(完整版)解三角形知识点归纳(附三角函数公式)

(完整版)解三角形知识点归纳(附三角函数公式)
(完整版)解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章

解三角形知识点归纳

1 三角形三角关系:

A+B+C=180 ; C=180°— (A+B);

2、三角形三边关系: a+b>c; a-b

.2 2 2 h c a

7、余弦定理:在 C 中,有a 2 b 2 c 2 2bc cos 等,变形:cos

等,

2bc

,P( P a)(p b)( p c)

10、 如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一 成边的形式或角的形式设 a 、b 、c 是 C 的角、 、C 的对边,则: ①若 a 2

b 2

c 2,则 C 90o ;②若 a 2 b 2 c 2,则 C 90°;③若 a 2 b 2 c 2,则 C 90° ?

11、 三角形的四心:

垂心 -- 三角形的三边上的高相交于一点

重心一一三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为 2:1 )

外心一一三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心一一三角形三内角的

平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系

(1)平方关系: sin 2 a + cos 2 a=l (2)倒数关系: tana^cota = l

sin

(3)商的关系:

tan ------------ ,cot

cos

B) si nC,cos(A B) cosC, tan (A B) tanC,

.A B o 1

n C A B .C + A B cotC

sin cos ,cos

sin - tan

2 2 2

2 2

2

4、正弦定理 :在 C 中,a 、b 、c 分别为角 、 、

接圆的半

径,

则有

a

b c 2R .

sin

sin

si nC

5、正弦定理的变形公式:

①化角为边: a 2Rsin , b

2Rsi n ,c

2Rsin

C ; ②化边为

角:

sin

a

, sin

b

sin C c ;

C 的外

③ a: b: c sin :sin :sin C ; ④一

sin sin

c

si nC

a

_b

sin

sin

c si nC

②已知两角和其中一边的对角,求其他边角 注意解的情况(一解、两解、三解) )

.(对于已知两边和其中一边所对的角的题型要

c 1 1 小

1 2

S C

bcs in abs inC acs in .=2Rsi nAsi nBsi

2 2 2

abc =r(a b c) 4R

2

sin

2R

2R 2R C 的对边,R 为 3、三角形中的基本关系:sin (A

8、 余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)

9、 三角形面积公式:

特殊角的三角函数值

三角、\ 函数

值\

30 45

60

90

sin 0 1

2

42

2

2

i

cos 1 鱼

2

2

1

2

0 tan 0 旦

3

1

<3不存在

k

三角函数诱导公式:“()”记忆口诀:“奇变偶不变,符号看象限”,是指

2

k

(—),k € Z的三角函数值,当k为奇数时,正弦变余弦,余弦变正弦(正切,余切;正2

割、余割也同样);

当k为偶数时,函数名不变。然后符号与’将a看成锐角时原三角函数值的正负号’一致。

三角函数的图像与性质:

2 7

有关函数y Asin( x ) B (其中A 0, 0)

2

最大值是A B ,最小值是B A ,周期是T ,频率是f ,相位是x .

2

初相是;

其图象的对称轴是直线x k -(k Z),凡是该图象与直线y B的交点都

2

是该图象的对称中心。

函数y = sin(3x + )的图象与函数y = sin x的图象的关系:

由y = sin x的图象变换出y = sin(3 x+ )的图象一般有两个途径,只有区别开这两个

途径,才能灵活进行图象变换。

途径一:先平移变换再周期变换(伸缩变换)

先将y= sin x的图象向左(>0)或向右(v0 =平移丨丨个单位,再将图象上各点的横坐标变为原来的丄倍(3 >0),便得y= sin(w x+ )的图象。(先相位变换,再周期变换)途径二:先周期变换(伸缩变换)再平移变换。

1

先将y = sin x的图象上各点的横坐标变为原来的倍(3 >0),再沿x轴向左(>0)或向

右(v 0=平移1一1个单位,便得y = sin(3 x + )的图象。(先周期变换,再相位变换)对称轴与对称中心:y sin x的对称轴为x k 三,对称中心为(k ,0) k Z ;

~,0);

y cosx的对称轴为x k ,对称中心为(k

k

y=tan x 图像的对称中心是(——,0),无对称轴。

2

★诱导公式★(以下k € Z)

公式一:设 a 为任意角,终边相同的角的同一

三角函数 的值相等:

sin ( 2k n + a) = sin a cos ( 2k n + a) = cos a tan ( 2k n+ a) = tan a 公式二:设 a 为任意角,n + a 的三角函数值与

a 的三角函数值之间的关系:

sin ( n + a)=— sin a cos ( n + a)=— cos a tan ( n + a) = tan a 公式三:任意角 a 与-a 的三角函数值之间的关系: sin (—a )=— sin a cos (—a )= cos a tan (—a )=— tan a

公式四:利用公式二和公式三可以得到

n - a 与a 的三角函数值之间的关系:

sin ( n — a ) = sin a cos ( n — a) =— cos a tan ( n — a ) =— tan a 公式五:利用公式一和公式三可以得到 2n - a 与a

的三角函数值之间的关系:

同角三角函数的基本关系式

商的关系: sin a /cos a=tan a 平方关系:

sin 2a +cos 2a=1

两角和差公式 两角和与差的 三角函数公式

sin ( a+ 3 ) = sin a cos 升 cos a sin 3 sin ( a — 3) = sin a cos 3— cos a sin 3

cos ( a+ 3) = cos a cos 3 — sin a sin 3 cos ( a — 3 ) = cos a cos 3 + sin a sin 3 tan (a +3 = (tan a +tan 3/)(1- tan

a tan 3)

tan ( a — 3) = (tan a — tan 3 ) (1 + tan a ? tan 3 )

