语音信号采集与回放系统设计

语音信号采集与回放系统设计
语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

选择依据:速度、存储器、接口 速度要求: A. B. C. D. 8K 采样速率 8K 回访速率 显示刷新速率 按键响应时间
要求在 125us 的时间内完成 AD 转换控制或者是 DA 转换控制,数据的压缩或者 是解压,显示刷新,按键响应。若采用单片机控制,晶振选择 12M,则 125us 可执 行 125 个机器周期,平均约为 62 条指令。基本可满足要求。 存储器要求: 20s 存储时间,20s*8K/s=160K byte 接口要求:AD,DA,存储器,显示、键盘
2. 前级放大模块
前级通道用来将话筒输出的微弱语音信号放大到 ADC 要求的输入模拟信号量化范围内, 并尽可能的减少输入噪声。前级通道中最重要的是信号放大部分,有以下几种实现方案。 方案一:采用差分放大电路,语音信号通过双话筒输入,减少差模输入,降低温漂。 方案二:采用 AGC 自动增益控制电路,控制放大信号范围,使得随着输入语音信号的 大小不同自动调整放大倍数。 方案三:直接放大电路。采用多级可调增益放大电路,第一级主要用于减少噪声干扰, 放大倍数不是很高,第二级为可调增益放大,根据实际语音信号选择放大倍数。采用最普通 的 741 芯片,最通用的反向放大电路。 在实际测试过程中,我们发现从话筒输出的信号在 50mV-100mV 之间,这对于只有几个 mV 的噪声来说,已经具有比较高的信噪比,而不需要采用 a)b)方案。另外,a)方案要求 有两个输入,即要接双话筒,但如果从两个话筒中输出的信号差别不大时,反而减小了信号 幅度,降低了信噪比;b)方案设计电路较为复杂。
3. 带通滤波器
为了避免不必要的干扰和杂波,系统前向通道和后向通道各设计了一个带通滤波器,其 带宽为 300Hz-3.4KHz。此带通滤波器采用一级高通滤波和两级低通滤波构成,由于大部分 干扰和噪声都分布在频谱的高频段, 采用两级低通滤波器能大大增加低通滤波器的性能; 而 对于低频段,其噪声都比较少,采用一级就足够了,这样大大减少了电路的复杂性、降低成 本。上述滤波器都采用二阶有源滤波器,其性能稳定,且幅频特性良好,电路设计简单。 具体设计参数可参考谢自美《电子线路设计实验测试》作为工具书。
4. 模数、数模转换部分
由于语音信号的带宽是 300Hz-3.4kHz,故根据抽样定理至少需要有 6.8k 的采样率,实际 中一般是 8k 的采样率,用 AD0809 就能达到这一要求。 ADC0809 的最大工作频率为 1.28Mhz,也就是转换时间约为 80us,能达到所要求的采样 速率。并且,ADC0809 的字长为 8 位,便于单片机读取。 DA 采用 DAC0832,输出频率设定 8kHz,字长 8 位,电路设计简单实用。

