约束条件: a 11 x1+…+a1n x n≤b1, ……a m1x1+…+a mn x n≤b m, 模型的标准化 10. 引入松弛变量将不等式约束变为等式约束. 若有 a i1x 1 +…+a in x n ≤b i , 则引入 x n+i ≥ 0, 使得 a i1 x 1 +…+a in x n + x n+i =b i 若有 a j1x 1 +…+a jn x n ≥b j , 则引入 x n+j ≥ 0, 使得 a j1 x 1 +…+a jn x n - x n+j =b j .

《数学建模》课程第一章自测练习及解答提示

《数学建模》课程第一章自测练习及解答提示 一、填空题: 1.设年利率为0.05,则10年后20万元的现值按照复利计算应为 . 解:根据现值计算公式: 10)05.01(20)1(+=+=n R S Q 2783.12212010 11≈=(万元) 应该填写:12.2783万元. 2.设年利率为0.05,则20万元10年后的终值按照复利计算应为 . 解:根据终值计算公式: 10 )05.01(20)1(+=+=n R P S =5779.322021910 =(万元) 应该填写:32.5779 3.所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 . 解:应该填写:问题分析,模型假设,模型建立,模型求解,模型分析. 4.设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 . 解: 由商品的均衡价格公式: 8035 2536001200)(=++=++=c a d b t p 应该填写:80. 5.一家服装店经营的某种服装平均每天卖出110件,进货一次的批发手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 . 解:根据经济订购批量公式: 19110 01.020022*≈??==R c c T s b 209701.011020022*≈??== s b c R c Q 应该填写:.2097,19**=≈Q T 二、分析判断题 1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决. 解:(1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益.

数学建模练习题复习进程

数学建模习题 题目1 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.5元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减小的程度变小,解释实际意义是什么。 解答: (1)分析:生产成本主要与重量w成正比,包装成本主要与表面积s成正比,其他成本也包含与w和s成正比的部分,上述三种成本中都包含有与w,s 均无关的成本。又因为形状一定时一般有,故商品的价格可表示 为(α,β,γ为大于0的常数)。 (2)单位重量价格,显然c是w的减函数。说明大 包装比小包装的商品更便宜,曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。 函数图像如下图所示: 题目2 2.在考虑最优定价问题时设销售期为T,由于商品的损耗,成本q随时间增长,设,β为增长率。又设单位时间的销售量为(p为价格)。今将销售期分为和两段,每段的价格固定,记为,.求,的最优值,使销售期内的总利润最大。如果要求销售期T内的总销售量为,

再求,的最优值。 解答: 由题意得:总利润为 ,=+ = 由=0,,可得最优价格 , 设总销量为, 在此约束条件下的最大值点为 , 题目3 3.某商店要订购一批商品零售,设购进价,售出,订购费c (与数量无关),随 机需求量r的概率密度为p(r),每件商品的贮存费为(与时间无关)。问如何确定订购量才能使商店的平均利润最大,这个平均利润是多少。为使这个平均利 加什么限制? 润为正值,需要对订购费c 解答: 设订购量为u,则平均利润为

最优化方法练习题答案修改建议版本--删减版

练习题一 1、建立优化模型应考虑哪些要素 ? 答:决策变量、目标函数和约束条件。 2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。 min f (x) 答:针对一般优化模型 s.t. g i x 0,i 1,2,L m ,讨论解的可行域 D ,若存在一点 X * D ,对 h j x 0, j 1,L , p 于 X D 均有 f(X * ) f(X)则称 X * 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代 所得到的序列 X (1),X (2),L ,X (K)L ,满足 f(X (K 1)) f (X (K)),则迭代法收敛;收敛的停止准则有 等。 练习题二 1、某公司看中了例 2.1中厂家所拥有的 3种资源 R 1、R 2、和R 3,欲出价收购(可能用于生产附 加值更高的产品) 的对偶问题)。 。如果你是该公司的决策者, 对这 3 种资源的收购报价是多少? (该问题称为例 2.1 解:确定决策变 量 对 3种资源报价 y 1,y 2, y 3作为本问题的决策变量。 确定目标函 数 问题的目标很清楚——“收购价最小” 。 确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。 因此有如下线性规划问题: min w 170y 1 100y 2 150y 3 5y 1 2y 2 y 3 10 s.t. 2y 1 3y 2 5y 3 18 y 1, y 2,y 3 0 2、研究线性规划的对偶理论和方法( 包括对偶规划模型形式、对偶理论和对偶单纯形法) 答: 略。 3、用单纯形法求解下列线性规划问题: x (k 1) x (k) x (k 1) x (k) x (k) x (k 1) x (k) x (k)

