现代分子生物学II考试重点

现代分子生物学II考试重点
现代分子生物学II考试重点

现代分子生物学II考试重点(80%)

一、名词解释

基因:启动子:增强子:全酶:核心酶:核酶:三元复合物:SD序列:同工tRNA:分子伴侣:信号肽:核定位序列:操纵子:弱化子: 葡萄糖效应(代谢物阻遏效应、降解物抑制作用):安慰性诱导物:顺式作用元件:反式作用因子:基因家簇:断裂基因。

二、填空题

1、真核生物的mRNA加工过程中,5’端加上(),在3’端加上(),后者由()催化。如果被转录基因是不连续的,那么,()一定要被切除,并通过()过程将()连接在一起。(帽子结构、多聚腺苷酸尾巴、poly(A)聚合酶、内含子、剪接、外显子)

2、–10位的(TATA )区和–35位的(TTGACA )区是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力。

3、决定基因转录基础频率的DNA 元件是(启动子),它是(RNA聚合酶)的结合位点

4、原核生物RNA 聚合酶核心酶由(2αββ′ω)组成,全酶由(2αββ′ωσ)组成。

5、基因表达调控主要表现在两种水平:(转录水平)和(转录后水平)。其中,后者又包括mRNA加工成熟水平上的调控和(翻译水平上的调控)。

6、不同生物使用不同的信号来指挥基因调控。原核生物中,(营养状况)和(环境因素)对基因表达起主要影响。在高等真核生物中,(激素水平)和(发育阶段)是基因表达调控的最主要手段。

7、原核生物的基因调控主要发生在转录水平上,根据调控机制的不同可分为(正转录调控)和(负转录调控)两大类。在负转录调控系统中,调节基因的产物是(阻遏蛋白)。根据其性质可分为(负控诱导)和(负控阻遏)系统。

8、在葡萄糖存在的情况下,即使在细菌中加入乳糖、半乳糖或其他的诱导物,与其相应的操纵子也不会启动,不会产生出代谢这些糖的酶来,这种现象称为(葡萄糖效应)或称为降解物抑制作用。

9、细菌实施应急反应的信号是(鸟苷四磷酸)和(鸟苷五磷酸)。产生这两种物质的诱导物是(空载tRNA)。

10、Lac 阻遏蛋白由__I__ 基因编码,结合__O__ 序列对Lac 操纵子(元)起阻遏作用。

11、Trp 操纵子的精细调节包括__阻遏机制_ 及_弱化机制_ 两种机制。

12、原核DNA合成酶中()的主要功能是合成前导链和()片段。

13、在DNA复制过程中,()可以稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。

14、在细胞周期特定时间可发生()、()、()和ADP核糖基化等修饰。

15、无细胞翻译系统翻译出来的多肽链通常比在完整的细胞中翻译的产物要长,这是因为

()。

16、Trp 操纵子的精细调节包括()及()两种机制。

17、组蛋白甲基化诱导了DNA的():因为前者是招募DNA()的信号,在异染色质蛋白HP1的协助下,DNA发生()。结果基因转录被抑制。

18、人类基因组测序策略一般有克隆重叠群法和()法。

19、端粒的组成成分主要是蛋白质和RNA,其中的蛋白质具有()活性,而RNA则作为合成(),所以端粒DNA通常带有富含()的短重复序列。

20、核糖体上能够结合tRNA的部位有()部位,()部位和()部位。

21、在转录起始阶段RNA聚合酶移动到转录起始点上,第一个rNTP转录开始,σ因子释放,此时形成()三元复合体。

12-21【参考答案】1 DNA聚合酶III, 冈崎;2单链结合蛋白;3 甲基化、乙酰化、磷酸化;4 没有经历后加工,如剪切;5 阻遏机制,弱化机制;6 甲基化,甲基化酶,甲基化;

7 全基因组鸟枪;8 逆转录酶,端粒DNA的模板,G;9 A位点,P位点,E位点;10酶-启动子-rNTP。

三、选择题

1、下列有关TATA盒(Hognessbox)的叙述,哪个是正确的:B

A.它位于第一个结构基因处

B.它和RNA聚合酶结合

C.它编码阻遏蛋白

D.它和反密码子结合

2、转录需要的原料是: B. dNDP C. dNMP D. NTP E . NMP (D)