5. 存储器
存储器采用 65256 芯片, 32k 的存储空间.如果不采用任何压缩技术, 即 可以存储并回放 4s 的时间。 若采用插值法或 DPCM 方法可以使存储时间达到 8s。 在存储以及回放的处理过程 中,为了能在 1/8000s=125us 的时间内完成。必须对代码进行最大可能的优化,以减少程序 执行时间。 题目中基本要求存储时间为 10s,发挥部分要求为 20s,都可以通过扩展存储器来实现, 并不是项目设计的关键点。重要的问题是在不增加储存器的情况下,延长存储时间。
6. 编码方案
方案一: 即采即放 PCM 模式, 采用 8kHz 的采样率, 录音时将 0809 的转换数据存入 RAM, 放音时将 RAM 中的值送给 0832 转换,实现直接录、放音,时间可达 4s。 方案二:ADM 编码模式,即自适应增量编码方式,属于改进型的增量编码技术。将八 位存储空间分成 8 份使用, 每个 bit 只用一位码记录前后语音采样值 S(n)、 S(n-1)的比较结果, 若 S(n)>S(n-1),则编码为 “1”, 反之则编码为“0” 。这种技术可将语音的转换数码率由 32 kb/s 降低到 8 kb/s,可大大增加存储时间,但是这种编码模式噪声较大,信号将会有比较严 重失真。 方案三:差分脉冲编码 DPCM 模式,其数学表达式为:
8 e(n) = S (n) A(n 1) 7
(S (n) A(n 1) < 8) (-8 < S (n) A(n 1) ≤ 7) (S (n) A(n 1) > 7)
其中, S ( n ) 表示当前采样值, A( n ) 表示增量的累加值, A( n 1) 作为预测值, e( n ) 表示 差分值,以四位存入 RAM 。 方案四:插值 IV 模式,将采样率改为 4KHz,录音时间增加至 8s。放音频率仍为 8KHz, 但在 RAM 中的每两个数据之间插入它们的平均值再送给 0832,故放音时间也为 8s。 方案一能保证语音清晰,但时间太短,方案三、四的放音时间依次增加,可根据不同的 按键设置不同功能,根据用户按下按键的不同进行相应的录、放音方案,这样可以比较各种 编码方案的优劣。方案二回放的效果比较差,最终没有采用。
三、具体方案设计
系统框图如下图所示:

1. 语音输入和放大
A. 拾音器直接上拉 5V 使用 驻极体话筒(咪头、拾音器)输出电压约几十毫伏,经过射随后进入后级放大。驻极体 话筒的接法如下:
B.
使用 1V 来驱动拾音器(偏方)
实验发现,话筒在基本无声时的电阻为 1.5k 左右。因此采用 1.5k 的电阻与它串联。话 筒在电压为 1V 的电压驱动下声音的波形比较完美。于是我们采用一级运算放大器将 5V 的 电压缩小到 1V。 话筒敏感较高,方向性差。单端放大,平均电压值在零点处上下波动,于是必须用电容 隔去直流。如果直接在话筒输出处用 104 的电容隔去直流,放大后的信号不是很理想。于是 我们先采用 503 的电位器来产生偏置电压, 来平衡无声时直流电压, 放大后再用 104 电容隔

去因波动产生的直流。具体电路如下所示。
2. 语音放大
A. 直接放大器 放大器采用两级放大,以减小噪音,提高信噪比。其电路如下:
B.
差分放大器
差分放大器的电路图如下图,其中增益 Av=[1+(R3+R4)/R]RF/R5 , R1=R2,R3=R4,R5=R6,RF=R7, C1=C2=30PF,C3=C4=100uF, R 用 100k 的电位器使增益可以调节。

3. 滤波器的设计
此带通滤波器由一个低通滤波器和一个高通滤波器级联而成。 每一个低通/高通由两级构 成。 (设计参数参考《电子线路设计实验测试》 ,最好能够用方针软件 multisim 仿真一下) A. 低通滤波器电路图如下
B.
高通滤波器电路图如下

4. 加法器
ADC0809 的参考电压选择+5V,则其采集的电压信号范围是 0 至+5V。 语音信号是双极性信号,可正可负(滤波器输出信号幅值约为±2.5V). 因此有必要加一直流偏置电压(约为+2.5V) ,使语音信号变为单极性信号(0 至+5V) , 保证 ADC0809 采样有效. 同时前面的放大和滤波电路应尽量将信号变化范围控制再 5V 稍小一些。保证其有一定 的采样精度。 反相加法器由一片集成运放 741 构成,具体电路入图。也可采用同相加法器。
5. 功率放大器
经带通滤波器的音频信号需要用到喇叭外放, 故本系统增加了外放功能。 前端放大器采 用通用型的音频功率放大器 LM386 来完成。 电路如下, 该电路的增益为 50~200 倍连续可调, 增益由 R1,R2 控制输出端接 R3,C4 串联电路,以校正喇叭的频率特性,防止高频自激。 脚 7 接 110Uf 去耦电容,以消除低频自激。为了便于该功放在高增益的情况下工作,将不使 用的输入端脚 2 对地短路。
6. AD 转换器 ADC0809 电路原理图

