实验报告:遗传算法在解决旅行商问题的应用

实验报告:用遗传算法解决旅行商问题的简单实现

实验目的:编写程序实现用遗传算法解决旅行商问题,研究遗传算法的工作原理和收敛性质。

实验者:

问题描述:TSP是一个具有广泛应用背景和重要理论价值的组合优化难题,TSP问题可以简单的描述为:已知N个城市之间的相互距离.现有一个旅行商必须遍历这N个城市,并且每个城市只能访一次,最后必须返回出发城市。如何安排他对这些城市的访问次序,可使旅行路线的总长度最短?

本次实验的目标问题中国大陆31个大城市的公路旅行商问题,数据来源是《中国大城市公路里程表》(后附)。

需求分析:TSP已经被证明是一个NP—Hard问题,即找不到一种算法能在多项式时间内求得问题的最优解。利用遗传算法,在一定时间内求得近似最优解的可能性比较大。实验目标是:

1)设计用遗传算法解决TSP问题的程序;

2)求出该TSP问题的(近似)最短路程;

3)求得相应的城市遍历序列;

4)检查算法收敛性,求解决该问题的(近似)最优遗传参数。

算法分析:

1.算法基本流程

2.编码策略与初始群体设定

TSP的一般编码策略主要有二进制表示、次序表示、路径表示、矩阵表示和边表示等。而路径编码是最直观的方式,以城市序号作为遗传基因。在本实验中,我们用一个N维向量来表示一个个体,N是城市总数,元素表示城市遍历顺序,以最后一个到达的城市为结束。则群体用一个N * POP的矩阵表示,POP为群体中的人口(个体数)。初始群体在空间中自动生成。

3.适应度函数及结束条件

适应度函数采用题目的目标函数——路径的总路程(包括回到出发点)。适应度越低,个体越优秀。由于暂时无法先验估计收敛性和目标结果,所以以一个参数,最大遗传代数MAXGEN作为程序结束控制。

4.遗传算子设计

遗传算子的设计方法主要有两大类:自然算法和贪心算法。自然算法是以大自然的进化规律为依据,大体采用“优胜劣汰”的机制来进行遗传;贪心算法则是以迅速收敛为目标,对个体进行更严格的选择和遗传处理。

本实验中,为了更好地研究遗传算法的内部原理和收敛性质,我们偏向采用自然算法设计算子。以下是各算子的设计:

选择算子

在遗传个体的选择上,我们先人工保留最优种子,再采用轮盘赌法选择保留一部分个体,用轮盘赌法的理由是在“择优录取”的原则上增加选择的随机性。在轮盘赌过程中,如果按适应度来划分,将导致适应度高的劣质个体被选择的概率更大,于是我们设计了一个变换,用最坏适应度减去该个体的适应度,再进行轮盘赌选择。

另外,为了保持群体的“生命力”,我们在选择的同时又引入随机的新个体,与保留的个体进行“杂交”,产生下一代。

交叉算子

我们采用的是Davis等提出顺序交叉、双亲双子遗传的算法。随机选择两个交叉点A、B(0

变异算子

个体发生变异的概率为参数PMUTATION。当一个个体发生变异时,随机选择序列中一个基因与其相邻基因交换。

其他部分

数据输入为直接读取城市距离矩阵文本,本例中为ctsp.txt;

数据输出格式为:每代的最佳适应度,平均适应度和标准差,最终结果序列和相关参数。文件名galog.txt。

程序结构概要

#define CITYSIZE 31 /* 城市规模*/

#define POPSIZE 100 /* 种群大小*/

#define MAXGENS 20000 /* 最大代数*/

#define PXOVER 0.1 /* 交叉概率*/

#define PMUTATION 0.05 /* 突变概率*/

double citys[CITYSIZE][CITYSIZE]; /* 城市数据*/

void initialize(void); /* 初始化*/

void randpath(genotype >); /* 产生随机路径*/

void evaluate(void); /* 计算适应度*/

void keep_the_best(void); /* 保留最优个体*/

void elitist(void); /* 保留最优个体*/

void swap(int &, int &); /* 交换*/

void select(void); /* 选择*/

void crossover(void); /* 交叉*/

void Xover(int,int); /* 顺序交叉,由crossover()函数调用*/

void mutate(void); /* 突变*/

void report(void); /* 报告,用于输出结果数据*/

测试及参数调整

在程序编写阶段,我们使用了10*10(GADATA),11*11(GADA TA2),和20*20(GADATA3)的矩阵作为测试数据。由于基因太少,数值太小。在此不作讨论。

