检测项目、限量指标和检测方法的比较

检测项目、限量指标和检测方法的比较
检测项目、限量指标和检测方法的比较

国内外食品接触塑料制品检测项目限量指标要求对比

一、总迁移量

迁移到食品(或食品模拟物)中所有物质的量称为“总迁移量”或“全迁移量”(overallmigration),对总迁移量的限量指标即为“总迁移限量”(overall migration limit)。表2-1 中,除模拟物D 外,其它食品模拟物均为沸点不超过120℃的液体,可在常压下加热挥发。用干净的器皿盛放一定体积的接触过材料的模拟物,加热使模拟物蒸发,留在器皿中的残渣即为迁移物,测定其重量即可计算得出总迁移量。故此我国和日本又将“总迁移量”叫做“蒸发残渣”。由于加热过程中,材料含有的挥发性组分也会蒸发,因此用这种方法测得的总迁移量实际上是材料迁移出的非挥发性组分的总量。

欧盟2002/72/EC 指令对塑料食品接触材料的总迁移量规定了统一的限量,即每千克食品或食品模拟物中不得超过60 毫克(60

mg/kg)。对容积小于500 毫升或大于10 升的容器类制品,以及薄片、膜或其它不可填充的材料或制品,或无法估算其表面积与所接触食品量之间关系的材料或制品,总迁移限量以每平方分米材料或制品的接触面积表示,即不超过10 mg/dm2。但对用于婴幼儿食品的产品,其总迁移限量一律以60mg/kg 表示。由于脂肪类模拟物相对实际食品具有更高的提取能力,对采用这类模拟物进行迁移试验的测定结果,需按85/572/EEC 指令中的相关规则用一个1~5 之间的“模拟物D 缩减换算系数”(DRF)校正后再与限量指标比较。欧洲理事会在有关决

议中对橡胶、硅有机化合物(包括硅橡胶)制品制定了类似的规范,即总迁移量不得超过60 mg/kg。

我国卫生标准对具体的塑料品种分别规定了蒸发残渣指标,并按模拟物分,多数情况下为≤30 mg/L,也有≤15 mg/L 的规定(如ABS、AS);对高压锅密封圈以外的橡胶制品,4%乙酸和正己烷蒸发残渣限量为≤2000 mg/L。不同材料使用的食品模拟物、迁移条件及指标规定不尽相同,此处无法一一列出,可参见后面章节的相关列表,具体仍应以相应产品的卫生标准为依据。

美国FDA 规定庚烷提取后应将提取物量除于5,再与限量指标比较;对某些材料还规定了氯仿提取物的限量指标,即用食品模拟物提取后,提取物再用氯仿溶解提取测定。多种塑料制品的总提取物限量为0.5mg/in2,但根据具体使用情况(如一次性使用还是重复使用)会有不同。对相当多的材料未规定制品的指标,而是对树脂原料及其它辅料进行规范(如177.1520 对烯烃类聚合物的要求),生产者对此应有充分的了解。

日本对各种塑料的总迁移量指标大体是:水、乙酸和乙醇溶液的蒸发残渣多为30mg/kg,正庚烷蒸发残渣按具体塑料品种从30~

240mg/kg 不等。

二、特定迁移限量

生产食品接触材料,特别是塑料,所用的化学物质多不胜数。根据安全性评估的结果,对某种或某类具体物质迁移量的限制,就是“特定迁移限量”(specific migration limit,SML)。有时,多种物质的

SML 以一种基团或物质表示,例如多种异氰酸酯的SML 都以异氰酸根NCO 计,甲醛和六亚甲基四胺的SML 都以甲醛计,此时在欧盟的物质清单中的SML 就以SML(T)的形式出现。

欧盟 2002/72/EC 指令中有特定迁移限量的物质多达数百种,美国FDA 也对多种化合物规定了模拟物中的提取量指标。对如此之多的物质全都进行检测,即不可能也无必要,根本上还是要从源头上把好原料关和生产关。2002/72/EC 指令中指出有两种情况可不必强制检测特定迁移量,一是“总迁移量的测定值意味着特定迁移限量不超值”,二是“假定材料和制品的残留物质全部迁移也不会超

过特定迁移限量”。对第一种情况,以蜜胺制品为例,其主要原料为三聚氰胺-甲醛树脂,欧盟规定三聚氰胺的SML 是30 mg/kg,甲醛的SML 是15 mg/kg。假定测得的水溶液模拟物(水、乙酸或乙醇溶液)中总迁移量为5 mg/kg,则表明三聚氰胺的迁移量必不会超过SML,因此可不用检测三聚氰胺的特定迁移量。但是,如前所述,加热蒸发测得的总迁移量实际上是材料迁移出的非挥发性组分的总量,而甲醛是易挥发的物质,会在加热过程中挥发掉,也就是说,5 mg/kg 的总迁移量有可能是甲醛挥发后的测得值,并不意味着甲醛迁移量不会超过SML,所以甲醛特定迁移量的检测不可免去。第二种情况可以通过已知的配方和工艺进