数学建模实验答案_简单的优化模型

实验03 简单的优化模型(2学时) (第3章简单的优化模型) 1. 生猪的出售时机p63~65 目标函数(生猪出售纯利润,元): Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 其中,t≥0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。 求t使Q(t)最大。 1.1(求解)模型求解p63 (1) 图解法 绘制目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 的图形(0 ≤t≤ 20)。其中,g=0.1, r=2。 从图形上可看出曲线Q(t)的最大值。 (2) 代数法 对目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 用MATLAB求t使Q(t)最大。其中,r, g是待定参数。(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解) 然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。 要求: ①编写程序绘制题(1)图形。

②编程求解题(2). ③对照教材p63相关内容。 相关的MATLAB函数见提示。 ★要求①的程序和运行结果:程序: 图形: ★要求②的程序和运行结果:程序:

运行结果: 1.2(编程)模型解的的敏感性分析p63~64 对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。 (1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。 (2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t 的关系图形(见教材p65)。 要求:分别编写(1)和(2)的程序,调试运行。 ★给出(1)的程序及运行结果: 程序:

最优化方法练习题答案修改建议版本删减版

练习题一 1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。 2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。 答:针对一般优化模型()()min () .. 0,1,2, 0,1, ,i j f x s t g x i m h x j p ≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ?∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)() ,, ,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有 (1)()k k x x ε+-<,(1)() () k k k x x x ε+-<,()()(1)()k k f x f x ε+-<, ()()() (1)()()k k k f x f x f x ε+-<,()()k f x ε?<等 等。 练习题二 1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R 2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。 解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。 确定目标函数 问题的目标很清楚——“收购价最小”。 确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。 因此有如下线性规划问题:123min 170100150w y y y =++ 123123123 5210 ..23518,,0y y y s t y y y y y y ++≥??++≥??≥? *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。 答:略。 3、用单纯形法求解下列线性规划问题:

数学建模一等奖-输油管布置的优化模型

输油管布置的优化模型 摘要 本文建立了输油管线布置的优化问题.为了使两家炼油厂到铁路线上增建的车站的管线铺设费用最省,依据题目提供的有关数据及相关信息,设计出了总费用最少的输油管布置方案以及增建车站的具体位置,最终在讨论分析后,对模型做出了评价和推广. 模型Ⅰ:对问题1,根据两炼油厂到铁路线距离和两炼油厂间的不同距离以及共用管线与非共用管线的两种不同情况,给出了四种处理方案,并从图形上加以说明. 模型Ⅱ:对问题2,建立了最优模型.在单目标非线性规划模型中,将输油管道铺设分为两个过程.先将输油管道从城区铺设到城郊区域边界线上一点,再从该点铺设到铁路线上.这样,总的费用就化为这两个过程的管道费用之和.本模型兼顾到管线的铺设费用,在城区铺设管线需增加的拆迁和工程补偿等附加费用,运用Lingo9.0数学软件得到新增车站的建设位置、管线的具体布置方案及管线费用最小值281.6893万元. 模型Ⅲ:根据炼油厂的实际能力,借助题目提供的输送A、B两厂原油的管线铺设费用,在模型Ⅱ的基础上建立最优模型,给出管线最佳布置方案及相应的最省管线铺设费用为250.9581万元. 关键词:输油管共用管线非共用管线 Lingo9.0 非线性规划

一、问题重述 某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型和方法。 现欲解决下列问题: 问题1:针对炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出设计方案。在方案设计时,若有共用管线,考虑共用管线与非共用管线相同或不同的情形。 问题2:设计院目前需对一更为复杂的情形(两炼油厂的具体位置)进行具体的设计。两炼油厂的具体位置如下图: 若所有管线的费用均为7.2万元/千米。铺设在城区的管线还需增加迁拆和工程补偿等附加费用,为对此附加费用进行估计,聘请三家工程咨询公司(其中一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。估算结果如下表所示: 工程咨询公司公司一公司二公司三附加费用(万元/千米)212420 要求我们为设计院给出管线布置方案及相应的费用。 问题3:在实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相应的油管。这时的管线铺设费用将分别降为输送A厂成品油为5.6万元/千米,输送B厂成品油为6.0万元/千米,共用管线费用为7.2万元/千米,拆迁等附加费用同上。请给出管线最佳布置方案及相应的费用。

数学建模优化问题

木材储运经营计划 摘要 本文针对某一木材储运公司在冬、春、夏、秋四季内进货价、出货价、储存费用、库存空间及最大销售量等预计数据进行分析,制定一个各季节的进货量和出货量计划使该公司的经营利润达到最大,可以把该问题归于将其归为求解利润最大化问题进行建模。 由于利润只直接与中间差价和销售量有关,并根据题目已知的预测量,建立一个木材储运最大利润模型,并通过运行LINGO软件编程来求解冬、春、夏、秋四季总最大利润为:5160万元。 上述木材储运最大利润模型: 是指冬、春、夏、秋前面的季节储存木材量可以在后面的季节卖,由于木材不宜久贮,所有库存木材应于每年秋末售完,反过来,后面季节的储存木材量元素不能放在前面的季节卖,因此可以把一个季节卖哪几个季节进的木材当成几个,建立一个横轴的元素和代表当前季节的木材销售量,竖轴的元素和该季节应该购进的木材量含十六个元素的二维数组,通过运用LINGO软件编程可以得到这个数组元素为: 储存量 冬/万m3春/万m3夏/万m3秋/万m3 销售量 冬100 ——— 春0 140 —— 夏20 0 180 — 秋0 0 0 160 通过简单的基本运算可以知道每个季节进货量和出货量既为该木材储运公司这年的大体经营计划。 关键词:LINGO 木材储运最大利润数组元素