对于目标题目的数据,我们固定POPSIZE=100,作了针对交叉概率PXOVER和变异概率PMUTA TION 的测试,调整这两个参数,然后看相同MAXGEN = 10000之下的收敛状况。因为有随机性存在,每组参数我们都做3次测试,收敛性好的参数组做5次测试,以保证准确性。实验数据记录于testlog.txt。

最后我们发现,PXOVER = 0.1,PMUTA TION = 0.01,MAXGEN = 20000时所得的解20310km是测试记录中最低的,而且在18000代左右就收敛到该值,比其他参数收敛更快,而且能多次重现,证明这组参数在解决本题目时可作为最佳参数。而20310km是最优解。测试数据分析如图:

遇到的问题

在POPSIZE = 100时,概率为0.05,0.1或是0.2在群体中产生的影响是很小的,但是实验参数的小波动对于实验结果却有很大影响,甚至当MAXGEN = 50000,也无法收敛到接近最优的值,其中的原因涉及遗传算法的一些弱点,仍待深究。

总结

本次实验中,我们实现了用遗传算法解决旅行商问题。实验了遗传算法中算子选择和参数调整对于算法收敛性的影响。

遗传算法在解决TSP问题时体现了以下优越性:

1.模块化结构是遗传算法的先天优越性,对于简单的TSP问题,程序编写难度不大,也可以尝试各种不同的算子设计,寻求更优化的程序。

2.容易测试和调整参数,寻找最优解答。

MATLAB实验报告-遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB教程》试题: A、利用MATLAB设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a c d e f h i k 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 B、设计遗传算法求解f(x)极小值,具体表达式如下: 要求必须使用m函数方式设计程序。 C、利用MATLAB编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D、结合自己的研究方向选择合适的问题,利用MATLAB进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 2 3 4 5 6 8 9 10 11 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i到j的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图由非空点集合和边集合组成,其中 又设的值为,故可表示为一个三元组 则求最短路径的数学模型可以描述为:

TSP问题求解实验报告

TSP问题求解 (一)实验目的 熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。 (二)实验原理 巡回旅行商问题 给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。TSP问题也称为货郎担问题,是一个古老的问题。最早可以追溯到1759年Euler提出的骑士旅行的问题。1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。 TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。借助遗传算法的搜索能力解决TSP问题,是很自然的想法。

基本遗传算法可定义为一个8元组: (SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ) C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法; E ——个体的适应度评价函数; P0——初始群体; M ——群体大小,一般取20—100; Ф——选择算子,SGA使用比例算子; Г——交叉算子,SGA使用单点交叉算子; Ψ——变异算子,SGA使用基本位变异算子; Т——算法终止条件,一般终止进化代数为100—500; 问题的表示 对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。 路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。它在编码,解码,存储过程中相对容易理解和实现。例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3) (三)实验内容 N>=8。

