例析三角函数中“1”的代换

例析三角函数中“1”的代换
例析三角函数中“1”的代换

例析三角函数中“1”的代换

石阡县第三高中 张军

三角函数是中学数学教材中一种重要的函数,它又是研究其他各类知识的重要工具。凡是与三角函数有关的问题,都以恒等变形为研究手段。三角式的变形,包括三角式的化简、求三角式的值、证明恒等式和三角不等式等内容。特别是三角式的求值、化简是三角函数的重要内容。在三角函数中,“1”的代换有:βαcot tan 1?=,αα22cos sin 1+=, 45tan 1=,1cos sec =?αα,1sin csc =?αα等等。在具体的三角变换过程中,常根据题目不同特征选择不同的变换方式,若能把常数“1”恰当处理并灵活运用常会有意想不到的惊喜。下面举例说明。

例1、 已知

11

tan tan -=-αα

,求2cos sin sin 2++ααα的值。

分析:本题若常规思想,可由已知先求出αtan ,再由同角三角函数关系求得αsin 和αcos ,进而求出关系式的值,这种思想简单直接,但运用起来却很繁琐、费力,若借助题目条件的特殊性整体考虑,将

“αααcos sin sin 2+”的分母“1”看做αα2

2cos sin +直接转化为tan α的关系式求解救容易多了。

解:由已知得2

1tan =α。

2

cos sin sin 2++ααα

5132121212121tan tan tan 2cos sin cos sin sin 2

2

22222=++??

?

??+?

?? ??=+++=+++=αααααααα 评析:对形如ααcos sin b a +,αααα22cos cos sin sin c b a ++的式子称为关于αsin 、αcos 的齐次式,对涉及他们的三角式通常利用整体考

虑的方法求解,使其转化为只含有正切的式子。

例2 证明: αααα2222sin tan sin tan =-

分析:本题可以由左证到右,或者由右证到左。无论哪种方式都需要利用“1”的代换,下面我们一起来看看这两种方式,自己来体会。

解:方法一(由右到左)

右边=()ααααα22222cos tan tan cos 1tan -=-

=αααα

α

α222222

sin tan cos cos sin tan -=-=左边

因此 αααα2222sin tan sin tan =-

方法二(由左到右)

左边=()

1sec sin 1cos 1sin sin cos sin 2

22

2222-=??? ??-=-ααααααα ==αα22tan sin 右边

因此αααα2222sin tan sin tan =-

例3、求函数()x

x

x x x x f 2sin 2cos sin cos sin 2244-++=的最小正周期、最大

值和最小值。

分析:由所给式子x x x x 2244cos sin cos sin ++可联想()2

22cos sin 1x x +=。

解 ()()

x x x

x x x x f cos sin 22cos sin cos sin 222

22

--+=

()()2

12sin 41cos sin 121

cos sin 12cos sin 122+=+=--=

x x x x x x x

所以函数f(x)的最小正周期是π,最大值是43最小值是4

1。

例4、化简x

x x

x 6644sin cos 1sin cos 1----

分析:所给三角函数式分子、分母次数都较高,应将高次项化去,可考虑将x x 44sin cos +配方利用1cos sin 22=+x x ,达到将次的目的,对x x 66cos sin +变形为

()()()()x x x x x x x x 4224223

232cos cos sin sin cos sin cos sin +-?+=+……

去“降次”;或将分子中的“1”换为()2

22cos sin x x +将分母中的“1”