行计算。举例说,多种有机锡的SML(T)=0.006 mg/kg(以锡计),假设使用某种有机锡作为添加剂,其锡含量为16%。按配方,该有机锡用量为0.5%。假定产品为薄膜,每3g 重的面积为600cm2,则即使

这种有机锡在生产过程中不损失,全部留在最终成品中,且百分之百地迁移到食品模拟物中去,按1 L/6dm2 的体积面积比计算,锡的特定迁移量为0.0024mg/kg,仍不会超过限量,故可免去对这种有机锡的特定迁移量检测。

2002/72/EC 指令经过修订后,新增了一个“亲脂性物质”的清单,列出了约70 种物质。这类物质在脂肪类食品中的特定迁移量应使用一个1~5 的“脂肪缩减换算系数”(FRF)校正后再与SML 比较。这是因为SML 是根据人体每千克体重对物质的每日允许摄入量(ADI)或每日耐受摄入量(TDI),设定一个体重60 kg 的成年人每日摄入1 kg 食品计算得出的。而通常认为人每日摄入的脂肪不会超过200 g,因此,需对这类在脂肪中迁移可能性较大的物质特定迁移量测定结果进行校正。

在欧盟物质清单中未规定限量的物质,其迁移量不得超过总迁移限量,即60 mg/kg或10 mg/dm2。如有些塑料中作为填料大量使用的碳酸钙,会被乙酸溶解而迁移到乙酸溶液中。虽然对碳酸钙未规定SML 指标,但如在乙酸模拟物中的迁移量超过60 mg/kg,就会视为不合格。欧盟还规定各种物质迁移量之和也不得超过总迁移限量。仍以蜜胺制品为例,假定测出其三聚氰胺迁移量为28mg/kg,甲醛迁移量为12 mg/kg,硬脂酸锌的迁移量(以锌计)为24mg/kg,虽然各物质迁移量均未超过其特定迁移限量,但总和高于60mg/kg,因而也判为不合格。

我国现有卫生标准已规定特定迁移限量的塑料用物质很有限,分

别在各产品的卫生标准中列出,如三聚氰胺中的甲醛、PET 中的锑、PC 中的酚、尼龙6 中的己内酰胺、复合包装袋中的二氨基甲苯等。预计新修订的GB 9685 将会增加更多的规定。

日本对食品用塑料物质规定特定迁移限量的有:甲醛树脂中的苯酚和甲醛、PET 中的锗和锑、PMMA 中的异丁烯酸酯、PA 中的己内酰胺、PC 中的双酚A 等。具体指标详见后面有关章节中的列表。

三、材料中物质含量

有些时候,通过测定材料中物质的含量(如聚合物中残留单体的量)来评估材料的安全性。应注意的是,虽然大多数情况下物质含量的单位量纲与迁移量相同,都以mg/kg 表示,两者的含义却不同,前者表示每千克材料中特定物质的毫克数,后者则是材料中物质迁移到每千克食品或食品模拟物中的毫克数。同一件材料中特定物质的含量是一定的,但在不同的接触条件下(温度、时间、食品或模拟物种类)其迁移量可能不同。由于迁移机制的复杂性,如果未建立可靠的迁移模型数学关系式,除非材料中物质全部迁移,是不可能直接根据材料中某物质含量准确计算出其迁移量的,反之亦然。

对单位质量材料中含有物质的限量(最大允许量),欧盟称为“QM”,单位为mg/kg;当限量以材料与食品接触的单位面积(每6 平方分米)的物质量表示时,称为“QMA”,单位为mg/6dm2;如果多种物质以某个基团或某种物质表示时,“QM”或“QMA”就相应地为“QM(T)”或“QMA(T)”。在欧盟物质清单中也规定了很多的物质含量限量,如丙烯酸二环戊烯酯的QMA= 0.05 mg/6 dm

2,丁二烯在最终制品中的QM = 1 mg/kg,等等。

日本对塑料的通用要求是铅、镉含量都不得大于100 mg/kg。对具体塑料品种分别有不同的物质含量要求,如PVC 中二丁烯化合物≤50mg/kg(以二丁锡氯合物计),磷酸甲苯酯≤1000mg/kg,氯乙烯≤1mg/kg;对PC 不仅规定了双酚A 的迁移限量(≤2.5 mg/kg),还规定材料中双酚A 含量≤500mg/kg,碳酸二苯酯≤500 mg/kg,胺类(三乙胺和三正丁胺)≤1mg/kg;对橡胶哺乳器具则要求铅、镉含量都不得大于10 mg/kg,等等。

美国FDA 规章中大多是对原料的要求,因此相关物质的含量限量也有很多,例如PS中的残留苯乙烯单体含量,尼龙6/12 树脂中的残留己内酰胺含量等。

相对而言,我国现有卫生标准中规定物质含量的项目不多,有PVC 树脂和成型品中的残留氯乙烯单体(分别为≤5mg/kg 和≤1mg/kg)、PC 树脂中的残留苯乙烯单体(≤0.5%)、PET 树脂中的铅和锑(分别为≤1mg/kg 和≤1.5mg/kg)等,详见后章中的列表。