CLK START OE IN
10 6 9 26 27 28 1 2 3 4 5 25 24 23 22 13
CLK START OE IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7 ADD A ADD B ADD C ALE GND ADC0809
VCC
11
+5 DATA
D0 D1 D2 D3 D4 D5 D6 D7 EOC REF+ REF-
17 14 15 8 18 19 20 21 7 12 16 EOC +5
ADD A ADD B ADD C ALE
7. DA 转换器 DAC0800 电路原理图
+12 DATA 0.1uF C2 1 5 6 7 8 9 10 11 12 3 C3 0.1uF -12 VLC B1 B2 B3 B4 B5 B6 B7 B8 VEE DAC0800 VDD IOUT IOUT VREFVREF+ COMP 13 4 2 15 14 16 C1 0.1uF 4.7kΩ R2 R3 4.7kΩ +5 +12 2 6 3 R1 4.7kΩ -12 4 OUTPUT R4 +12 7 AD811
1, 5, 8
4.7kΩ
四、设计阶段划分 题目分析 1、最经典的电子系统之一,设计了电子系统设计的各个方面。

2、设计指标相对现在不是太高,容易入手,可发挥性强, 趣味性强。 非常适合作为电子系统设计的入门项目。 3、系统中许多部分可以发挥的余地很大,扩展性很强,可深入音频 信号分析等各方面研究,引导培训者继续开展其他项目。
设计阶段划分原则 按难度,分层次的展开项目设计。 先完成功能,再追求指标。
时间 1周
阶段 单片机最小系统
内容 掌握单片机基本操作和调试方法 掌握存储器操作 理解单片机扩展技术
1周
基于最小系统的 AD、DA 设计
在单片机总线上扩展 AD、DA 理解 AD 采样的过程及相关的设计指标 采样直流和交流信号数据并进行存储 将采样的数据通过 DA 输出并借助示波器观 察

2周
模拟信号调理
射级跟随器、放大器、滤波器、加法器等模 拟电路设计 以验证为主要手段,实现功能为目的。
1周
压缩算法
尝试各种压缩算法 能根据压缩后的数据来判断压缩算法的效 果
扩展设计
n 一个前向通道方案
话筒的输出阻抗不可忽略,故放大前必须进行隔离,并尽量减小信号输出阻抗。本电路 采用射随隔离电路。 从话筒输出的电压峰-峰值约为几百毫伏, 因此只需要将信号放大几倍, 使其峰-峰值达到 5V 左右即可。采用多级放大,减少噪声干扰。在加法器两输入端及 A/D 输 入端均加上射随隔离,电路参数设计如图二所示。
图二
前级模拟输入电路

基于dsp的语音信号采集与回放系统的设计--开题报告

HEFEI UNIVERSITY 课程设计开题报告 题目:《基于DSP系统的语音采集与回放系统》 专业:11 级电子信息工程 姓名:章健吴广岭何志刚 学号:1105011029 1105011030 1105011044 指导老师:汪济洲老师 完成时间:2014年12月1日