3、DNA模板链为5’-ATTCAG-3 ’ , 其转录产物是:D

A. 5 ’ -GACTTA-3 ’

B. 5 ’ -CTGAAT-3 ’

C. 5 ’ -UAAGUC-3 ’

D. 5 ’ -CUGAAU-3 ’

4、DNA复制和转录过程有许多相同点,下列描述哪项是错误的D

A.转录以DNA一条链为模板,而以DNA两条链为模板进行复制

B. 在这两个过程中合成均为5`-3`方向

C. 复制的产物通常情况下大于转录的产物

D. 两过程均需RNA引物

5、下面那一项不属于原核生物mRNA的特征( C )

A:半衰期短B:存在多顺反子的形式

C:5’端有帽子结构D:3’端没有或只有较短的多聚(A)结构

6、真核细胞中的mRNA帽子结构是(A )

A. 7-甲基鸟嘌呤核苷三磷酸

B. 7-甲基尿嘧啶核苷三磷酸

C. 7-甲基腺嘌呤核苷三磷酸

D. 7-甲基胞嘧啶核苷三磷酸

7、下面哪一项是对三元转录复合物的正确描述( B )

(A)σ因子、核心酶和双链DNA在启动子形成的复合物

(B)全酶、模板DNA和新生RNA形成的复合物

(C)三个全酶在转录起始点形成的复合物

(D)σ因子、核心酶和促旋酶形成的复合物

8、多数氨基酸都有两个以上密码子,下列哪组氨基酸只有一个密码子D

A.苏氨酸、甘氨酸B.脯氨酸、精氨酸

C.丝氨酸、亮氨酸D.色氨酸、甲硫氨酸E.天冬氨酸和天冬酰胺

9、tRNA分子上结合氨基酸的序列是B

A.CAA-3′B.CCA-3′C.AAC-3′D.ACA-3′E.AAC-3′

10、关于遗传密码,下列说法正确的是BCE

A.20种氨基酸共有64个密码子B.碱基缺失、插入可致框移突变

C.AUG是起始密码D.UUU是终止密码E.一个氨基酸可有多达6个密码子

11、tRNA能够成为氨基酸的转运体、是因为其分子上有AD

A.-CCA-OH 3′末端B.3个核苷酸为一组的结构

C.稀有碱基D.反密码环E.假腺嘌吟环

12、蛋白质生物合成中的终止密码是( ADE )。

(A)UAA (B)UAU (C)UAC (D)UAG (E)UGA

13、Shine-Dalgarno顺序(SD-顺序)是指:(A )

A.在mRNA分子的起始码上游8-13个核苷酸处的顺序

B.在DNA分子上转录起始点前8-13个核苷酸处的顺序

‘端富含嘧啶的互补顺序 D.启动基因的顺序特征

14、“同工tRNA”是:( C )

(A)识别同义mRNA密码子(具有第三碱基简并性)的多个tRNA

(B)识别相同密码子的多个tRNA

(C)代表相同氨基酸的多个tRNA

(D)由相同的氨酰tRNA合成酶识别的多个tRNA

15、反密码子中哪个碱基对参与了密码子的简并性(摇摆)。(A )

(A)第—个(B)第二个(C)第三个(D) 第一个与第二个

16、与mRNA的GCU密码子对应的tRNA的反密码子是( B )

(A)CGA(B)IGC (C)CIG(D)CGI

17、真核与原核细胞蛋白质合成的相同点是( C )

A翻译与转录偶联进行B模板都是多顺反子C 都需要GTP D甲酰蛋氨酸是第一个氨基酸

18、是翻译延长所必需的B 12、氨基酸与tRNA连接D 13、遗传密码的摆动性A

A、mRNA上的密码子与tRNA上的反密码子不一定严格配对

B、转肽酶

C、酯键

D、磷酸化酶

E、N-C糖甘键

19、原核生物调节基因表达的意义是为适应环境,维持(A)