四、高锰酸钾消耗量

日本和我国的迁移物指标中还有一项“高锰酸钾消耗量”。高锰酸钾氧化性很强,水溶液中多种有机物都可被其氧化。材料迁移到水模拟物中的有机物越多,用于反应所消耗的高锰酸钾量就越大,因此这项指标可以反映出材料中有机物质对水性食品的迁移情况,不失为一个有效的卫生安全性判断依据。如果这项指标不合格,可从原料中的水溶性有机组分上查找原因,加以改进。

美国FDA 规章中对某些塑料(如丙烯酸塑料)有一个称为“高锰酸钾可氧化浸提物的吸光度”的指标,与我国的“高锰酸钾消耗量”有异曲同工之妙,所不同的是测定高锰酸钾反应产物的吸光度。

五、着色剂与脱色试验

欧盟2002/72/EC 指令中不包括着色剂,其“通用规范”中要求塑料材料和制品释放的芳香伯胺不应达到可检出量,即食品或食品模拟物中的迁移量不得高于0.01mg/kg。芳香伯胺的主要来源一是芳香族异氰酸酯(如聚氨酯的原料甲苯二异氰酸酯),另一个就是着色剂中的偶氮染料。我国有多批出口黑色尼龙餐具被欧盟通报,据分析是因所用的黑色偶氮染料引起芳香胺超标。因此应尽量避免使用会分解芳香胺的偶氮染料。欧洲理事会有关塑料中使用的着色剂的AP(89)1 决议中除有关芳香胺的要求外,对重金属的含量要求见表1-2。该决议还要求炭黑中的甲苯可萃取物含量不得超过0.15%。

美国FDA 在CFR 21 第73、74、81 和82 部分中对各种着色剂的质量规格和使用条件作了详细的规范,限制的成分包括铅、镉、汞、砷等重金属,有些偶氮染料还有苯胺、4-氨基联苯等芳香胺的限量。不同着色剂的组分限量不尽相同,企业应对自己使用的色粉、色母料中的着色成分有足够的了解,必要时可要求供应商提供相关证书。

检验着色剂是否迁移,一个直观的方法是我国标准中的“脱色试验”:一是用沾有冷餐油(色拉油)或65%乙醇的棉花,在材料或制

品接触食品部位的小面积内,用力往返擦拭100 次,观察棉花上是否染有颜色;二是观察迁移试验中各种食品模拟物(浸泡液)是否染色。如染色,则表明着色剂会从材料中迁移出来,产品判为不合格。欧盟、美国指标中虽没有这一项,但都有材料成分迁移不得造成食品感官特性发生劣变的通用要求,“食品感官特性”通常指色、香、味,材料如会使食品染上颜色,显然不符合通用要求,也会被出口国视为不合格。

“脱色试验”简单易行,成本很低,很适合生产企业对产品自行检验,尤其是要试验新产品、新配方或产品改变颜色之时。从染色的浸泡液种类也可初步分析所迁移的着色剂成分,如乙酸溶液染色,很可能是无机盐类的颜料迁移;正己烷染色,则多半是有机染料成分所致。

日本要求食品容器和包装材料必须使用食品卫生法中规定的着

色剂。

塑料着色剂常用的钛白粉,欧、美、日均允许用于食品接触材料,且无限量,但由于用量多,有时会引起乙酸溶液总迁移量(蒸发残渣)超标。钛白粉虽然被认为无毒,但如大量迁移,也视为“引起食品成分产生不可接受的改变”,因而不符合通用要求。

有些产品兼有玩具性能,如色彩鲜艳或带卡通图案的小碗、小勺等,虽然彩色涂层或图案是在制品的非接触食品表面,也应符合有关玩具规范,如欧盟的EN 71 第三部分或美国标准ASTM 963 的相关要求。

六、重金属元素

欧盟允许塑料使用的物质清单中未列入铅、镉、汞、砷类化合物,因此食品用塑料应避免使用这些物质作为添加剂,如用作热稳定剂的铅盐或镉盐。有机锡作为性能优良的热稳定剂和抑菌防霉剂用于塑料中,但有些有机锡的生物毒性很强。经5009/79/EC 指令修订后,2002/72/EC 指令对有机锡迁移限量的规定更为严格,如马来酸氢二正辛基锡等14 种有机锡,以锡计的SML(T)从0.04 mg/kg 改为0.006 mg/kg。欧盟物质清单中还对铜、铁、锌、钴等金属或化合物规定了以这些金属元素计的SML(T)指标,如以铜、锌、钴计的SML(T)分别为5、25、0.05 mg/kg。有些允许使用的酸、醇、酚的锌盐未列入清单中,也适用相同的限制。

我国目前的塑料橡胶卫生标准中除对橡胶、PET 等少数几种制品或树脂有锌、铅、锑等元素的特定迁移限量外,一般以“重金属(以铅计)”≤1 mg/L 的指标进行限制。其原理是某些重金属会生成硫化物沉淀使溶液混浊或变色,可与一定浓度的硫化铅溶液进行比较判定,故称“以铅计”。事实上迁移出的重金并不一定都是铅,可能也有会产生硫化物沉淀的其它金属,如铁、锌、锡等。这种方法无法对各金属元素的迁移量准确测定,因此是一种定性或半定量的方法。