一、开题报告题目 基于DSP系统的语音采集与回放系统。 二、研究背景与意义 语音处理是数字信号处理最活跃的研究方向之一,它是信息高速公路、多媒体技术、办公自动化、现代通信及职能系统等新兴领域应用的核心技术之一。用数字化的方法进行语音的传送、存储、分析、识别、合成、增强等是整个数字化通信网中的最重要、最基本的组成部分之一。一个完备的语音信号处理系统不但要具有语音信号的采集和回放功能, 还要能够进行复杂的语音信号分析和处理。通常这些信号处理算法的运算量很大, 而且又要满足实时的快速高效处理要求, 随着DSP 技术的发展, 以DSP 为内核的 设备越来越多。为语音信号的处理提供了优质可靠的平台. 软件编程的灵活性给很多设备增加不同的功能提供了方便, 利用软件在已有的硬件平台上实现不同的功能已成为 一种趋势。近年来,随着DSP的功能日益增强,性能价格比不断上升,开发手段不断改进,DSP在数据采集系统的应用也在不断完善。 三、主要内容与目标 随着计算机多媒体技术,网络通信技术和DSP(Digital Signal Processor)技术的飞速发展,语音的数字通信得到越来越多的应用,语音信号的数字化一直是通信发展的主要方向之一,语音的数字通信和模拟通信相比,无疑有着更大的优越性,这主要体现在以下几个方面:数字语音比模拟语音具有更好的话音质量;具有更强的干扰性,并易于加密;可节省带宽,能更有效的利用网络资源;更加易于存储和处理。最简单的数字化就是直接对原始语音信号进行A/D 转换,但这样得到的语音的数据量非常大。为了减少语音信号所占用的带宽或存储空间,就必须对数字语音信号进行压缩编码。语音编码的目的就在于在保证语音音质和可懂度的条件下,采用尽可能少的比特数来表示语音,即尽可能的降低编码比特率,以便在有限的传输带宽内让出更多的信道来传输图像和其他数据流,从而达到传输资源的有效利用和网络容量的提高。在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动通信、IP 电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。 语音信号处理在手持设备、移动设备和无线个人设备中的应用正在不断增加。今天的个人手持设备语音大多时候仅仅局限于语音拨号,但是已经出现了适用于更广泛开发语音识别和文本到语音应用的技术。语音功能为用户提供自然的输入和输出方式,它比其他形式的I/O更安全,尤其是当用户在开车期间。在大多数应用中,语音都是键盘和显示器的理想补充。其他潜在的语音应用包括如下几个方面。 (1)语音电子邮件。包括浏览邮箱、利用语音输入写电子邮件以及收听电子邮件的读出。 (2)信息检索。股票价格、标题新闻、航班信息、天气预报等都可以通过语音从互联网收听。例如,用户不用先进入某个网址并输入股票名字或者浏览预定义列表,可以通过语音命令实现。 (3)个人信息管理。允许用户通过语音指定预约、查看日历、添加联络信息等等。 (4)语音浏览。利用语音程序菜单,用户可以在网上冲浪、添加语音收藏夹并收听网页内容的读出。 (5)语音导航。在自动和人眼不够用的条件下获取导航的完全语音输入/输出驾驶

语音信号采集与处理系统的设计

音频信号采样及处理系统方案设计 姓名:杨宁 学号: 专业:电子信息工程 学院:电子工程学院 指导老师:那彦

目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13 3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20

摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP及A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

信号采集与处理--MATLAB窗函数及其特征

信号采集与处理 MATLAB 窗函数及其特征 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。 5.3 广义余弦窗 汉宁窗、海明窗和布莱克曼窗,都可以用一种通用的形式表示,这就是广义余弦窗。这些窗都是广义余弦窗的特例,汉宁窗又被称为余弦平方窗或升余弦窗,海明窗又被称为改进的升余弦窗,而布莱克曼窗又被称为二阶升余弦窗。采用这些窗可以有效地降低旁瓣的高度,但是同时会增加主瓣的宽度。这些窗都是频率为0、2π/(N–1)和4π/(N–1)的余弦曲线的合成,其中N为窗的长度。通常采用下面的命令来生成这些窗: Ind=(0:N-1)*2*pi/(N-1) Window=A-B*cos(ind)+C*cos(2*ind) 其中,A、B、C适用于自己定义的常数。根据它们取值的不同,可以形成不同的窗函数,分别是:●汉宁窗A=0.5,B=0.5,C=0;●海明窗A=0.54,B=0.54,C=0;●布莱克曼窗A=0.5,B=0.5,C=0.08;

基于matlab的语音信号的采集与处理

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 目录 第1章前言 ................................................................................................... 错误!未定义书签。第2章语音信号分析处理的目的和要求 ................................................... 错误!未定义书签。 2.1MATLAB软件功能简介................................................................. 错误!未定义书签。 2.2课程设计意义 .................................................................................. 错误!未定义书签。第3章语音信号的仿真原理..................................................................... 错误!未定义书签。第4章语音信号的具体实现..................................................................... 错误!未定义书签。 4.1语音信号的采集................................................................................ 错误!未定义书签。 4.2语音信号加噪与频谱分析................................................................ 错误!未定义书签。 4.3设计巴特沃斯低通滤波器................................................................ 错误!未定义书签。 4.4用滤波器对加噪语音滤波................................................................ 错误!未定义书签。 4.5比较滤波前后语音信号波形及频谱................................................ 错误!未定义书签。第5章总结................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录................................................................................................................. 错误!未定义书签。