A、细胞分裂

B、细胞分化 C 器官分化 D 组织分化

20、原核生物的基因调控主要发生在(A)。

A 转录水平

B 转译水平

C 转录后水平

D 转译后水平

21、关于管家基因叙述错误的是D

(A) 在生物个体的几乎各生长阶段持续表达

(B) 在生物个体的几乎所有细胞中持续表达

(C) 在生物个体全生命过程的几乎所有细胞中表达

(D) 在生物个体的某一生长阶段持续表达

(E) 在一个物种的几乎所有个体中持续表达

22、一个操纵子(元)通常含有B

(A) 数个启动序列和一个编码基因

(B) 一个启动序列和数个编码基因(C) 一个启动序列和一个编码基因

(D) 两个启动序列和数个编码基因(E) 数个启动序列和数个编码基因

23、下列情况不属于基因表达阶段特异性的是,一个基因在A

(A) 分化的骨骼肌细胞表达,在未分化的心肌细胞不表达

(B) 胚胎发育过程不表达,出生后表达(C) 胚胎发育过程表达,在出生后不表达

(D) 分化的骨骼肌细胞表达,在未分化的骨骼肌细胞不表达

(E) 分化的骨骼肌细胞不表达,在未分化的骨骼肌细胞表达

24、乳糖操纵子(元)的直接诱导剂是E

(A) 葡萄糖(B) 乳糖(C) β一半乳糖苷酶(D) 透酶(E)异构乳糖

25、Lac阻遏蛋白结合乳糖操纵子(元)的 B

(A) CAP结合位点(B) O序列(C) P序列(D) Z基因(E) I基因

26、cAMP与CAP结合、CAP介导正性调节发生在C

A)葡萄糖及cAMP浓度极高时(B) 没有葡萄糖及cAMP较低时

C没有葡萄糖及cAMP较高时(D有葡萄糖及cAMP较低时(E) 有葡萄糖及CAMP较高时

27、Lac阻遏蛋白由D

(A) Z基因编码(B) Y基因编码(C) A基因编码(D) I基因编码(E) 以上都不是

28、色氨酸操纵子(元)调节过程涉及E

(A)转录水平调节(B)转录延长调节(C)转录激活调节D翻译水平调节(E)转录/翻译调节

29、乳糖、阿拉伯糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是D

A与启动子结合B与DNA结合影响模板活性E与操纵基因结合

C与RNA聚合酶结合影响其活性D与蛋白质结合影响该蛋白质结合DNA

30、DNA损伤修复的SOS系统B

A是一种保真性很高的复制过程B LexA蛋白是一系列操纵子的阻遏物

C RecA蛋白是一系列操纵子的阻遏物D它只能修复嘧啶二聚体

31、以下关于cAMP对原核基因转录的调控作用的叙述错误的是D

A cAMP可与分解代谢基因活化蛋白(CAP)结合成复合物

B cAMP-CAP复合物结合在启动子前方C葡萄糖充足时,cAMP水平不高

D葡萄糖和乳糖并存时,细菌优先利用乳糖E葡萄糖和乳糖并存时,细菌优先利用葡萄糖

32、下述关于管家基因表达的描述最确切的是

A 在生物个体的所有细胞中表达

B 在生物个体生命全过程几乎所有细胞中持续表达

C 在生物个体生命全过程部分细胞中持续表达

D 特定环境下,在生物个体生命全过程几乎所有细胞中持续表达。

33、与DNA结合并阻止转录进行的蛋白质称为

A 正调控蛋白

B 反式作用因子

C 诱导物及其相关蛋白

D 阻遏物及其相关蛋白

34 大多数基因表达调控的最基本环节是

A 复制水平

B 转录水平

C 转录起始水平

D 转录后加工水平

35、反式作用因子是指

A 具有激活动能的调节蛋白

B 具有抑制功能的调节蛋白

C 对自身基因具有激活功能的调节蛋白

D 对另一基因具有功能的调节蛋白

36、顺式作用元件是指下述的

A TATA盒和CCAAT盒

B 具有调节功能的DNA序列

C 5’侧翼序列

D 3’侧翼序列

37、以下关于cAMP对原核基因转录的调控作用的叙述错误的是

A cAMP可与分解代谢基因活化蛋白CAP结合成复合物

B cAMP-CAP复合物结合在启动子前方

C葡萄糖充足时,cAMP水平不高

D葡萄糖和乳糖并存时,细菌优先利用乳糖

38、原核基因表达调控的意义是

A 调节生长与分化

B 调节发育与分化

C 调节生长、发育与分化

D 调节代谢,适应环境

39、DNA损伤修复的SOS系统

A是一种保真性很高的复制过程

B LexA蛋白是一系列操纵子的阻遏物

C RecA蛋白是一系列操纵子的阻遏物

D它只能修复嘧啶二聚体

40、Lac阻遏蛋白由

A Z基因编码