二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式

sin2 a=2sin a cos a

cos2 a = cos A 2( a)— sin A 2( a = 2cos A 2( a)— 1 = 1 — 2sin^2( a) tan2 a= 2tan a /[1— tan 人2( a )]

半角公式 半角的正弦、余弦和正切公式( 降幂扩角公式

sin 2(a /2)=(1—cos a)/2 cos 2(a /2)=(1+cos a)/2 tan 2(a /2=) (1—cos a)/(1+cos a) 另也有 tan( a /2)=(1—cos a )/sin a =sin a /(1+cos a )

万能公式

万能公式

sin ( (2n — a =— sin a

cos (2 n — a ) = cos a tan (2 n — a )= — tan a

公式六: n /2 土及 3n /2 ± a ■与 a 的三角函数值之间的关系:

sin ( (n /2+ a = cos a cos ( (n /2+ a) =— sin a tan ( n /2+ a ) =— cot a cot (n /2+ a = — tan a

sin ( n /2— a ) = cos a cos ( n /2— a)=

sin a

tan (n

/2

a =

cot a

cot ( n /2— a ) = tan a sin ( 3 n /2+ a ) =— cos a cos (3 n /2 +a = sin a

tan (3 n /2 + a) =— cot a

cot

(3n /2 + a =— tan

sin ( (3 n /2 - a = — cos a

c

o s ( 3 n /2— a ) = — sin a tan (3n /2 — a = cot a

cot

(3 n /2 — a ) = tan a

同角三角函数基本关系

sin a =2tan( a /2)/[1+tan 2( a /2)]

cos a =[1 -tan 2( a /2)]/[1+tan 2( a /2)] tan a=2tan( a /2)/[1 -tan 2(a/2)] 三倍角公式三倍角的正弦、余弦和正切公式sin3 a= 3sin a —4sin 3a cos3 a = 4cos 3a—3cos a

tan3 a=( 3tan a—tan 3a) /( 1 —3tan 2a)

和差化积公式三角函数的和差化积公式

sin a+ sin 3= 2sin[( 处3 )/2] ? cos[— a )/2]

sin a—sin 3= 2cos[( a+ 3 )/2] ? sin[— a )/2]

cos a + cos 3 = 2cos[( a+ 3 )/2] ? COS[— 3 )/2] cos a —cos 3 = —2sin[( 氏 3 )/2] ? sin[—妝)/2]

积化和差公式三角函数的积化和差公式

sin a ? cos = [sin( 卅 3 ) sin( a— 3)]/2

cos a ? sin 书[sin( d- 3 ) sin( a— 3)]/2

cos a ? cos = [cos( a+ 3 —COS(a— 3 )/2

sin a ? sin =—[cos( a— 3 ) cos( a— 3 )/2

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理 ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

解三角形知识点归纳总结

解三角形知识点归纳总 结 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于 外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半 径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用 正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

解三角形知识点归纳总结归纳

欢迎阅读 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

三角函数及解三角形知识点

三角函数知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

三角函数和解三角形知识点

三角函数和解三角形知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点及原点重合,角的始边及x 轴的非负半轴重合,终边落在第几象限,则称α 为第几象限 角.第一象限角的集合为 {}360 36090,k k k αα?<,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 11 、 角 三 角 函 数 的基本关系:()221sin cos 1 αα+=() 2 222sin 1cos ,cos 1sin αααα=-=-;

必修5_解三角形知识点归纳总结

z 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <

解三角形知识点归纳总结归纳

第一章解三角形 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180,求角A,由正弦定理a =sinA ; b =sin B ; a =sin A :求出匕与。 b sin B c sin C c sin C ②已知两边和其中一边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理生二业求出角B ,由A+B+C=180求出角C,再使用正弦定理弓二sinA b sin B 4. △ ABC 中,已知锐角A,边b,贝U ① a :: bsinA 时,B 无解; ② a = bsin A 或a _ b 时,B 有一个解; ③ bsin A ::: a ::: b 时,B 有两个解。 如:①已知A = 60 Y a = 2, b = 2 3 ,求B (有一个解) ②已知A = 60 Y b =2,a = 2、、3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数。 二. 三角形面积 1 1 1 1. S ABC absi nC bcsi nA acsi nB 2 2 2 .正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 — b — =2R (其中R 是三角形外接圆的半径) sin A sin B sin C abc 2.变形: 1) a b c a b sin A+si n E+si nC si n A si n E sinC 2)化边为角: a : b : c = sin A: sin B :sin C ; 7 a sin A ; b sin B a sin A b sin B c sin C ' c sin C )化边为角: a = 2Rsin A, b=2Rsin B, c = 2RsinC )化角为边: )化角为边: sin A a ; ; sin B b sin A =— 2R si n B b si nA a sin C c sin C c ' si nB=2, si 门。=£ 2R 2R 求 c sin C

高中数学必修五--第一章---解三角形知识点归纳

- 1 - 高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C < ;③若222a b c +<,则90C > . 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

解三角形知识点归纳总结

解三角形知识点归纳总结 Prepared on 22 November 2020

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于 外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半 径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用 正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

相关文档
最新文档