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

语音信号采集与回放系统

电子与信息工程学院 综合实验课程报告 课题名称 语音采集及回放系统设计 专 业 电子信息工程 班 级 07电子2班 学生姓名 Y Y Y 学 号 07002 指导教师 X X X 2010年 7月 5日

1 总体设计方案介绍: 1.1语音编码方案: 人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。但要将之运用于单片机,显然信号波形表示法相对简单易实现。基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。结合实际情况,提出以下几种可实现的方案。 (1)短时平均跨零记数法该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。但对于单片机,由于处理数据能力底,该方法不易实现。 (2)实时副值采样法采样过程如图2.1所示。 图2.1 采样过程 具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。其中第三种实现方法最具特色,该方法可使数据压1:4.5,既有M ?调制的优点,又同时兼有PCM编码误差较小的优点,编码误差不向后扩散。 1.2 A/D、D/A及存储芯片的选择 单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。在放音时,只要依原先的采样直经D/ A 接口处理,便可使原音重现。 (1)A/D转换芯片的选择根据题目要求采样频率f s=8K H Z,字长=8位, 可选择转换时间不超过125s的八位A/D转换芯片。目前常用的A/D转换实现的

语音信号的采集和播放

语音信号的采集和播放 随着数字信号处理算法在DSP上的实现,基于DSP处理器的语音处理也得到了更广泛的应用。语音信号具有随机性强、应用广泛和实时性要求高等特点。DSP较其他类型处理器处理速度快、运算能力强的特点使它在语音处理方面的应用优势显著。语音信号的处理包括信号采集、处理、传输、存储和播放等一系列过程。其中,语音信号的采集、传输和播放属于语音信号的控制,满足一般的标准操作即可;而语音信号的处理和存储与应用类型有很大的联系,不同的应用要求的处理和存储算法也不一样。 语音信号的采集和播放是语音信号处理的基础,在基于DSP的语音处理系统中,DSP通过控制APD芯片采集和播放语音信号,再通过DSP实现各种语音处理算法。在TI各个系列DSP芯片中,16位的C54XX因其指令简单、接口连接方便而在语音处理系统中得到广泛应用。 1 实现目标 系统要求使用DSP和APD芯片实现语音信号的采集,然后将语音信号存储到DSP的RAM中,最后实现语音信号的播放。 2 硬件实现 2.1 解决思路 系统采用的主处理器是TMS320VC5402,利用芯片提供的多通道缓冲串口McBSP实现与APD芯片的连接。

系统采用的TLC320AD50的APD芯片采集和播放语音信号。AD50使用过采样技术提供APD和DPA的高分辨率低速信号转换。该器件包括两个串行的转换通道,在DPA之前有内插滤波器,APD 之后有抽取滤波器,由此可以降低AD50的本底噪声。在AD50正常工作以前,必须对它进行初始化。初始化的主要工作是配置AD50的四个控制寄存器CR1,CR2,CR3和CR4。控制寄存器的读写是通过二次通信来实现的。AD50启动二次通信有硬件和软件两种方式,硬件方式相对容易实现,DSP通过内部寄存器将XF引脚置高,进而控制与其连接的FC引脚到高,然后向McBSP串口写16位的控制字,低8位是AD50的控制寄存器初始化字,高8位选择要初始化的寄存器及操作。软件方式则是当AD50工作于15位模式时,将DSP输出到AD50的数据的D0位置1,即可进行二次通信。系统采用的是硬件实现的方式,在二次通信中,D0~D7为写入控制寄存器的数据或从寄存器读出的数据,D8~D12的内容决定选择哪个控制寄存器,D13决定是读操作还是写操作。D8~D13位确定的具体操作情况如表1所示。 表1 D8~D13位确定的具体操作情况

语音信号采集与处理系统的设计

音频信号采样与处理系统方案设计 目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13

3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20 摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