B Y基因编码

C A基因编码

D I基因编码

41、有关DNA的变性

A DNA链断裂引起

B 核苷酸之间磷酸二酯键的断裂

C 维持双螺旋稳定的氢键的断裂

D DNA变性后,分子量降低

32-41【参考答案】B D C D B D D B D C

四、简答题

1、证明DNA是遗传物质的两个关键性实验是什么

Avery肺炎链球菌转化实验(R\S\小鼠-证明基因就是DNA 分子)、Hershey和Chase的噬菌体DNA侵染细菌实验

2、什么是DNA重组技术

DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶、DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。

3、比较原核生物和真核生物基因组DNA的特点。

原核生物基因组结构特点

(1)基因组小

(2)结构简练

(3)存在含多顺反子的转录单元

(4)有重叠基因(Sanger 发现)

真核生物基因组结构特点

(1)基因组结构庞大

(2)结构较复杂,含大量重复序列

(3)转录单元为单顺反子

(4)功能DNA序列大多被非功能DNA所隔开(外显子和内含子),即基因有不连续性(5)非编码区多

(6)存在C值矛盾

4、原核、真核生物DNA聚合酶的特性。

原核生物中的DNA聚合酶(大肠杆菌)

聚合酶Ⅰ:主要是对DNA损伤的修复;以及在DNA复制时切除RNA引物并填补其留下的空隙。

聚合酶Ⅱ:修复紫外光引起的DNA损伤

聚合酶Ⅲ:DNA 复制的主要聚合酶,还具有3’-5’外切酶的校对功能,提高DNA复制的保真性

真核生物中的DNA聚合酶

αβγδε

定位细胞核细胞核线粒体细胞核细胞核3‘-5’外切酶活性- - + + +

功能引物合成修复作用线粒体DNA的复制核DNA的复制RNA引物

去掉后把缺口补全

错配修复的过程:一:根据母链甲基化原则找出错配碱基①发现碱基错配②在水解ATP的作用下,MutS,MutL与碱基错配位点的DNA双链结合③MutS—MutL在DNA双链上移动,发现甲基化DNA后由MutH切开非甲基化的子链

二:碱基错配修复过程:当错配碱基位于切口3‘下游端时,在MutL—MutS、解链酶Ⅱ、DNA外切酶Ⅵ或RecJ核酸酶的作用下,从错配碱基3‘下游端开始切除单链DNA 直到原切口,并在Pol Ⅲ和SSB的作用下合成新的子链片段。若错配碱基位于切口的5’上游端,则在DNA外切酶Ⅰ或Ⅹ的作用下,从错配碱基5‘上游端开始切除单链DNA直到原切口,再合成新的子链片段(详见课本p53)

6、比较原核生物和真核生物mRNA的特点。

原核生物mRNA的特征:(1)半衰期短(2)多以多顺反子的形式存在

(3)5’端无“帽子”结构,3’端没有或只有较短的poly(A )结构。

(4)原核生物常以AUG(有时GUG,甚至UUG)作为起始密码子

真核生物mRNA的特征:(1)5’端存在“帽子”结构

(2)多数mRNA 3’端具有poly(A )尾巴(组蛋白除外)

(3)以单顺反子存在(4)而真核生物几乎永远以AUG作为起始密码子。

7、真核生物的原始转录产物需要经过哪些加工才能成为成熟的mRNA

答:(1)、在5’端加帽,5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7Gppp)。

(2)、3’端加尾,多聚腺苷酸尾巴。准确切割,加poly(A)

(3)、RNA的剪接,参与RNA剪接的物质:snRNA、snRNP

(4)、RNA的编辑,编辑(editing)是指转录后的RNA在编码区发生碱基的突变、加入或丢失等现象。

(5.)、RNA的再编码,mRNA有时可以改变原来的编码信息,以不同的方式进行翻译(6.)、RNA的化学修饰,人细胞内rRNA分子上就存在106种甲基化和95种假尿嘧啶产物。

8、原核启动子和真核启动子的构成

原核生物启动子结构:

TATA区(-10区):酶的紧密结合位点(富含AT碱基,利于双链打开)

TTGACA区(-35区):提供了RNA聚合酶全酶识别的信号

●真核生物启动子

(1)核心启动子:定义:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区(TATA 常在-25bp左右,相当于原核的-10序列T85A97T93A85A63A83A50)