一.问题重述 一个木材储运公司有很大的仓库用以储运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分储存起来以后。已知该公司仓库的最大储存量为20万m3,储存费用为() a+元/m3,式中7 bu a=,10 b=,u为储存时间(季度数)。已知每季度的买进卖出价及预计的销售量如下表所示: 表1. 季度买进价/元/m3卖出价/元/m3预计销售量/万m3 冬410 425 100 春430 440 140 夏460 465 200 秋450 455 160 由于木材不宜久贮,所有库存木材应于每年秋末售完。 根据上述条件建立一个模型制定一个该公司每个季节进木材量和销售木材量的大体经营计划,使这个公司获得最大的利润。 二.问题的简要分析 对于本文涉及到的问题,建立一个横方向的元素和代表当前季节的木材销售量,竖方向的元素和该季节应该购进的木材量含十六个元素的二维数组,由于冬、春、夏、秋前面的季节储存木材量可以在后面的季节卖,因此真正未知元素只有十个,而且这十个未知数的类型相同,更容易理解,如下: 表2. 冬/万m3春/万m3 夏/万m3秋/万m3储存量 销售量 冬Q11——— 春Q12Q22—— 夏Q13Q23Q33— 秋Q14Q24Q34Q44 由于假设的未知数都是销售量,因此在秋季末公司的仓库不存在储存的木材量,每个季度的进货量除了在本季度销售木材的量外,剩下的都是储存量,只要小于公司仓库的最大储存量,因此在约束条件考虑到即可。 然而市场上对该公司的需求是有限的,因此每个季度的销售量是有限,因此再在约束条件增加对每个季度的销售量的限制,然后通过数学软件编程求解即可。 三.模型的假设 1)假设公司预计销售量在各个季度几乎符合现实且预计销售量是是最大销售量; 2)假设各个季度木材的单位量的实际进价和销售价与预测价几乎符合; 3)假设每个月的库存量在该时期内的产品的单位量库存费用不变; 4)假设在该时期内储存费用大约不变; 5)假设人力财力等消耗的费用不在该问题中考虑;

建模试题解答

数学建模基础课程试卷 一、简述题:(30分) 1.数学建模的意义。 近几十年来,数学的应用不仅在它的传统领域,工程技术、经济建设发挥着越来越重要的作用,而且不断地向一些新的领域渗透,形成了许多交叉学科,如计量经济学、人口控制论、生物数学、地质数学等等",数学与计算机技术相结合,形成了一种普遍的、可以实现的关键技术——数学技术,成为当代高新技术的重要组成部分,而数学技术中的数学建模技术越来越受到人们的重视,可以从以下几方面来看数学建模在现实世界中的重要意义。 (1)在一般工程技术领域,数学建模仍然大有用武之地。 (2)在高新技术领域,数学建模几乎是必不可少的工具。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的应用领地2.数学建模分析思路。 数学建模面临的实际问题是多种多样的,建模要经过哪些步骤并没有一定的模式,一般而言,数学建模的过程分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环

3.数学建模常用方法(至少写出8种)(1)机理分析 (2)测试分析 (3)动态优化 (4)层次分析法 (5)插值与拟合 (6)多元回归 (7)数据包络分析 (8)线性规划 (9)灰色系统 (10)TOPSIS理想解法 4.数学建模的基本步骤。 建模的过程一般如下所示:

(1)模型准备 了解问题的实际背景,明确建模目的,搜集必要的信息如现象、数据等,尽量弄清对象的主要特征,形成一个比较清晰的“问题”,由此初步确定用哪一类模型" 情况明才能方法对" 在模型准备阶段要深入调查研究。 (2)模型假设 根据对象的特征和建模目的,抓住问题的本质,忽略次要因素,作出必要的、合理的简化假设" 对于建模的成败这是非常重要和困难的一步" 假设作得不合理或太简单,会导致错误的或无用的模型;假设作得过分详细,试图把复杂对象的众多因素都考虑进去,会使你很难或无法继续下一步的工作" 常常需要在合理与简化之间作出恰当的折衷" 通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对现象、数据的分析,以及二者的综合" 想像力、洞察力、判断力,以及经验,在模型假设中起着重要作用。 (3)模型构成 根据所作的假设,用数学的语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型,如优化模型、微分方程模型、差分

相关文档
最新文档