用遗传算法实现PID参数整定

用遗传算法实现PID参数整定 作者:万佑红, 李新华 作者单位:万佑红(南京邮电学院,电子工程系,江苏,南京,210003), 李新华(安徽大学,电子工程系,安徽,合肥,230001) 刊名: 自动化技术与应用 英文刊名:TECHNIQUES OF AUTOMATION AND APPLICATIONS 年,卷(期):2004,23(7) 被引用次数:17次 参考文献(5条) 1.Bennet S Development of the PID controllers 1993(02) 2.张晓缋;方浩;戴冠遗传算法的编码机制研究 1997(02) 3.薛定宇控制系统计算机辅助设计 1996 4.赵洁基于神经网络-遗传算法的双轴运动PID控制[期刊论文]-自动化技术与应用 2003(07) 5.陶永华;尹怡欣;葛芦生新型PID控制及其应用 1998 本文读者也读过(6条) 1.席育凡.曾光.张静刚.XI Yu-fan.ZENG Guang.ZHANG Jing-gang基于改进遗传算法的数字PID参数整定[期刊论文]-西安理工大学学报2006,22(4) 2.陈永红.朱从乔.王基基于自适应在线遗传算法的PID参数整定与优化[会议论文]- 3.李俊丽.张光辉.LI Jun-li.ZHANG Guang-hui鲁棒PID控制器参数整定与仿真[期刊论文]-自动化与仪表 2005,20(3) 4.谢勤岚.陈红基于遗传算法的PID控制器优化设计[期刊论文]-光学与光电技术2003,1(3) 5.宋洪法.靳其兵.赵梅.SONG Hong-fa.JIN Qi-bing.ZHAO Mei基于改进遗传算法的PID参数整定策略[期刊论文]-北京化工大学学报(自然科学版)2005,32(2) 6.陈敏.谭思云.黄玉清.CHEN Min.TAN Si-yun.HUANG Yu-qing遗传算法在PID参数整定中的应用[期刊论文]-仪表技术2010(5) 引证文献(17条) 1.张付祥.付宜利.王树国基于遗传算法的多PID控制器参数整定[期刊论文]-制造业自动化 2005(5) 2.唐锐.文忠波.文广一种基于遗传PID控制的力反馈双向伺服系统研究[期刊论文]-机床与液压 2009(4) 3.刘国联.谭冠政.何燕基于改进人工免疫算法的PID参数优化研究[期刊论文]-计算机工程与应用 2008(19) 4.赵语涛.张健成二次速度调节中的遗传PID控制方法[期刊论文]-液压与气动 2005(10) 5.邓长春.朱儒明.李咏霞.许波一种求解TSP问题的多种群并行遗传算法[期刊论文]-计算机仿真 2008(9) 6.唐锐.文忠波.文广一种基于BP神经网络的模糊PID控制算法研究[期刊论文]-机电产品开发与创新 2008(2) 7.张建平.刘庆滨生物制氢过程实现温度控制的解决方案[期刊论文]-自动化技术与应用 2005(5) 8.董红生基于多点频率特性辨识的自整定 PID控制器的研究[期刊论文]-自动化技术与应用 2005(5) 9.张索峰.李平基于改进粒子群算法的PID参数整定[期刊论文]-工业仪表与自动化装置 2010(2) 10.张俐基于小生境遗传算法的MTSP问题求解[期刊论文]-系统工程 2009(7) 11.吴春富基于遗传算法优化的模糊PID控制研究[期刊论文]-自动化技术与应用 2005(7) 12.乔志杰.程翠翠基于遗传算法优化的模糊PID控制研究及其仿真[期刊论文]-皖西学院学报 2009(5) 13.乔志杰.程翠翠基于遗传算法优化的模糊PID控制研究及其仿真[期刊论文]-安徽电气工程职业技术学院学报

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

遗传算法实验报告(仅供参照)

人工智能实验报告

遗传算法实验报告 一、问题描述 对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。 若遗传操作规定如下: (1)选择概率为100%,选择算法为轮盘赌算法; (2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序; (3)变异几率为0 请编写程序,求取函数在区间[0,30]的最大值。 二、方法原理 遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。 三、实现过程 (1)编码:使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。 (2)生成初始群体:种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。遗传算法以该群体作为初始迭代点; (3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数; (4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比; (5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制

TSP问题的解决方案

《算法设计与分析》实验报告一 学号:姓名: 日期:20161230 得分: 一、实验内容: TSP问题 二、所用算法的基本思想及复杂度分析: 1、蛮力法 1)基本思想 借助矩阵把问题转换为矩阵中点的求解。首先构造距离矩阵,任意节点到自身节点的距离为无穷大。在第一行找到最小项a[1][j],从而跳转到第j行,再找到最小值a[j][k],再到第k行进行查找。。。然后构造各行允许数组row[n]={1,1…1},各列允许数组colable[n]={0,1,1….1},其中1表示允许访问,即该节点未被访问;0表示不允许访问,即该节点已经被访问。如果改行或该列不允许访问,跳过该点访问下一节点。程序再发问最后一个节点前,所访问的行中至少有1个允许访问的节点,依次访问这些节点找到最小的即可;在访问最后一个节点后,再次访问,会返回k=0,即实现访问源节点,得出一条简单回路。 2)复杂度分析 基本语句是访问下一个行列中最小的点,主要操作是求平方,假设有n个点,则计算的次 页脚内容1