换成()3

22cos sin x x +,展开消去高次项,下面用后一种思路化简。

解:原式=()()()3

2

cos sin sin cos 3sin cos 2sin cos cos sin

cos sin cos sin

22222

2

66322

442

22=

+=

--+--+x x x x x x x

x x x x

x x x

评注:()()Z n x x x x n

∈+=+=2222cos sin cos sin 1,“1”的代换在三角函数的变形中有着广泛的应用,还可用于降幂、升幂。

“1”的代换应用是一个重要内容,利用它能使运算由繁变简,提高解题速度,但是这种题变换万千,要想能灵活解决还需要积累解题经验,参透其中的奥秘。

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》分类汇编附解析

【最新】数学《三角函数与解三角形》复习资料 一、选择题 1.设函数())cos(2)f x x x ??=+++(||)2 π ?<,且其图像关于直线0x =对 称,则( ) A .()y f x =的最小正周期为π,且在(0,)2 π 上为增函数 B .()y f x =的最小正周期为 2π,且在(0,)4 π 上为增函数 C .()y f x =的最小正周期为π,且在(0,)2 π 上为减函数 D .()y f x =的最小正周期为2π,且在(0,)4 π 上为减函数 【答案】C 【解析】 试题分析:())cos(2)f x x x ??=+++2sin(2)6 x π ?=++,∵函数图像关于直 线0x =对称, ∴函数()f x 为偶函数,∴3 π ?=,∴()2cos 2f x x =,∴22 T π π= =, ∵02 x π << ,∴02x π<<,∴函数()f x 在(0, )2 π 上为减函数. 考点:1.三角函数式的化简;2.三角函数的奇偶性;3.三角函数的周期;4.三角函数的单调性. 2.已知函数sin(),0 ()cos(),0 x a x f x x b x +≤?=?+>?的图像关于y 轴对称,则sin y x =的图像向左平移 ( )个单位,可以得到cos()y x a b =++的图像( ). A . 4 π B . 3 π C . 2 π D .π 【答案】D 【解析】 【分析】 根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】 因为函数()()(),0 ,0 sin x a x f x cos x b x ?+≤?=?+>??的图像关于y 轴对称,所以

《三角函数的应用》综合练习1(视角、方位角)

三角函数的应用(视角、方位角) ◆随堂检测 1、若从A点看B点时,B点在A点的北偏东35°的方向上,那么从B点看A点时,A 点在B点的________. 2、如图1,在离铁塔140m的A处,用测角仪测量塔顶的仰角为30°,?已知测角仪高AD=1.5m,则塔高BE=_________(根号保留). (图1) (图2) (图3) 3、如图2,从树顶A望地面上的C,D两点,测得它们的俯角分别是45°和30°,?已知CD=200m,点C在BD上,则树高AB等于(). A.200m B.C.D.100)m 4、如图3,已知楼房AB高为50m,铁塔塔基距楼房基间的水平距离BD?为100m,? 塔高CD m,则下面结论中正确的是(). A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60° C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30° 5、轮船航行到C处时,观测到小岛B的方向是北偏西65°,那么同时从B?处观测到轮船的方向是(). A.南偏西65°B.东偏西65°C.南偏东65°D.西偏东65° ◆典例分析 《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70km/h”,一辆小汽车在一条城市街道上由西向东行驶,在距路边25m处有“车速检测仪O”,测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5s.(1)试求该车从A点到B点的平均速度;(2)试说明该车是否超过限速. 解:(1)在Rt△AOC中,AC=OC·tan∠AOC=25×tan60°, 在Rt△BOC中,BC=OC.tan∠BOC=25×tan30°= 3m, ∴AB=AC-BC= 3 (m).

三角函数中1的妙用

三角函数中“1”的妙用 宁夏银川市高级中学 王波 750004 在我们学习三角函数这一部分内容的时候,我们会发现经常会与“1”有些合作,下面我就自己在教学中,利用“1”进行解题的体会与大家共同探讨。 理论一:sin 2α+cos 2α=1 应用举例 例1. 已知α是第一象限角,化简下式 ααcos sin 21+ 解析:对于根式的化简,思路主要是去根号,而对这个题目首先要考虑根式下的ααcos sin 21+是否能够配成完全平方式,沿着这个思路我们可以联想到221b a +=,自然会想到ααcos sin 21+=αα22cos sin ++ααcos sin 2,到此时解题思路豁然开朗 解:ααcos s in 21+=ααααcos sin 2cos sin 22++ =2)cos (sin αα+ =ααcos sin + ∵α是第一象限角∴0cos ,0sin >>αα ∴ααcos sin 21+=ααcos sin + 例2:已知3tan =α,求ααcos sin 的值 解析:这道题目是一个齐次式,这类题目的特点是已知角α的正切值,求含有正弦和余弦的三角多项式的值,解题的方法是化弦为切,而这道题目要用化弦为切有困难,所以我们就要观察它的特点,没有分母是它无法直接利用传统方法解题。我们发现ααcos sin 的分母 是1,而1=αα22cos sin +,这样题目就迎刃而解了 解:∵3tan =α ∵