`作用:选择正确的转录起始位点,保证精确起始

(2)上游启动子元件:包括CAAT盒(CCAAT)和GC盒(GGGCGG)等(CAAT:-70 - -80bp GGGCGG:-80 - -110bp)

` 作用:控制转录起始频率。

9、遗传密码有哪些特性试述其其摆动性

连续性、简并性、通用性与特殊性、摆动性

转运氨基酸的tRNA上的反密码子需要通过碱基互补与mRNA上的遗传密码子反向配对结合,在密码子与反密码子的配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以“摆动”,这种现象称为密码子的摆动性。(在密码子中,是第三对碱基,在反密码子中,是第一对碱基)

10、肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,每个循环包括哪些步骤

肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,每个循环包括:AA-tRNA与核糖体结合、肽键的生成和移位。

(1)AA-tRNA与核糖体A位点的结合:起始复合物形成以后,第二个AA-tRNA在延伸因子EF-Tu 及GTP的作用下,生成AA-tRNA。EF-Tu。GTP复合物,然后结合到核糖体的A位上。这时GTP被水解释放,通过延伸因子EF-Ts再生GTP,形成EF-Tu。GTP复合物,进入新一轮循环(2)肽键形成:在核糖体。mRNA.。AA-tRNA复合物中,AA-tRNA占据A位,fMet-tRNA*fMet 占据p位。在肽基转移酶的催化下,A位上的AA-tRNA转移到P位,fMet-tRNA*fMet上的氨基酸生成肽键。起始tRNA在完成使命后离开核糖体p位点,A位点准备接受新的AA-tRNA,开始下一轮合成反应

(3)移位:核糖体通过EF-G介导的GTP水解提供的能量向mRNA模板的3‘端移动一个密码子,使二肽酰—tRNA2完全进入P位,准备开始新一轮的肽链延伸。

12、比较PCR 扩增和细胞内DNA 复制的异同。

13、

反应体系。

典型的程序

14、基因敲除技术的基本原理。

基因敲除(gene knock-out )又称基因打靶,通过外源DNA 与染色体DNA 之间的同源重组,进行精确的定点修饰和基因改造,具有专一性强、染色体DNA 可与目的片段共同稳定遗传等特点

基因敲除分为完全基因敲除和条件型基因敲除(又称不完全基因敲除)两种。 完全基因敲除是指通过同源重组法完全消除细胞或者动物个体中的靶基因活性,条件型基因敲除是指通过定位重组系统实现特定时间和空间的基因敲除

15、RNAi 技术的基本原理。

RNAi 技术利用双链小RNA 高效、特异性降解细胞内同源mRNA 从而阻断靶基因表达,使细胞出现靶基因缺失的表型。原理就是,短片段的双链RNA 在体内能在酶(Dicer )及相关复合物(RISC )的作用下,变成单链分子,并与目标基因mRNA 互补,在Dicer 酶作用下,

是mRNA发生剪切,转录受抑制或翻译受到抑制,从而在转录水平或转录后水平干扰基因表达。

16、乳糖操纵子的调控模型。

主要内容:

①Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码

②这个mRNA分子的启动子紧接着操纵区(O区),而位于阻遏基因I与操纵基因O之间的启动子区(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。

③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。

④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。

⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。

四、论述题

1、试述DNA的复制过程

2、试述艾滋病与乙肝难以治愈的原因

3、为什么半乳糖操纵子需要双启动子

半乳糖不仅作为唯一的碳源供细胞生长,而且是大肠杆菌细胞壁合成的前体。在没有外源半乳糖的情况下,细胞通过半乳糖差向异构酶的作用与UDP—葡萄糖合成UDPgal。因为合成细胞壁的过程中对异构酶的需要量很小,本底水平的永久型合成就能够满足生理需要。实际上,gal mRNA的永久型合成水平已高于lac操纵子所合成的lac mRNA的水平,显然这部分mRNA是在没有半乳糖的情况下合成的。

假设只有一个启动子S1,这个启动子的活性依赖于CA MP—CRP,在培养基有葡萄糖存在时可合成异构酶;假如只有一个启动子S2,即使在有葡萄糖存在的情况下,半乳糖也能使操纵子处于充分诱导的状态,这无疑是一种浪费。所以,无论考虑到必要性还是经济性,需要一个不依赖与CA MP—CRP的启动子S2,进行本底水平的永久型合成,也需要一个依赖于CA MP—CRP的启动子S1,进行高水平合成的调节。也就是说,只有在S2活性受到CA MP—CRP抑制时,调控作用才是有效的。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学复习题(有详细标准答案)