数为n^2-n。T(n)=n*(n-1)=O(n^2)。 2、动态规划法 1)基本思想 假设从顶点s出发,令d(i, V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。 推导:(分情况来讨论) ①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的城市3->城市0(0 为起点城市)。此时d(i, V’)=Cis(就是城市i 到城市s 的距离)、 ②如果V’不为空,那么就是对子问题的最优求解。你必须在V’这个城市集合中,尝试每一个, 并求出最优解。 d(i, V’)=min{Cik +d(k, V’-{k})} 注:Cik表示你选择的城市和城市i的距离,d(k, V’-{k})是一个子问题。 综上所述,TSP问题的动态规划方程就出来了: 2)复杂度分析 和蛮力法相比,动态规划求解tsp问题,把原来时间复杂性O(n!)的排列转化为组合问题,从而降低了时间复杂度,但仍需要指数时间。 3、回溯法 1)基本思想 页脚内容2

MATLAB遗传算法作业

MATLAB遗传算法 一:遗传算法简介: 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 二:遗传算法的基本步骤 a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。 b)个体评价:计算群体P(t)中各个个体的适应度。 c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个 体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

d)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。 e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。 群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。 f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。 三:matlab实现 例子:f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023。 1.初始化 initpop.m function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为0或者1 行数(种群数量)为popsize,列数为chromlength(个体所含基因数)的矩阵, 2.计算目标函数值 2.1将二进制数转化为十进制数(1) decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop)%Pop的行和列数 for i=1:px pop2(i)=0 for j=1:py pop2(i)=pop2(i)+2.^(py-j)*pop(i,j) end end 2.2将二进制编码转化为十进制数(2) Decodechrom.m %函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

模拟退火算法的旅行商问题

人工智能原理 实验报告 模拟退火算法解决TSP问题

目录 1 旅行商问题和模拟退火算法........................................... 错误!未定义书签。 旅行商问题................................................................... 错误!未定义书签。 旅行商问题的描述................................................. 错误!未定义书签。 模拟退火算法............................................................... 错误!未定义书签。 基本思想................................................................. 错误!未定义书签。 2 TSP模拟退火算法的实现................................................ 错误!未定义书签。 TSP算法实现............................................................... 错误!未定义书签。 TSP算法描述......................................................... 错误!未定义书签。 TSP算法流程......................................................... 错误!未定义书签。 TSP的C实现 .............................................................. 错误!未定义书签。 加载数据文件......................................................... 错误!未定义书签。 计算总距离的函数................................................. 错误!未定义书签。 交换城市的函数..................................................... 错误!未定义书签。 执行模拟退火的函数............................................. 错误!未定义书签。 实验结果......................................................................... 错误!未定义书签。 小结................................................................................. 错误!未定义书签。3源代码................................................................................ 错误!未定义书签。

实验报告:遗传算法在解决旅行商问题的应用

实验报告:用遗传算法解决旅行商问题的简单实现 实验目的:编写程序实现用遗传算法解决旅行商问题,研究遗传算法的工作原理和收敛性质。 实验者: 问题描述:TSP是一个具有广泛应用背景和重要理论价值的组合优化难题,TSP问题可以简单的描述为:已知N个城市之间的相互距离.现有一个旅行商必须遍历这N个城市,并且每个城市只能访一次,最后必须返回出发城市。如何安排他对这些城市的访问次序,可使旅行路线的总长度最短? 本次实验的目标问题中国大陆31个大城市的公路旅行商问题,数据来源是《中国大城市公路里程表》(后附)。 需求分析:TSP已经被证明是一个NP—Hard问题,即找不到一种算法能在多项式时间内求得问题的最优解。利用遗传算法,在一定时间内求得近似最优解的可能性比较大。实验目标是: 1)设计用遗传算法解决TSP问题的程序; 2)求出该TSP问题的(近似)最短路程; 3)求得相应的城市遍历序列; 4)检查算法收敛性,求解决该问题的(近似)最优遗传参数。 算法分析: 1.算法基本流程