如前面所述,日本对塑料树脂中重金属的限制主要是铅、镉含量,以及锌(对橡胶)锑和锗的迁移量指标。

德国BfR 建议PP 成品中由催化剂带来的金属元素含量不超过10(铬)、20(锆)、100(钒)、100(铪)mg/kg。

根据检测机构对重金属指标不合格的情况分析,多由着色剂使用不当引起。生产企业应按上述第(5)条中有关规范严格控制,尤其是含六价铬、铅、镉的颜料,如铬黄、镉红等,不应用于食品接触材料。

七、丙烯腈

ABS 和AS 是食品接触材料常用的塑料品种,但其中残留的丙烯腈单体对人体有害,欧盟物质清单中规定其迁移量不得检出(检出限为0.020 mg/kg),未规定材料中的残留量(QM)。我国迄今为止的卫生标准中未规定丙烯腈的迁移限量,但规定丙烯腈单体残留量在橡胶改性的ABS 中≤11mg/kg,在AS 中≤50 mg/kg。美国FDA 对丙烯腈共聚物不仅规定了单体迁移限量(见CFR 180.22 和181.32),还规定了不同材料中的丙烯腈单体最大残留量,如ABS 和丁苯橡胶改性的AS 中都为≤11mg/kg(21CFR 177.1020 和177.1050),AS 中按不同使用情况≤0.10~80 mg/kg 不等(21CFR 177.1040)。应注意的是,有些丙烯腈单体迁移试验的规定时间长达10 天(如21CFR 177.1020)。

八、挥发性组分

如前所述,采用液体模拟物进行的常规迁移试验不能检测材料的挥发性组分,因此对有挥发性组分限量要求的材料应采用其它适当的方法检测。日本要求PS 中的五种挥发性物质苯乙烯、甲苯、乙苯、丙苯和异丙苯总量≤5000mg/kg;对用于热水的发泡PS,五种挥发性物质总量≤5000mg/kg,其中苯乙烯、乙苯分别≤1000ppm。我国关于

PS 树脂的卫生标准GB9692-1988 中分别规定了挥发物、苯乙烯、乙苯的限量指标,其中“挥发物”采用溶剂溶解-干燥减重法测定。德国BfR 建议书中对硅橡胶及苯乙烯共聚物等材料规定了有机挥发物总量的要求。

九、邻苯二甲酸酯类增塑剂

上世纪90 年代以来,邻苯二甲酸酯类增塑剂对环境和生物体的危害日益引起重视。美国、欧盟都对其在与口接触的儿童玩具及奶嘴等其它产品中的含量进行限制。

我国有些企业在罐头瓶盖使用的PVC 密封垫中也使用了较多的邻苯二甲酸酯类增塑剂,造成出口产品检测不合格。

欧盟2002/72/EC 指令中不仅规定了各种邻苯二甲酸酯增塑剂的使用量,还对迁移限量作出规定。具体指标参见后面章节的有关列表。

我国GB 9685-2003 标准中对相关增塑剂的规范与发达国家的差距较大,预计新发布的标准将会对此作出修改。

细菌鉴定及检测方法

细菌鉴定及检测方法 一、启动条件 1、目的样出现坏包,若批次相同,取表现性状相同的任意一包进行细菌初步鉴 定。若批次不同则分别进行细菌初步鉴定。 2、随机样出现坏包,必须进行细菌初步鉴定。 二、胀包 1、记录批次。 2、及时用72%的酒精对样品的外表进行消毒,尽量不损坏封合待以后检查。在 超净台内以无菌操作剪开包装,再避开横竖封处剪开一个圆形或三角形。3、对样品进行微生物划线培养。 3.1采用普通营养琼脂培养基做细菌的划线培养36±1℃、48小时。 3.2分别吸取10毫升样品到两个无菌的小试管中,,分别在80和100℃的水 浴中加热10分钟,冷却用营养琼脂分别做芽孢(36±1℃、72小时) 和耐热芽孢(55±1℃、72小时)的划线培养。 3.3采用普通营养琼脂培养基或快速检测培养基做嗜冷菌/低温菌的划线培 养(4—6℃ 10天或21±0.5℃ 25小时)。 3.4 必须用高盐察氏或虎红琼脂培养基做霉菌和酵母菌的划线培养 (25—28℃ 5--7天) 4、对样品做感官检测。 5、用PH计检测样品的PH值。 6、将样品倒掉,进行包装密封性检查,并进行记录。 7、记录菌落特征。 8、选区不同形态的单一菌落进行坚定。 8.1 革兰氏阴性菌和阳性菌的鉴定: 8.1.1涂片、革兰氏染色、镜检。或结晶紫染色、镜检、氢氧化钾拉 丝试验。 8.1.2革兰氏染色、结晶紫染色方法见《微生物检测》 8.1.3氢氧化钾拉丝试验 在微生物载物片上滴一滴3%氢氧化钾,用接种针从培养皿上的