分子生物学复习题(有详细答案)

————————————————————————————————作者:————————————————————————————————日期:

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了“脱氧核糖核苷酸的结构”的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

现代分子生物学重点

现代分子生物学 第一章 DNA的发现: 1928年,英国Griffith的体内转化实验 1944年,Avery的体外转化实验 1952年,Hershey和Chase的噬菌体转导实验 分子生物学主要研究内容(p11) DNA的重组技术 基因表达调控研究 生物大分子的结构功能研究——结构分子生物学 基因组,功能基因组与生物信息学研究 第二章 DNA RNA组成 脱氧核糖核酸 A T G C 核糖核酸 A U G C 原核生物DNA的主要特征 ①一般只有一条染色体且带有单拷贝基因; ②整个染色体DNA几乎全部由功能基因与调控序列组成; ③几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 染色体作为遗传物质的特点: (1)分子结构相对稳定(贮存遗传信息) (2)通过自我复制使前后代保持连续性(传递遗传信息) (3)通过指导蛋白质合成控制生物状态(表达遗传信息) (4)引起生物遗传的变异(改变遗传信息) C值以及C值反常 C值单倍体基因组DNA的总量 C值反常C值往往与种系进化的复杂程度不一致,某些低等生物却有较大的C值。如果这些DNA 都是编码蛋白质的功能基因,那么,很难想象在两个相近的物种中,他们的基因数目会 相差100倍,由此推断,许多DNA序列可能不编码蛋白质,是没有生理功能的。 DNA的中度重复序列,高度重复序列 中度各种rRNA,tRNA以及某些结构基因如组蛋白基因都属于这一类 高度卫星DNA 核小体 是由H2A H2B H3 H4 各2分子生成的八聚体和约200bp的DNA构成的,H1在核小体外面。 真核生物基因组的结构特点 ①基因组庞大; ②大量重复序列; ③大部分为非编码序列,90%以上; ④转录产物为单顺反子; ⑤断裂基因; ⑥大量的顺式作用元件; ⑦DNA多态性:SNP和串联重复序列多态性; ⑧端粒(telomere)结构。

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学简介

分子生物学(molecular biology )从分子水平研究作为生命活动主要物质基础的生物大分子结构与功能,从而阐明生命现象本质的科学。 重点研究下述领域: (1)蛋白质(包括酶)的结构和功能。 (2)核酸的结构和功能,包括遗传信息的传递。 (3)生物膜的结构和功能。 (4)生物调控的分子基础。 (5)生物进化。 分子生物学是第二次世界大战后,由生物化学,`遗传学,微生物学,病毒学,结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学。目前分子生物学已发展成生命科学中的带头学科。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA 重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。本世纪50年代以前的生物学研究,虽然有些已进入了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞这些东西之间的相互关系。50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。现在基因工程所展现出的强大生命力和巨大的经济发展潜力完全得益于分子生物学的迅猛发展,而且有证据表明,基因工程的进一步发展仍然要依赖于分子生物学研究的发展。 分子生物学是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学一直是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系和蛋白质-脂质体系。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理

现代分子生物学总结

第一章、基因的结构与功能实体及基因组 1、基因定义 基因(遗传因子)就是遗传的物质基础,就是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,就是具有遗传效应的DNA分子片段,就是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)就是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只就是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA 损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。 3、DNA损伤 DNA损伤就是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不就是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition) 指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。e、双链断裂:对单倍体细胞一个双链断裂就就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)就是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday结构(Holiday Juncture Structure) 的形成与拆分分为三个阶段,即前联会体阶段、联会体形成与Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),就是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以就是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)就是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组就是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)与位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性与高度保守性。 5、碱基错配对修复