信号采集与回放系统

信号采集与回放系统 技术报告 电信082班084775240 周霞 (合作者:电信082班084775228 吴迪) 指导教师:倪海燕 2010-5-27

摘要:本设计通过A/D转换和D/A转换实现输入信号与输出信号的变化。通过实验箱上的模式3的ADC输入正弦波信号,设计按键选择,有3种模式分别是直接回放,单次回放,循环回放和定点回放。 关键字:信号回放模式选择 一、实验要求 1. 实现输入,存储,回放信号 2. 回放模式选择(直接回放,单次波形回放,循环回放,分段存储定点回放等) 二、总原理图 三、系统总体方案设计 根据实验要求,TLC5510A 是采样率最高为20MHz的8位并行高速ADC ,FPGA的PIO48输出信号控制ADC1的输出使能信号OE(低电平有效);PIO15为转换时钟信号CLK;AD转换结果送至PIO16~PIO23,并且同时显示在数码管1和数码管2上。ADC的模拟信号输入端在实验箱的左侧,允许输入0~5V的信号。 转换关系:DATA=255×Ain/5

数据从采集到转换结束需要两个半时钟周期 四、软件电路的设计 4.1控制器的设计 用VHDL语言编写控制器的程序,要有读写使能和模式选择。用choose[2]的四个状态分别表示直接回放,单次回放,循环回放和定点回放。 程序如下: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity control is port ( clk:in std_logic; --时钟 writ:in std_logic; --读写使能 en:in std_logic; --使能 choose:in std_logic_vector(1 downto 0); --模式选择 ch:in std_logic_vector(1 downto 0); --阶段选择 enout:out std_logic; --读写使能输出 adr:out std_logic_vector(9 downto 0) ); --地址 end entity control; architecture behave of control is signal count1:std_logic_vector(9 downto 0); signal count11:std_logic_vector(9 downto 0); signal count2:std_logic_vector(9 downto 0); signal count22:std_logic_vector(9 downto 0); begin process(writ,en,ch,choose) begin if(en='1')then count1<="0000000000";count11<="0000000000"; count2<="0000000000";count22<="0000000000"; elsif (clk'event and clk='1')then if(choose="01")then ---- 单次回放

语音信号的采集和频谱分析

语音信号的采集和频谱分析: [y,fs,bits]=wavread('voice'); %读取音频信息(双声道,16位,频率44100Hz)sound(y,fs,bits); %回放该音频 Y=fft(y,4096); %进行傅立叶变换 subplot(211); plot(y); title('声音信号的波形'); subplot(212) plot(abs(Y)); title('声音信号的频谱'); 窗函数设计低通滤波器: fp=1000; fc=1200; as=100; ap=1; fs=22000; wp=2*fp/fs; wc=2*fc/fs; N=ceil((as-7.95)/(14.36*(wc-wp)/2))+1; beta=0.1102*(as-8.7); window=Kaiser(N+1,beta); b=fir1(N,wc,window); freqz(b,1,512,fs); 结果: 滤波: [y,fs,bits]=wavread('voice'); d=filter(b,a,y); D=fft(d); subplot(211) plot(d); title('滤波后的声音波形') subplot(212) plot(abs(D)) title('滤波后的声音频谱') 回放: sound(d,fs,bits) 与滤波之前相比,噪音明显降低了许多。

过零率的计算要用下面的代码: zcr = zeros(size(y,1)1); delta= 0.02; for i=1:size(y,1) x=y(i,:); for j=1;length(x)-1 if x(j)*x(j+1)<0 &abs(x(j)-x(j+1))>delta zcr(i)=zcr(i)+1; end end end 其中设置了门限delta=0.02。这是个经验值,可以进行细微的调整。在此条件下可以得到如图所示的过零率波形。与过零率曲线画在一起的是原始的语音信号波形,可以看到,语音信号音母部分的幅度比较低,但是其过零率的数值却很高,峰值将近50,而后面的韵母部分过零率则比较低,在20左右。 加矩形窗的短时能量函数: a=wavread('F:\WO.wav'); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1, (i-1)*N);%形成一个矩形窗,长度为N En=conv(h,a.*a);%求卷积得其短时能量函数En subplot(6,1,i),plot(En); if(i==2) legend('N=32'); elseif(i==3) legend('N=64'); elseif(i==4) legend('N=128'); elseif(i==5) legend('N=256'); elseif(i==6) legend('N=512'); end end 加hamming窗的短时能量函数: 把h=linspace(1,1, (i-1)*N); 改为h1=hamming((i-1)*N); 加矩形窗的短时平均幅度: a=wavread('F:\WO.wav'); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,(i-1)*N);%形成一个矩形窗,长度为N En=conv(h,abs(a));%求卷积得其短时能量函数En subplot(6,1,i),plot(En); if(i==2) legend('N=32'); elseif(i==3) legend('N=64');