菌落中挑取微生物,放在氢氧化钾溶液中用力搅拌。7—10秒后,抬 起针头,观察针头和玻片之间是否有丝状物,如果15—20 秒后二者 之间无丝状物,停止搅拌。 判定:无丝状物阳性;有丝状物阴性。 8.2 过氧化氢酶试验(或过氧化氢酶试纸)(产气试验): 试剂:10%过氧化氢溶液 步骤:在微生物载物片上滴一滴10%过氧化氢,用接种针从培养皿上的菌落中挑取微生物,放在过氧化氢溶液中看是否有气体产生。 判定:产气阳性;不产气阴性。 8.3氧化酶试验 试剂:含1%四甲基双噻二胺和99%的乙醇溶液。 步骤:用上述试剂将一张滤纸浸透(或直接采用氧化酶试纸条),然后进行细菌培养物的涂片试验。 判定:30秒内使显色物质变为深蓝色阳性,不变色阴性。 三、酸包 1、发现酸包后,及时将料液快速转入无菌瓶中。 2、记录批次 3、其它项目检测同胀包。

四种常用探伤方法特点及区别

四种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。常用的无损检测方法: 超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)及X射线检测(RT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于所有金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷;

f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性 a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1.磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小

亚硝酸盐氮含量测定方法

1试验目的 为检测宁波市城市内河水体质量,本实验采用中华人民共和国国家标准《水质亚硝酸盐氮的测定》规定的亚硝酸盐氮的测定方法。 亚硝酸盐氮是氮循环的中间产物,不稳定。在水环境不同的条件下,可氧化成硝酸盐氮,也可被还原成氨。 2试验方法 N-(1-萘基)-乙二胺光度法: 1、原理 在磷酸介质中,PH值为1.8±0.3时,亚硝酸盐与对氨基苯磺酰胺(简称磺胺)反应,生成重氮盐,再与N-(1-萘基)-乙二胺偶联生成红色染料,在波长540nm处有最大吸收。 2、干扰及消除№ 水样呈碱性(pH≧11)时,可加酚酞指示剂,滴加磷酸溶液至红色消失;水样有颜色或悬浮物,加氢氧化铝悬浮液并过滤。 3、适用范围 本法适用于饮用水、地面水、生活污水、工业废水中亚硝酸盐的测定,最低检出浓度为0.003mg/L;测定上限为0.20mg/L。 4、仪器:分光光度计、G-3玻璃砂心漏斗 试剂: (1)显色剂:于500ml烧杯中加入250ml水和50ml磷酸,加入20.0g对氨基苯磺酰胺;再将 1.00gN-(1-萘基)-乙二胺二盐酸盐溶于上述溶液中,转移至500ml容量瓶中,用水稀至标线 (2)磷酸(ρ=1.70g/ml) (3)高锰酸钾标准溶液(1/5K2MnO4,0.050mol/L):溶解1.6g高锰酸钾于1200ml水中,煮沸0.5-1h,使体积减少到1000ml左右放置过夜,用G-3玻璃砂心漏斗过滤后,贮于棕色试剂瓶中避光保存,待标定。 (4)草酸钠标准溶液(1/2Na2C2O4,0.0500mol/L):溶解经105℃烘干2小时的优级纯或基准试无水草酸钠3.350g于750ml水中,移入1000ml容量瓶中,稀至标线。 (5)亚硝酸盐氮标准贮备液:称取1.232g亚硝酸钠溶于150ml水中,移至1000ml容量瓶中,稀释到标线。每毫升约含0.25mg亚硝酸盐氮。本溶液加入1ml三氯甲烷,保存一个月。标定:在300ml具塞锥形瓶中,移入50.00ml0.050mol/L高锰酸钾溶液,5ml浓硫酸,插入高锰酸钾液面下加入50.00ml亚硝酸钠标准贮备液,轻轻摇匀,在水浴上加热至70-80℃,按每次10.00ml的量加入足够的草酸钠标准溶液,使红色褪去并过量,记录草酸钠标液的用量(V2)。然后用高锰酸钾标液滴定过量的草酸钠至溶液呈微红色,记录高锰酸钾标液的总用量(V1)。用50ml水代替亚硝酸盐氮标准贮备液,如上操作,用草酸钠标液标定高锰酸钾的浓度(C1,mol/L)。 按式(1)计算高锰酸钾标准溶液浓度C1(1/5KMnO4mol/L)

水质指标测定方法手册

水质指标测定方法手册 第一部分总则 1.1 目的 此手册的目的是规范化验室分析工作,保证实验条件、仪器设备、人员操作符合国家标准的规定,确保化验室检验的准确性。 1.2 宗旨 此手册的宗旨是以先进的、科学的分析方法,以准确的分析数据来帮助操作员工了解本废水处理系统实际的运行情况视实调整,以取得最好的工艺处理效果,达到指导的目的。 1.3 依据 本手册介绍的所有指标检测方法均使用国家标准方法或是行业规定标准方法;