现代分子生物学考研复习重点

现代分子生物学考研复习资料整理 第一章绪论 分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学 分子生物学的主要研究内容 1、DNA重组技术 2、基因表达调控研究 3、生物大分子的结构功能研究——结构分子生物学 4、基因组、功能基因组与生物信息学研究 5、DNA的复制转录和翻译 第二章染色体与DNA 半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制 DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制 原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因 真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构 DNA转座(移位)是由可移位因子介导的遗传物质重排现象 DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化 转座子分为插入序列和复合型转座子两大类 环状DNA复制方式:θ型、滚环型和D-环型 第三章生物信息的传递(上)从DNA到RNA 转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程 启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性 原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力 终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列) 终止子的类型:不依赖于ρ因子和依赖于ρ因子 增强子:能增强或促进转录起始的序列 增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具

分子生物学总结

SectionA 1 三个域:真细菌,古细菌,真核生物 2 组装中的主要作用力:非共价健作用力 SectionB 1 蛋白质纯化的分析方法 2

正电荷:天冬氨酸谷氨酸 负电荷:赖氨酸精氨酸组氨酸 极性:天冬酰胺谷氨酰胺苏氨酸丝氨酸半胱氨酸 非极性:脂肪族甘氨酸丙氨酸缬氨酸亮氨酸异亮氨酸甲硫氨酸脯氨酸芳香族苯丙氨酸酪氨酸色氨酸 Cys 二硫键 Gly 无手性 Pro 亚氨基酸 芳香族氨基酸最大吸收峰280mm 3 蛋白质的一级(决定蛋白折叠及其最后的形状的最重要的因素):氨基酸脱水缩合形成肽链N端到C端共价键 二级:多肽链中空间结构邻近的肽链骨架通过氢键形成的特殊结构。 α转角 β螺旋氢键为主要作用力 三级:多肽链中的所有二级结构和其他松散肽链区域(散环结构)通过各种分子间作用力(非共价键为主),弯曲、折叠成具有特定走向的紧密球状构象。 非共价键 四级:许多蛋白分子由多条多肽链(亚基,subunits )构成。组成蛋白的各亚基以各种非共价键作用力为主,结合形成的立体空间结构即为四级结构。非共价键 4 偶极:电子云在极性共价键的两原子间不均匀分布,使共价键两端的原子分别呈现不同的电性 兼性离子:具有正电荷(碱性),又具有负电荷(酸性)的分子 双极性分子:

Section C 1核酸的光学特性: 增色性:一种化合物随着结构的改变对光的吸收能力增加的现象 减色性:一种化合物随着结构的改变对光的吸收能力减少的现象 Reason: 碱基环暴露在环境中的越多,对紫外的吸收力越强 Absorbance(吸收值):Nucleotide > ssDNA/RNA > dsDNA 核酸的最大吸收峰260mm(碱基有芳香环) 芳香族氨基酸最大吸收峰280mm A260/A280: 纯的dsDNA:1.8 纯的RNA:2.0 纯的Protein:0.5 2 Tm 值(熔解温度):热变性时,使得DNA双链解开一半所需要的温度。 Tm=2x(A+T) + 4x(G+C) Tm值与DNA分子的长度,及GC的含量成正比 Annealing(退火):热变性的DNA经过缓慢冷却后复性 快速冷却:Stay as ssDNA 缓慢冷却: 复性成dsDNA 3 脱氧核糖核酸与核糖核苷酸得到画法 4 支持双螺旋结构的两个实验:查戈夫规则X射线晶体衍射 5 双螺旋的内容: 双链之间的关系:DNA分子由两条链组成 双链反向平行(5’3’方向) 两链的碱基通过氢键互补配对,A:T; G:C。 双链序列反向互补 各基团排列方式:糖-磷酸骨架DNA分子排列在外; 碱基对平面相互平行,排列在DNA分子的内部。 空间结构为:右手双螺旋结构 每转一圈~10个碱基对,每一圈长度33.2A 双链螺旋中形成大沟,小沟。 6 碱对DNA的影响:高pH值对DNA的影响比低pH值的要小。 高pH 值(pH>11)会改变碱基构象,使DNA变性(双链解旋,成单链)RNA的影响:高pH值,2’羟基会攻击磷酸二酯键,使其断裂,形成2’,3’-环式磷酸二酯键,从而使RNA分子断裂 7 共价闭合环状DNA (convalently closed circular DNA, cccDNA)。即通过共价键结合形成的封闭环状DNA分子。 8 超螺旋DNA(Supercoil DNA):松弛型双链DNA进一步旋转后,再形成闭环结构时,就会形成DNA超螺旋结构 L=T+W 判断是否为超螺旋正负超螺旋 9 拓扑异构酶:暂时断裂DNA分子中一条或两条单链上的磷酸二酯键,改变DNA分子的连接数及拓扑状态。 功能:消除DNA复制和转录等过程产生的超螺旋。 细胞中,Ⅰ型酶与Ⅱ型酶的活性保持一种平衡状态。Ⅱ型酶的“使DNA超螺旋化”与