ααcos sin =1cos sin αα=αααα22cos sin cos sin +=α αααcos sin cos sin 122+=ααtan 1tan 1+ ∴ααcos sin =3 131+=103 理论二:14tan =π(145tan 0=) 应用举例 例3:求值0 15tan 115tan 1-+ 解析:题目的形式是分式,联想到两角和的正切公式,而两角和的正切公式)tan(βα+=β αβαtan tan 1tan tan -+与题目给出的形式有区别,这时我们观察到公式中的αtan 与题目中1的位置相同,则自然会想到令1=tan450,后面的问题自然容易解决 解:0015tan 115tan 1-+=000 015 tan 45tan 115tan 45tan -+=)1545tan(00+=3 理论三:形如θθcos sin b a +的三角函数式的化简与求最值问题 θθcos sin b a +=)cos sin (222222θθb a b b a a b a ++++ ∵1)()(222222=+++b a b b a a ∴可以联想到1cos sin 22=+?? 则由此可设 ?cos 22=+b a a ,?sin 22=+b a b 或设?s in 22=+b a a ,?cos 22=+b a b

全国高考数学“三角函数”试题分析小结

全国高考数学“三角函数”试题分析小结 一、客观题重基础,有关三角函数的小题其考查重点是三角函数的概念、图象与图象变换、定义域与值域、三角函数的性质和三角函数的化简与求值. 【例1】 (2007年四川)下面有五个命题: ①函数y =sin 4x -cos 4 x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是①④((写出所有真命题的编号)) 解答:①4 4 2 2 sin cos sin cos 2y x x x x cos x =-=-=-,正确;②错误;③sin y x =,tan y x =和y x =在第一象限无交点,错误;④正确;⑤错误.故选①④. 【点评】 本题通过五个小题全面考查三角函数的有关概念、图象、性质的基础知识. 三角函数的概念,在今年的高考中,主要是以选择、填空的形式出现,每套试卷都有不同程度的考查.预计在2008年高考中,三角函数的定义与三角变换仍将是高考命题的热点之一. 【例2】(2007年安徽)函数π ()3sin(2)3 f x x =-的图象为C : ① 图象C 关于直线π12 11 = x 对称; ② ②函数)(x f 在区间)12 π 5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3 π 个单位长度可以得到图象C . 以上三个论断中正确论断的个数为 (A )0 (B )1 (C )2 (D )3 解答 C ①图象C 关于直线232 x k ππ π- =+ 对称,当k =1时,图象C 关于π1211= x 对称;①正确;②x ∈)12π 5,12π(-时, 23x π-∈(-2π,2π ),∴函数)(x f 在区间)12 π5,12π(-内是增函数;②正确;③由x y 2sin 3=的图象向右平移3π个 单位长度可以得到23sin(2)3 y x π =-,得不到图象,③错误;∴正确的结论有2个,选C. 【点评】 本题主要考查了三角函数的图象和性质及三角函数图象的平移变换. 二、解答题重技能.三角函数解答题是高考命题的常考常新的基础性题型,其命题热点是章节内部的三角函数求值问题;命题的亮点是跨章节的学科综合命题. 【例3】 (2007年安徽)已知0αβπ<< 4,为()cos 2f x x π? ?=+ ?8? ?的最小正周期,

例析三角函数中“1”的代换

例析三角函数中“1”的代换 石阡县第三高中 张军 三角函数是中学数学教材中一种重要的函数,它又是研究其他各类知识的重要工具。凡是与三角函数有关的问题,都以恒等变形为研究手段。三角式的变形,包括三角式的化简、求三角式的值、证明恒等式和三角不等式等内容。特别是三角式的求值、化简是三角函数的重要内容。在三角函数中,“1”的代换有:βαcot tan 1?=,αα22cos sin 1+=, 45tan 1=,1cos sec =?αα,1sin csc =?αα等等。在具体的三角变换过程中,常根据题目不同特征选择不同的变换方式,若能把常数“1”恰当处理并灵活运用常会有意想不到的惊喜。下面举例说明。 例1、 已知 11 tan tan -=-αα ,求2cos sin sin 2++ααα的值。 分析:本题若常规思想,可由已知先求出αtan ,再由同角三角函数关系求得αsin 和αcos ,进而求出关系式的值,这种思想简单直接,但运用起来却很繁琐、费力,若借助题目条件的特殊性整体考虑,将 “αααcos sin sin 2+”的分母“1”看做αα2 2cos sin +直接转化为tan α的关系式求解救容易多了。 解:由已知得2 1tan =α。 2 cos sin sin 2++ααα 5132121212121tan tan tan 2cos sin cos sin sin 2 2 22222=++?? ? ??+? ?? ??=+++=+++=αααααααα 评析:对形如ααcos sin b a +,αααα22cos cos sin sin c b a ++的式子称为关于αsin 、αcos 的齐次式,对涉及他们的三角式通常利用整体考 虑的方法求解,使其转化为只含有正切的式子。 例2 证明: αααα2222sin tan sin tan =- 分析:本题可以由左证到右,或者由右证到左。无论哪种方式都需要利用“1”的代换,下面我们一起来看看这两种方式,自己来体会。 解:方法一(由右到左) 右边=()ααααα22222cos tan tan cos 1tan -=- =αααα α α222222 sin tan cos cos sin tan -=-=左边 因此 αααα2222sin tan sin tan =-