第二部分注意事项 1.1进入实验室工作和学习的人员需遵守实验室安全管理规章制度,克 服麻痹大意思想,掌握基本的安全知识和救助知识,非工作需要未经许可不得擅自进入实验室。 1.2工作人员进入实验室后需着工作服,严格实行检验方法标准,遵守 操作规程和一切规章制度不得擅自修改。 1.3 水质分析过程需用到浓硫酸,浓盐酸、硫酸汞等腐蚀、有毒药品, 这些危险品及有毒药品要按规定设专用库房,做到专室专柜储存,并指定专人、双人双锁妥善保管,严格以上物品的管理; 1.4 开启使用硫酸、盐酸等腐蚀刺激性药品时,要带上耐酸手套和防护 眼镜,先用湿布盖上瓶口再开动瓶塞,以防溅出,烧伤眼睛和皮肤等。因为浓盐酸是具有挥发性的,操作应在通风橱内进行。 1.5 为确保分析结果的准确性,建议购买环境标准样品,化验室分析人 员定期拿环境标准样品进行实际测试,将测试结果与参考值进行比较。 1.6 实验人员严格按规定方法取样、制样、留样,经常检查有关设备的 取样管等,确保取样有代表性,留样标记要清楚。

1.7 正确使用并维护好相关仪器,定期对其进行校正。 1.8 测定方法用到标准曲线的,严格上要求每次重新配制药品后需重新 绘制标准曲线。 第三部分操作手册 水质篇 第一章、PH的测定 (4) 第二章、悬浮物(SS)的测定 (8) 第三章、色度的测定 (10) 第四章、化学需氧量(COD)的测定 (11) 第五章、五日生化需氧量(BOD5)的测定 (14) 第六章、溶解氧的测定 (18) 第七章、挥发性脂肪酸(VFA)的测定 (21) 第八章、总氮(TN)、总磷(TP)的测定 (23) 第九章、氨氮的测定 (34) 污泥篇 第一章、颗粒污泥总浓度(TSS)、挥发性污泥浓度(VSS)、灰分

两种梅毒检测方法对比

第20卷第12期航空航天医药2009年12月29 两种梅毒检测方法对比 于晓明,胡雪峰,迟丽娜 (中航工业哈尔滨二四二医院,黑龙江哈尔滨150066) 摘要目的:比较甲苯胺红不加热血清试验(TRUST)、螺旋体明胶颗粒凝集试验(11PPA)两种梅毒血清学试验的检测结果。方法:将2008~2009年性病门诊138例确诊梅毒患者血清同时用甲苯胺红不加热血清试验 7musT试验、螺旋体明胶颗粒凝集试验7rPPA试验检测,比较两种梅毒检测实验方法的灵敏度和特异性。结果:138份血清中,98份血清TRUST阳性,17份经抗梅毒治疗血清TRusT阴性,TPPA试验132份血清为阳性。结论:TRUsT试验可作为梅毒的人群筛查、疗效、复发或再感染的检测指标,嗍试验是检测梅毒螺旋体抗体的特异性方法,主要作为梅毒的确证试验。两种不同方法同时进行梅毒检测,将减少漏诊、误诊率,为梅毒的确诊提 供参考依据,并且在判定梅毒的发展、痊愈及药物疗效方面都具有十分重要的意义。 关键词梅毒;甲苯胺红不加热血清试验(TRUST);螺旋体明胶颗粒凝集试验(TPPA) 中图分类号:R446.11文献标识码:A文章编号:1005—9334(2009)12—0029—02 ComparisonoftheDifferentMethodsExamingTreponema/YUX/ao—ming,HUXue一乃ng,CHI 厶一//Harbin242HospitalofAVIC,Harbin150066,China Abstract0bjL吣tive:toselectthebestscreeningmethodsuitingforblooddonorsbyassessingthevalidityof TRUSTandTPPA.Methods:TRUSTWasusedtoscreenpatientswithsyphihsfromblooddonors。andTPPAWagusedto confirmedpositiveresultsdetected byTRUST.Results:thesensitivity.falsepositiverateandfalsenegativerateofTRUSTwere39.02%,3.03%,and60.98%respectively.111esensitivity,falsepositiverateandfalsenegativerateofEUSAwere 98.73%。20.59%and1.22%.Conclusions:ThecombinationofTRUSTandELISAisthefirstchoiceto∞reenpatientswithsyphilisfromblooddonors.Moreovertllisscreeningcontributestobloodsafety. KeywordsTreponema:TRUST;TPPA l材料与方法 1.1一般资料138例患者均为性病门诊确诊者,其中男83例,占印.14%,女55例,占39.86%。I期梅毒68例,Ⅱ期梅毒51例,Ⅲ期梅毒19例。年龄18~72岁,平均32岁。 1.2试剂TRUST试剂为上海荣盛生物技术有限公司提供。TPPA试剂为日本富士瑞必欧株式会社提供。试剂均在有效期内使用。 1.3方法TRUST试验:室温下,生理盐水稀释至l:32,每孔滴加心磷脂抗原,100次/min振荡器上水平振荡8min,观察凝集结果,确定其阳性滴度。TPPA试验:室温下,在U型板上用稀释液将血清稀释,分别加入致敏和未致敏的明胶颗粒,孵育2h观察结果。 2结果 结果判定:TRUST过筛试验在漆圈中出现肉眼可见红色凝集块为阳性;若红色颗粒均匀分布未见凝集为阴性。TPHA确证试验(凝集)++++:红细胞形成膜状覆盖整个孔底,边缘形成皱褶;(凝集)+++:形成膜状覆盖部分孔底;(凝集)++:形成膜状,边缘成圆环;(凝集)+:成薄膜状,周围边有粗大圆环;(可凝)±:成纽扣状,中心稍薄;(不凝集)一:成光滑扣状结果表1。表l138例梅毒患者的TRUST和TPPA试验结果(例%) 从表1两种方法检测为阳性的138份样本中。TRUST法检出111份,占80%(11138);TPPA法检出133份,占96.4%(133/138);抗TPPA法阳性检出率明显高于TRUST法。 3讨论 从表1中可看出68例I期梅毒血清,TPPA阳性64例,阳性率94.1%,与顾伟鸣悼1报道的96.3%结果相近,TPPA对I期梅毒的敏感度为94.1%,对I期梅毒的敏感度高于TRUST。TRUST具有操作简便、报结果快、价格便宜等优点,可作为梅毒的人群筛查、疗效、复发或再感染的检测指标,当梅毒患者经抗梅毒治疗后,血清滴度下降,可作为疗效观察的指标。TRUST试验所用的抗原是从牛心提取的心磷脂和从鸡蛋黄提取的卵磷脂及胆固醇组成,中,结果清晰易读,稳定性好:缺点是许多因素影响结果,高脂皿症和抗心磷脂抗体阳性的血清均可干扰出现假阳性结果,而且该试验在非淋菌性尿道炎患者中存在生物学假阳