2.编码策略与初始群体设定 TSP的一般编码策略主要有二进制表示、次序表示、路径表示、矩阵表示和边表示等。而路径编码是最直观的方式,以城市序号作为遗传基因。在本实验中,我们用一个N维向量来表示一个个体,N是城市总数,元素表示城市遍历顺序,以最后一个到达的城市为结束。则群体用一个N * POP的矩阵表示,POP为群体中的人口(个体数)。初始群体在空间中自动生成。 3.适应度函数及结束条件 适应度函数采用题目的目标函数——路径的总路程(包括回到出发点)。适应度越低,个体越优秀。由于暂时无法先验估计收敛性和目标结果,所以以一个参数,最大遗传代数MAXGEN作为程序结束控制。 4.遗传算子设计 遗传算子的设计方法主要有两大类:自然算法和贪心算法。自然算法是以大自然的进化规律为依据,大体采用“优胜劣汰”的机制来进行遗传;贪心算法则是以迅速收敛为目标,对个体进行更严格的选择和遗传处理。

遗传算法实验报告17643

信息与管理科学学院计算机科学系 实验报告 课程名称:人工智能 实验名称:遗传算法问题 姓名:苏鹏海贾美丽赵妍张汉昭 学号:1510003063 1510003024 班级:计科实验室:软件技术实验室指导教师:张慧日期: 2016.11.09

&&遗传算法问题 一、实验目的 1.熟悉和掌握遗传算法的原理、实质; 2.学会使用遗传算法解决问题; 3.学会编写遗传算法程序寻找函数最值; 二、实验原理 遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。遗传算法对染色体进行处理,染色体称为基因个体。一定数量的基因个体组成基因种群。种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。 三、实验内容 用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取 j(x)=40/(2+|x*x-2|)-10,由x的取值范围知j的范围是(0,10) x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0, 四、步骤分析 1.选择目标函数,确定变量定义域及编码精度,形成编码方案 2.随机产生一个规模为(即该种群中含有个体)的种群 2 3.个体评价:计算群体P(t)中各个个体适应度 4.选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传 到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建 立在群体中个体的适应度评估基础上的。(选择运算用轮盘赌算法) 5.对被选择进入匹配池中的个体进行交叉操作,形成新种群 6.以小概率在种群中选择个体进行变异操作形成新种群 7.计算每个个体的适值 8.根据适值概率选择新个体形成新种群 9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求 解;否则转3

遗传算法解决TSP问题

遗传算法解决TSP问题 姓名: 学号: 专业:

问题描叙 TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。 通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。 算法设计 遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异。 数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。一定数量的个体组成一个群体。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下: 第一步准备工作 (1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。 (2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。 (3)确定适应值函数f(x)。f(x)应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。 第四步选择

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

[精品文档]旅行商问题

算法设计与分析实验报告实验三旅行商问题 院系: 班级:计算机科学与技术 学号: 姓名: 任课教师: 成绩: 湘潭大学 2016年5月

实验三旅行商问题 一. 实验内容 分别编程实现回溯法和分支限界法求TSP问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。 二.实验目的 1、掌握回溯法和分支限界法解决问题的一般步骤,学会使用回溯法和分支限界法解决实际问题; 2、理解回溯法和分支限界法的异同及各自的适用范围。 三. 算法描述 旅行商问题的回溯法算法可描述如下: Template Class Traveling{ friend Type TSP(int ** , int[],int ,Type); Private; Void Backtrack(int i); Int n, //图G的顶点数 *x; //当前解 *bestx; //当前最优解 Type **a, //图G的邻接矩阵 cc, //当前费用 bestc,//当前最优解 NoEdge; //无边标记 }; Template Void Traveling : : backtrack(int i) {if(i ==n){

if(a[x[n-1]][x[n]]!=NoEdge&&a[x[n]][1]!=NoEdge&& (cc+a[x[n-1]][x[n]]+a[x[n]][1] +a[x[n]][1] Type TSP(Type**a, int v[], int n, Type NoEdge) {Traveling Y; //初始化Y Y.x = new int [n+1]; //置x为单位排列 For(int i = 1;i <= n;i++) Y.x[i] = i; Y.a = a; Y.n = n;