高考三角函数试题分析

三角函数、解三角形题型分析及其复习计划 本文主要研究近五年高考中出现的三角函数题,其目的是加深自身对高中三角函数这部分内容的认识和理解,并通过对试题的分类、整理、分析、总结出一些关于高考中对三角函数试题的解题方法、技巧和应对策略,希望这些解题方法、技巧和应对策略能够对执教老师和学生起到一定的帮助和启发.同时,选择研究高考三角函数这部分内容也是想为将来的教学工作做一个充分的知识储备. 三角函数在高中数学中有着较高的地位,尤其是在函数这一块,它属于基本初等函数,同时,它还是描述周期现象的重要数学模型.通过整理、统计可以看出,每年高考中三角函数试题分值所占比例基本都在10%~15%之间. 从近三年的课标卷、的高考三角函数题的分类、整理、分析知,高考三角函数这一知识点,主要还是考查学生的基础知识和基本技能,难度一般不大.但是,三角函数这部分内容考查的题型比较灵活,并且考查面较广.在选择题、填空题、解答题中均有考查,在前两类题型中多考查三角函数的基础知识,属于基础题;对于解答题则具有一定的综合性. 从总体上看,高考三角函数对文科学生能力的考查要求差异不大,但在考查题型上,文科方向的解三角形题量有所减少.从课改前后看,对三角函数考查的内容和范围没有明显变动,仍然是对三角函数的基础知识、三角函数与向量、与三角恒等变换等综合考查,但难度均不大. 考题分布 下面对近五近全国卷高考中三角函数的考题作一个归类分析,通过这个分析可以从中找到一些高三复习三角函数时的复习方向,能更好的、更精准的把握复习时应注意的方方面面。

近五年全国卷三角函数考题 角的概念及任意角的三角函数 1.(2014课标全国Ⅰ,文16)已知角α的终边经过点(-4,3),则cos α =( ) A.45 B.35C .-35D .-45 答案.D [解析] 根据题意,cos α=-4 (-4)2+32 =-4 5. 三角函数的图象与性质 1:(2012大纲卷,文3)若函数是偶函数,则( ) A . B . C . D . 答案C 【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,。 【解析】由为偶函数可知,轴是函数图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故 ,而,故时,,故选答案C 。 2:(2012大纲卷,文4)已知为第二象限角,,则( ) A . B . C . D . 答案A 【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用。 【解析】因为为第二象限角,故,而,故,所以,故选答案A 。 []()sin (0,2)3 x f x ? ?π+=∈?=2 π 23π32π53π[]()sin (0,2)3 x f x ? ?π+=∈y ()f x 3(0)sin 13()3 3 2 2 f k k k Z ? ? π π π?π==±? = +?= +∈[]0,2?π∈0k =32 π ?= α3 sin 5 α= sin 2α=2425-1225-1225 2425αcos 0 α<3sin 5α= 4cos 5 α==-24 sin 22sin cos 25 ααα==-

三角函数在物理学中的应用

三角函数的应用 高考物理试题的解答离不开数学知识和方法的应用,三角函数在物理学中的应用最为广泛。借助物理知识渗透考查数学能力是高考和自主招生命题的永恒主题。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。下面对三角函数的应用做一小总结。 公式总结 1.利用二倍角公式求极值 正弦函数二倍角公式 θθθcos sin 22sin = 如果所求物理量的表达式可以化成 θθcos sin A y = 则根据二倍角公式,有 θ2sin 2 A y = 当 0 45=θ时,y 有最大值 2 max A y = 2.利用和差角公式求物理极值 三角函数中的和差角公式为 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =± 在力学部分求极值或讨论物理量的变化规律时,这两个公式经常用到,如果所求物理量的表达式为θθcos sin b a y +=,我们可以通过和差角公式转化为 )cos sin ( 2 2 2 2 22θθb a b b a a b a y ++++= 令 φcos 2 2 =+b a a , φsin 2 2=+b a b 则 )sin(22φθ++= b a y 当 0 90=+φθ时,y 有最大值 22max b a y += 3.利用求导求物理极值 4.三角函数中的半角公式 2cosa -12a sin = 2 cosa 12cos +=a