现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考 题答案 1 染色体具有哪些作为遗传物质的特征? 1 分子结构相对稳定 2 能够自我复制,使亲子代之间保持连续性 3 能够指导蛋白质的合成,从而控制整个生命过程 4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。 由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。 核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。 核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程 除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。 4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征 DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征? 1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。 2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。 3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义 DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

分子生物学 总结---RNA

反义RNA:(antisense RNA) 参与转录后调控: 细菌响应环境压力(氧化压力、渗透压、温度等)的改变,产生的一些非编码的小RNA分子,能与mRNA中的特定序列配对并改变所配对mRNA分子的构象,导致翻译过程被开启或者关闭,也可能导致目标mRNA分子的快速降解。(例如:细菌铁蛋白用来储存细胞中过剩的铁离子,bfr基因编码铁蛋白,anti-bfr基因编码反义RNA。无论培养基铁离子的高低,bfr基因都正常转录,而anti-bfr基因的转录受到能感受铁离子浓度变化的Fur蛋白的调控。铁离子过多时,Fur蛋白关闭anti-bfr基因,bfr基因正常翻译;而铁离子过低时,anti-bfr基因转录生成大量反义RNA,与bfr的mRNA配对,阻止细菌铁蛋白基因的翻译。) 参与DNA复制调控: 在EolE1质粒DNA的复制完全依靠宿主DNA聚合酶Ⅰ,质粒DNA编码两个负调控因子Rop蛋白和反义RNA(RNA1),他们控制了起始DNA复制所必须的引物合成。RNA1的编码区在引物RNA编码区的5’端,转录方向与引物RNA相反,因此与引物RNA的5’端互补。RNA1通过氢键配对与引物RNA前体相互作用,阻止了RNaseH加工引物前体,使其不能转换为有活性的引物而对复制起负调控作用。RNA1不仅控制质粒的拷贝数,而且决定了质粒的不相容性。RNA1与引物RNA分子的相互作用是可逆的,因此细胞内RNA1的浓度决定了EolE1质粒复制的起始频率。而另一个负调控因子Rop蛋白能提高RNA1与引物前体的相互作用,从而加强了RNA1的负调控作用。 RNA干涉(RNAi) 利用双链小RNA高效、特异性降解细胞内同源mRNA从而阻断靶基因表达,使细胞出现靶基因缺失的表型。

现代分子生物学重点【分子生物学重点】

现代分子生物学重点【分子生物学重点】 名词解释1.Molecularbiology:在分子水平上研究生命现象的科学。通过研究生物大分子的结构、功能和生物合成等方面来阐明各 种生命现象的本质,其主要研究领域包括蛋白质体系、蛋白质-核酸 体系(中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 2.DenaturationofproteinandDNA:蛋白质变性(proteindenaturation)指蛋白质在某些物理和化学因素作用下其 特定的空间构象被改变,从而导致其理化性质的改变和生物活性的 丧失,这种现象称为蛋白质变性。 3.DNA变性(DNAdenaturation)又称DNA融化(DNAmelting),是DNA双螺旋解开成为两条单股长链的过程。在过程中,使两股长 链上的碱基相连的氢键会断裂。DNA的变性可以是温度升高而产生 的作用,也可能是其他化学物质如尿素的诱导。视DNA解开的融化 温度(Tm)是依DNA链的长度,以及特定核苷酸序列的组成形式而定。 3.Southernblotting:Southern印迹杂交是进行基因组DNA特定 序列定位的通用方法。一般利用琼脂糖凝胶电泳分离经限制性内切 酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转 移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再 与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色, 从而检测特定DNA分子的含量。 4.Genecloning:基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然 后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新 组合。因此基因克隆技术又称为分子克隆、基因的无性繁殖、基因 操作、重组DNA技术以及基因工程等。 5.Nicktranslation:缺口翻译法或切口平移法是实验室最常用的一种脱氧核糖核酸探针标记法。利用E.coliDNA多聚酶I的多种酶

相关文档
最新文档