二恶英检测分析方法比较

二恶英检测方法比较 二恶英化合物(简称二恶英)是剧毒有机污染物。人体长期低剂量接触,会导致癌症、雌性化、胎儿畸形、糖尿病等疾病。自比利时发生二恶英食品污染事件和《POPs公约》在瑞典斯德哥尔摩签署以来,二恶英检测与污染防治在国际上受到越来越广泛的关注[1]。二恶英检测属超痕量、多组分检测,对特异性、选择性和灵敏度要求极高,被认为是当代化学分析领域的一大难点。 美国较早开展二恶英检测研究,现已制定出一系列的检测标准。欧洲和日本也相继研究和制定了二恶英检测标准方法。我国目前正处于二恶英基础研究的起步阶段,尚未提出相关检测标准和方法,因此亟待建立符合我国国情的二恶英检测方法和体系。 2 二恶英检测方法 2.1化学仪器分析方法 在200余种异构体中分离出17种有明显毒性的二恶英,分别测定其浓度或含量。将浓度或含量乘以每种二恶英的毒性因子(TEF)就可以得到总毒性当量(TEQ)。该方法的一般程序包括采样、提取、净化、定性定量。 2.1.1 采样 样品的取样量由样品类型、污染水平和方法的检测限而定。各国对采样程序都单独编制了标准方法。 2.1.2 提取 为了测定提取净化效率和校正分析丢失,首先加入17种13C-PCDD/Fs采样内标和37Cl-2,3,7,8-TCDD净化内标。溶剂选择和提取步骤取决于样品类型和净化方法,如在处理废弃物焚烧飞灰时溶剂选取石油醚/甲苯/二氯甲苯,在处理脂肪样品时溶剂选取二氯甲烷/己烷。提取步骤一般包括溶解、振荡、混匀和萃取。索氏萃取是传统的提取方法,广泛应用于检测飞灰、鱼、牛乳和脂肪组织样品中的二恶英。目前,超临界流体萃取装置(SFE)、加压加热型的高速溶剂萃取装置(ASE)和微波萃取方法也用于提取样品中的二恶英,并有大量对比实验证明了这些方法的有效性[3,4]。 2.1.3 净化 为了除去大量干扰物质,目前大多采用色谱法进行净化。色谱法通常将分配处理柱和色谱柱串联使用,包括酸或碱处理、硅胶柱、氧化铝柱、佛罗里柱和活性炭柱的二次净化,具体操作因样品类型和基质性质而异。目前,一些实验室正在开发一次性多层柱(如微型氧化铝柱)和HPLC净化方法来简化净化过程。净化后要加入15种13C-PCDD/Fs定量内标和2个13C 标记的用于确定色谱保留时间的内标[5]。 2.1.4 定性定量 通常定性检测采用2类不同极性的色谱柱。首先用非极性或弱极性固定相将氯原子取代数相同的二恶英化合物分为1组,然后用极性固定相分离其中的异构体,最后通过对17 种标记的和未标记的标准样品实施比较,获取保留时间。定量检测主要采用选择离子监测技术(SIM),以13C稳定同位素为内标,根据测量目的用质量校正程序校正质谱模式、分辨率