a a a a a cos 1sin sin cos 1cos 1cosa -12a tan +=-=+= a a a a a sin cos 1cos 1sin cos 1cosa 12a cot +=-=-+= 典型例题解析: 1、一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦地运动,那么图1所示四种情况中符合要求的是( ) 【解析】雨滴沿房顶做初速度为零的匀加速直线运动,设房顶底边长为L ,斜面长为S ,倾角为θ,根据运动学公式2at 21S = 有θθsin gt 2 1cos 2L 2?=,解得θ θθ2s i n gL 2cos sin gL t = ?= ,当0 45=θ时,t 有最小值. 【答案】C 2、如图2所示,一辆1/4圆弧形的小车停在水平地面上。一个质量为m 的滑块从静止开始由顶端无摩擦滑下,这一过程中小车始终保持静止状态,则滑块运动到什么位置时,地面对小车的静摩擦力最大?最大值是多少? 【解析】设圆弧半径为R ,滑块运动到半径与竖直方向成θ角时,静摩擦力最大,且此时滑块速度为v ,根据机械能守恒定律和牛顿第二定律,应有 2 2 1cos mv mgR = ?θ ① R v m mg N 2 cos =-θ ② 由①②两式联立可得滑块对小车的压力 θcos 3mg N = 而压力的水平分量为 θθθθ2sin 2 3 cos sin 3sin mg mg N N x = ?=?= 设地面对小车的静摩擦力为f ,根据平衡条件,其大小 θ2sin 2 3 mg N f x = = 从f 的表达式可以看出,当θ=450 时,θ2sin =1有最大值,则此时静摩擦力的最大值 图2 图1

同角三角函数公式的转化

同角三角函数公式的转化 同角三角函数的基本关系式十分重要,主要运用于三角函数的求值和恒等变形中各函数间的相互转化.在解答时,若能根据函数式的结构特点,适时灵活地选用公式,往往能获得简捷、迅速的解答. 一、“1”的代换 例1 证明:66441sin cos 31sin cos 2 x x x x --=--. 证明:∵22sin cos 1x x +=, ∴2231(sin cos )x x =+,2221(sin cos )x x =+, ∴662236644222441sin cos (sin cos )sin cos 1sin cos (sin cos )sin cos x x x x x x x x x x x x --+--=--+-- 424222223sin cos 3cos sin 3(sin cos )32sin cos 22 x x x x x x x x ++===··. 评注:本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.同学们要注意掌握和灵活运用“1”的代换. 二、化切为弦 例2 化简:tan (cos sin )sin (tan cot )θ θθθθθ-++··. 解:原式sin sin cos (cos sin )sin cos cos sin θθθθθθθθθ??=-++ ??? ·· 22sin sin sin cos sin cos cos cos θθθθθθθθ =-++=+ 例3 求证:2212sin 2cos21tan 2cos 2sin 21tan 2x x x x x x --=-+. 证明:右边sin 211tan 2cos 2sin 2cos 2sin 21tan 2cos 2sin 2cos 2x x x x x x x x x x - --===++ 2 (cos 2sin 2)(cos 2sin 2)(cos 2sin 2) x x x x x x -=+- 2222cos 2sin 22cos sin cos 2sin 2x x x x x x +-=- 2212sin cos2cos 2sin 2x x x x -==-左边.故原式成立. 评注:三角中的化简及三角恒等式的证明问题常常采用“化切为弦”,即利用商数关系把切函数化为弦函数,以达到统一名称之目的. 三、化弦为切 例3 已知tan 2α=,求下列各式的值: (1)sin 3cos sin cos αααα -+; (2)222sin sin cos cos αααα-+. 解:由已知tan 2α=.