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

STM32 波形采集、存储与回放

波形采集、存储与回放系统设计 摘要 本设计是基于数字示波器的原理,以STM32-cortex-m3作为控制芯片,把波形采集分为A、B两个通道,对A通道的输入信号进行衰减,对B通道的输入信号进行放大,然后采用内部集成的高速AD对信号进行实时采样,方式为上升沿内触发,可以实现波形的单次和多次触发存储和回放显示,以及频率、周期、峰-峰值的测量和显示,并具有掉电存储功能。由信号采集、数据处理、波形显示,控制面板等功能模块组成,整个系统分成A/D转换部分、D/A转换部分、波形存储部分、键盘输入控制四大部分,系统操作简便,输出波形可以在示波器输出显示,此存储示波器即具有一般示波器实时采样实时显示的功能,又可以对某段波形进行即时存储和连续回放显示,且界面友好,达到了较好的性能指标。具体设计原理以及过程在下面章节中详细说明。 关键字:STM32、波形采集、波形存储、波形回放

Abstract The design is based on the principle of digital oscilloscope, with STM32-cortex-m3 as the control chip, the waveform acquisition is divided into A, B two channel, the A channel input signal attenuation on B channel, the input signal is amplified, then using the internal integration of high-speed AD on real time data sampling, as rising edge trigger, can achieve waveform of single and multiple triggers the storage and playback and display, frequency, cycle, peak to peak value measurement and display, and power failure memory function. The signal acquisition, data processing, waveform display, the control panel and other functional modules, the system is divided into A/D transformation, D/A converting part, waveform storage, keyboard input control system four parts, simple operation, the output waveform can be output in the oscilloscope display, this storage oscilloscope namely has the common oscilloscope real-time sampling real time display function, can be a real-time storage and continuous playback waveform display, and friendly interface, has achieved good performance. The design principle and process are described in detail in the following sections. Keywords: STM32, waveform acquisition, storage, waveform waveform playback

数据采集与处理技术

数据采集与处理技术 参考书目: 1.数据采集与处理技术马明建周长城西安交通大学出版社 2.数据采集技术沈兰荪中国科学技术大学出版社 3.高速数据采集系统的原理与应用沈兰荪人民邮电出版社 第一章绪论 数据采集技术(Data Acquisition)是信息科学的一个重要分支,它研究信息数据的采集、存贮、处理以及控制等作业。在智能仪器、信号处理以及工业自动控制等领域,都存在着数据的测量与控制问题。将外部世界存在的温度、压力、流量、位移以及角度等模拟量(Analog Signal)转换为数字信号(Digital Signal), 在收集到计算机并进一步予以显示、处理、传输与记录这一过程,即称为“数据采集”。相应的系统即为数据采集系统(Data Acquisition System,简称DAS)数据采集技术以在雷达、通信、水声、遥感、地质勘探、震动工程、无损检测、语声处理、智能仪器、工业自动控制以及生物医学工程等领域有着广泛的应用。 1.1 数据采集的意义和任务 数据采集是指将温度、压力、流量、位移等模拟量采集、转换为数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 数据采集系统的任务:采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机,根据不同的需要由计算机进行相应的计算和处理,得出所需的数据。与此同时,将计算得到的数据进行显示或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的好坏,主要取决于精度和速度。 1.2 数据采集系统的基本功能 1.数据采集:采样周期

相关文档
最新文档