遗传算法解决TSP问题的matlab程序

1.遗传算法解决TSP 问题(附matlab源程序) 2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市 3.只能访问一次,最后又必须返回出发城市。如何安排他对这些城市的访问次序,可使其 4.旅行路线的总长度最短? 5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij) 6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶 7.点且每个顶点只通过一次的具有最短距离的回路。 8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商 9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。 10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中 11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为: 12.min l=σd(t(i),t(i+1)) (i=1,…,n) 13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目 14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法 15.求其近似解。 16.遗传算法: 17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。定义整数pop-size作为染色体的个数 18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。 19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)). 20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中 21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被 22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al 23.pha*(1-alpha).^(i-1) 。[随机规划与模糊规划] 24.选择过程:选择过程是以旋转赌轮pop-size次为基础,每次旋转都为新的种群选择一个 25.染色体。赌轮是按每个染色体的适应度进行选择染色体的。 26.step1 、对每个染色体vi,计算累计概率qi,q0=0;qi=σeval(vj) j=1,…,i;i=1, 27.…pop-size. 28.step2、从区间(0,pop-size)中产生一个随机数r; 29.step3、若qi-1 step4、重复step2和step3共pop-size次,这样可以得到pop-size个复制的染色体。 30.grefenstette编码:由于常规的交叉运算和变异运算会使种群中产生一些无实际意义的 31.染色体,本文采用grefenstette编码《遗传算法原理及应用》可以避免这种情况的出现 32.。所谓的grefenstette编码就是用所选队员在未选(不含淘汰)队员中的位置,如: 33.8 15 2 16 10 7 4 3 11 14 6 12 9 5 18 13 17 1 34.对应: 35.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1。 36.交叉过程:本文采用常规单点交叉。为确定交叉操作的父代,从到pop-size重复以下过 37.程:从[0,1]中产生一个随机数r,如果r 将所选的父代两两组队,随机产生一个位置进行交叉,如: 38.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1 39. 6 12 3 5 6 8 5 6 3 1 8 5 6 3 3 2 1 1 40.交叉后为: 41.8 14 2 13 8 6 3 2 5 1 8 5 6 3 3 2 1 1 42. 6 12 3 5 6 8 5 6 3 7 3 4 3 2 4 2 2 1 43.变异过程:本文采用均匀多点变异。类似交叉操作中选择父代的过程,在r 选择多个染色体vi作为父代。对每一个 选择的父代,随机选择多个位置,使其在每位置

用遗传算法求解Rosenbrock函数最优解实验报告

姓名学号 实验 成绩 华中师范大学计算机科学系 实验报告书 实验题目:用遗传算法求解Rosenbrock函数的最大值问题课程名称:智能计算 主讲教师:沈显君 辅导教师: 课程编号: 班级:2011级 实验时间:2011.11

用遗传算法求解Rosenbrock函数最大值问题 摘要: 本文利用遗传算法研究了求解Rosenbrock函数的最大值问题.在较多的计算机模拟实验结果中表明,用遗传算法可以有效地解决这一问题.文中分析了一种基于遗传算法对Rosenbrock函数最大值问题的求解,得到了适于解决此问题的合理的遗传操作,从而为有效地解决最速下降法所不能实现的某一类函数代化问题提供了一种新的途径.通过对基于遗传算法对Rosenbrock函数最大值问题的求解,进一步理解遗传算法对解决此类问题的思想。 关键词:遗传算法,Rosenbrock函数,函数优化,最速下降法。 Abstract: This paper deals with the maximum of Rosenbrock s function based ongenetic algorithms. The simulated results show that the problem can be solved effectivelyusing genetic algorithms. The influence of some rnodified genetic algorithms on searchspeed is also examined. Some genetic operations suitable to the optimization technique areobtained, therefore, a novel way of solving a class of optimizations of functions that cannot be realized using the method of steepest descent is proposed.Through dealing with the maximum of Rosenbrock s function based ongenetic algorithms,a better understanding of the genetic algorithm to solve such problems thinking. Keyword:ongenetic algorithms,Rosenbrock function,function optimization,Steepest descent method

相关文档
最新文档