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α== ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

2018年高考理科数学三角函数100题(含答案解析)

2018年高考理科数学三角函数100题(含答案解析) 1. 己知x 0=﹣ 是函数f (x )=sin (2x+φ)的一个极小值点,则f (x )的一个单调递减区 间是( ) A .(, ) B .( , ) C .( ,π) D .( ,π) 2. 已知△ABC 是钝角三角形,若AC=1,BC=2,且△ABC 的面积为,则AB=( ) A . B . C . D .3 3. 已知1(,2)2 P 是函数()sin()(0)f x A x ω?ω=+>图象的一个最高点,,B C 是与P 相邻的两个最低点.若7 cos 25 BPC ∠= ,则()f x 的图象对称中心可以是 (A )()0,0 (B )()1,0 (C ) ()2,0 (D )()3,0 4. 已知函数()sin()f x A x ω?=+(A ,ω,?均为正的常数)的最小正周期为π,当2π 3 x =时,函数()f x 取得最小值,则下列结论正确的是( ). A .(2)(2)(0)f f f <-< B .(0)(2)(2)f f f <<- C .(2)(0)(2)f f f -<< D .(2)(0)(2)f f f <<- 5. 设函数π2sin 23y x ? ?=+ ?? ?的图象为C ,下面结论中正确的是( ). A .函数()f x 的最小正周期是2π B .图象 C 关于点π,06?? ??? 对称 C .图象C 向右平移 π 2 个单位后关于原点对称 D .函数()f x 的区间ππ,122?? - ??? 上是增函数 6.

已知函数π()sin (0)4f x x ωω? ?=> ?? ?+的最小正周期为π,刚该函数的图象( ). A .关于点π,04?? ???对称 B .关于直线π 8 x = 对称 C .关于点π,08?? ??? 对称 D .关于直线π 4 x = 对称 7. 为了得到函数sin cos y x x =+的图像,只需把sin cos y x x =-的图像上所有的点( ). A .向左平移π 4 个单位长度 B .向右平移π 4 个单位长度 C .向左平移 π 2 个单位长度 D .向右平移 π 2 个单位长度 8. 已知(0,π)α∈,3 cos 5 α=-,则tan α=( ). A . 34 B .34 - C . 43 D .43 - 9. 已知函数π()sin()0,0,||2f x A x A ω?ω?? ?=+>>< ?? ?图象如图所示,则下列关于函数()f x 的 说法中正确的是( ). A .对称轴方程是π π()6 x k k =+∈Z B .对称中心坐标是 ππ,0()3k k ?? +∈ ??? Z C .在区间ππ,22?? - ??? 上单调递增 D .在区间2ππ,3? ?-- ?? ?上单调递增 10.

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

三角函数中“1”的代换

义县高中 高一数学组 胡克让 三角函数是高中数学的重要内容,与数列、立体几何、平面向量、方程等都有密切的联系。这部分中基本计算公式特别的多,而且在解决三角函数问题时又是基础工具,能够熟练而又灵活的运用这些公式成了学习的难点。这部分公式大致分为三类,现和大家一起来研究下同角基本函数关系式中与“1”有关的问题,希望能给同学们带来帮助。 在三角函数的求值,化简,证明时,常把数1表示为三角函数式或特殊角的三角函数值参与运算,使问题得以简化。常见的代换有: 22222221sin cos 1(sin cos )2sin cos 1sec tan csc cot 1cos sec sin csc tan cot 1tan cot 44 αα αααα αααα αααααα π π =+=+-=-=-=?=?=?== 等等。 下面例析几道题,供同学们参考。 例1 已知sin cos αα-=tan cot αα+的值为 . 分析:本题解法有二,一种是将sin cos 2αα-=- 与22sin cos 1αα+=联立成方程组求出sin α与cos α,再运用sin tan cos ααα=与cos cot sin ααα =求出所求值;一种是先利用sin tan cos ααα=与cos cot sin ααα =对tan cot αα+化简变形,发现只需要求出sin cos αα的 值即可,而将sin cos αα-=sin cos αα的求解,进而问题得以解决。两种方法对比,显然后者简单,而且运算量很少。 解析:sin cos 2 αα-=-Q 222225(sin cos )sin cos 2sin cos 4 1sin cos 8 sin cos sin cos tan cot 8cos sin sin cos αααααααααααααααααα ∴=-=+-∴=-+∴+=+==- 例2 已知1tan 3 α=-,求下列各式的值:

三角函数变换的方法总结

三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。 解析:已知 显然有: 由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0 即有:acosθ+b=0 又 a≠0 所以,cosθ=-b/a ③ 将③代入①得:a(-a/b)2-b(-b/a)=2a 即a4+b4=2a2b2 ∴(a2-b2)2=0即|a|=|b| 点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。 (2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。 解析:设θ+15°=α,则 原式=sin(α+60°)+cos (α+30°)-cosα =(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα =sinα+cosα+cosα-sinα-cosα =0 点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。 【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)= 证明:已知条件可变为:sin[(α+β)-β]=Asin (α+β) 所以有:sin (α+β) cosβ-cos (α+β) sinβ=Asin (α+β) ∴ sin (α+β)( cosβ-A)=cos (α+β) sinβ

-2017三角函数高考真题教师版

2015-2017三角函数高考真题 1、(2015全国1卷2题)o o o o sin 20cos10cos160sin10- =( ) (A )(B (C )12- (D )1 2 【答案】D 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30= 1 2 ,故选D. 2、(2015全国1卷8题)函数()f x =cos()x ω?+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 【答案】D 【解析】由五点作图知,1 +42 53+42 πω?π ω??=????=??,解得=ωπ,=4π?,所以()cos()4f x x ππ=+, 令22,4 k x k k Z π ππππ<+<+∈,解得124k - <x <3 24 k +,k Z ∈,故单调减区间为(124k - ,3 24 k +),k Z ∈,故选D. 考点:三角函数图像与性质 3、(2015全国1卷12题)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 【答案】 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得 sin sin BC BE E C = ∠∠,即o o 2sin 30sin 75 BE =,解得BE ,平移AD ,当D 与C 重合时,AB 最短,此时与 AB

三角函数综合应用 (1)

第 1 页 共 4 页 1. 三角函数的综合应用 班级__________姓名____________ ___年____月____日 内 容 要 求 A B C 三角函数综合 两角和与差的正弦余弦和正切公式 √ 同角三角函数的基本关系式;二倍角公式;正弦定 理和余弦定理 √ 三角函数的图象和性质 √ 1.理解和掌握同角三角函数的基本关系式、三角函数的图象和性质、两角和与差的正弦余弦与正切公式、二倍角公式及正弦定理和余弦定理; 2.能运用它们解决有关三角函数的综合问题. 【教学过程】 一、知识梳理: 1. 同角三角函数的基本关系式 sin 2α+cos 2α=1,tan α=sin α cos α . 2. 两角和与差的正弦余弦和正切公式 sin (α±β)=sin αcos β±cos αsin β,cos (α±β)=cos αcos βsin αsin β,tan (α±β)= tan α±tan β 1tan αtan β . 3. 二倍角公式:sin2α=2sin αcos α,cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2 α,tan2α=2tan α1-tan 2α . 4. 三角函数的图象和性质 5. 正弦定理和余弦定理 (1) 正弦定理:a sinA =b sinB =c sinC =2R(R 为三角形外接圆的半径). (2) 余弦定理:a 2=b 2+c 2-2bccosA ,cosA = b 2+ c 2-a 2 2bc . 二、回归教材 1.设△ABC 的三个内角A 、B 、C 所对的边分别是a 、b 、c ,且a cosA =c sinC ,那么A =________. 2. △ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且acosC ,bcosB ,ccosA 成等差数列,则角B 等于________. 3. 若a ,b ,c 是△ABC 中A ,B ,C 的对边,A 、B 、C 成等差数列,a ,b ,c 成等比数列,则可判断△ABC 的形状一定为________.(按边分类)

三角函数常见习题类型及解法

1.高考考点分析 各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。 第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。 第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。 第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。 2.方法技巧 1.三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=22b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 2.证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。 3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 4.解答三角高考题的策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。

三角代换公式

三角代换公式 常用的三角代换可以总结为以下几种: 1. 代数问题中的三角代换 (1)对于1≤x ,可做代换?sin =x ,或?cos =x ;对于1≥x ,可做代换?sec =x ,或?csc =x ;对于R x ∈,可做代换?tan =x ,或?cot =x . (2)形如()()∞+∈=+,0,,a y x a y x ,可作代换??2 2 c o s ,s i n a y a x ==;形如 ()()0,,0,≠∞+∈=-a y x a y x ,可作代换??22tan ,sec a y a x ==. (3)形如2 2 2 a y x =+,可作代换??cos ,sin a y a x ==;形如2 22a y x =-,可作代 换??tan ,sec a y a x ==. (4)形如()()∞+∈=+,0,,3 3 3 a y x a y x ,可作代换??3 232cos ,sin a y a x ==. (5)形如()()∞+∈≤+,0,1y x y x ,可作代换() 1cos ,sin 2 2 2 2 ≤==r r y r x ??;形如 ()()∞+∈≥+,0,1y x y x ,可作代换()1cos ,sin 2222≥==r r y r x ??. (6)形如122≤+y x ,可作代换() 1cos ,sin ≤==r r y r x ??;形如12 2≥+y x ,可作 代换() 1cos ,sin ≥==r r y r x ??. (7)形如x -1可作代换?2 s in =x ,或?2 c o s =x ;形如 22a x +,可作代换 ?tan a x =;形如22a x -,可作代换?sec a x =,或?csc a x =;形如22x a -,可 作代换?sin a x =,或?cos a x =. (8)形如2 2 2211,12,12x x x x x x +-+-,可作代换?tan =x ,或? cot =x ;形如xy y x xy y x -++-1,1,可作代换βαtan ,tan ==y x . (9)形如x y z z y x =++,可作代换γβαt a n ,t a n ,t a n ===z y x (其中Z ∈=++n n ,πγβα). (10)形如1=++zx yz xy ,可作代换2 tan ,2 tan ,2 tan γ β α ===z y x (其中 ()Z ∈+=++n n ,12πγβα).

高考三角函数题型分析

高考三角函数题型分析

数学.试题分析 专题.三角函数 一、题型分析 一、单调性问题 此类问题主要考查三角函数的增减性,各象限中各个三角函数值的符号等.很多情况下,需要通过三角恒等变换将已知函数式化为一个角的一个三角函数式的形式来求解. 例 1 写出函数 24sin cos cos y x x x x =+-在[]0π,上的单调递增区间. 解:()() 2222sin cos sin cos cos y x x x x x x =+-+ π 2cos 22sin 26x x x ??=-=- ??? . 由已知可得πππ2π22π262 k x k -+-+≤≤, 则ππππ63 k x k -++≤≤,k ∈Z . 又[]0πx ∈,, 所以其单调递增区间是π03??????,,5ππ6?????? ,. 点评:① 在求单调区间时,要注意给定的定义域,根据题意取不同的k 值;② 在求sin()y A x ω?=+的单调区间时还应 注意ω的正、负,同学们可以自己求一下π2sin 26y x ??=- ??? 的单调递减区间,并与本例所求得的区间对比一下. 二、图象变换问题 三角函数的图象变换是一个重点内容.解这类问题,先通过三角恒等变换将函数化为sin()y A x ω?=+(00)A ω>>,的形式,然后再探索其图象是由正弦曲线经过怎样的平移变换、伸缩变换或振幅变换得到的.特别需要注意的是:在图象变换中,无论是“先平移后伸缩”,还是“先伸缩

后平移”,须记清每次变换均对“x ”而言,尤其是左右平移在由形变换向数的问题转化的的时候,也是用“x + k ”代替“x ”,其它做法都是多余的。尤其是要弄清楚“变换谁?得到谁?”,这个问题不搞清楚,就不要做题。 例2 已知函数22sin 2sin cos 3cos 1y x x x x =++-,x ∈R .该函数的图象可由sin y x =,x ∈R 的图象经过怎样的变换而得到? 解:22sin 2sin cos 3cos 1y x x x x =++-2sin 22cos sin 2cos 21x x x x =+=++ π 214x ??=++ ??? . 将函数sin y x =依次作如下变换: (1)把函数sin y x =的图象向左平移π4,得到函数πsin 4y x ??=+ ??? 的图象; (2)把得到的图象上各点横坐标缩短到原来的12 倍(纵坐标不变),得到函数πsin 24y x ??=+ ??? 的图象; (3 倍(横 坐标不变),得到函数π 24y x ??=+ ??? 的图象; (4)把得到的函数图象向上平移1个单位长度,得到函数π 214y x ??=++ ??? 的图象. 综上得到函数22 sin 2sin cos 3cos 1y x x x x =++-的图象. 点评:由sin y x =的图象变换得到sin()y A x ω?=+的图象,一般先作平移变换,后作伸缩变换,即sin sin()sin()sin()y x y x y x y A x ?ω?ω?=→=+→=+→=+.如果先作伸缩变换,后作平移变换,则左(右)平移时不是?个单位,而是?ω个单位,即sin()sin()y x y x ωω?=→=+是左(右)平移?ω个单位长度. 三、最小正周期问题

相关文档
最新文档