测定三氮的基本原理和方法

实验四水体自净程度的指标 前言 各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨 (NH3)或铵 (NH4+)、亚硝酸盐 (NO2-)、硝酸盐 (NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。 有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。 一实验目的 1.掌握测定三氮的基本原理和方法。 2.了解测定三氮对环境化学研究的作用和意义。 二仪器器材 (1) 玻璃蒸馏装置。 (2) pH 计。 (3) 恒温水浴。 (4) 分光光度计。 (5) 电炉:220V/1KW。 (6) 比色管:50 mL。 (7) 陶瓷蒸发皿:100或200 mL。 (8) 移液管:1 mL、2 mL、5 mL。容量瓶:250 mL。 三实验步骤 1. 氨氮的测定——纳氏试剂比色法 (1) 原理 氨与纳氏试剂反应可生成黄色的络合物,其色度与氨的含量成正比,可在425 nm波长下比色测定,检出限为0.02 μg/mL。如水样污染严重,需在pH为7.4的磷酸盐缓冲溶液中预蒸馏分离。 (2) 试剂 ①不含氨的蒸馏水:水样稀释及试剂配制均用无氨蒸馏水。配制方法包括蒸馏法(每升蒸馏水中加入0.1 mL浓硫酸,进行重蒸馏,流出物接受于玻璃容器

检测鉴定方案

检测鉴定方案 辛集市书香园小区4#楼 检测鉴定方案 一、工程概况: 辛集市书香园小区4#楼位于辛集市教育大道东侧,辛集市一中北邻。该楼为六层砖混结构,一层为储藏间,二至六层为住宅。工程于2006年4月份开工建设,2007年11月份竣工验收,建筑面积平方米。 该工程由辛集市博远房地产开发有限公司开发,河北天艺建筑设计有限公司设计,石家庄中天监理公司监理,辛集市天久住宅建设有限责任公司第七施工处施工。 现该4#楼已入住后多户住宅发现墙体裂缝,为了解该楼建筑工程质量状况,辛集市博远房地产开发有限公司委托河北省建筑工程质量检测中心对该楼工程质量现状进行检测鉴定。 二、依据标准 1、委托书 2、《民用建筑可靠性鉴定标准》(GB50292-1999) 3、《建筑结构检测技术标准》(GB50344-2004) 4、《砌体工程现场检测技术标准》(GB/T50315-2000) 5、《建筑结构荷载规范》(GB50009-2001) 6、《砌体结构设计规范》(GB50003-2001)

7、《建筑抗震设计规范》(GB50011-2001) 8、相关技术资料 三、检测内容 1、基础检测 对该建筑物基础各项工程做法进行检测,纵墙(○17~○18×○A轴处)与横量墙(○A~○B×①轴处)分别开挖一处基础测坑。为便于检测,测坑上部开挖尺寸宜控制在1000mm×1000mm左右,经放坡后测坑底部尺寸应控制在600mm×600mm左右,测坑开挖深度为基础灰土层下皮100mm,测坑内部需将余土清理干净,使基础垫层及大放脚轮廓鲜明,表面无积土。测坑开挖需避开雨水管附近,如测坑周围有堆积物不便开挖,经现场检测人员同意可调换适当位置进行,并做好记录。 检测基础工程实际做法,对其标高、尺寸、材料、损伤等逐一进行检测,检查结果绘制成图并详细记录。 检测工具:洋镐、大锤、铁锹、盒尺、钢尺、水平尺、数字测距仪、数码相机、记录簿等。 检测完毕后及时将测坑进行回填,回填时应分层逐一夯实,恢复表面散水及地面。 2、砌体砂浆强度检测 砂浆强度检测 对该建筑物砌体用砂浆强度进行实地检测,每层随机抽

SNPs检测方法比较

一、定义 单核苷酸多态性( single nucleotide olymorphisms ,SNPs),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA 序列多态性。 二、SNPs的研究意义 遗传标记 具有已知性、可遗传性、可检测性,用于疾病基因的定位、克隆和鉴定。 基因多态与疾病相关性 研究SNPs 本身对机体的影响,尤其是疾病的易感性、个性化医疗。 三、SNPs检测方法的分类 1、测序方法:常规测序,Pyrosequencing(焦磷酸测序),微测序(SNaPshot) 2、基于杂交的方法:Taqman 探针法,Microarray 芯片法, 3、引物延伸:MALDI-Tof,dHPLC(变性高效液相色谱技术) 4、以构象为基础的方法:RFLP,SSCP,DGGE 5、溶解曲线:HRM(高分辨率溶解曲线分析技术) 四、各方法概述与比较 测序方法 1、测序方法------ 一般测序和焦磷酸测序 步骤: 序列比对-- 引物设计-- DNA 提取-- PCR - 割胶纯化-- 直接测序或装克隆测序。 优点: SNP 分析金标准,能发现已知SNP,也能发现未知SNP。 缺点: 每个样本的每个位点均需要经PCR 扩增,跑胶,然后切胶纯化,再测序。步骤多而分散,成本较高,工作量大,周期长,价格昂贵,不适合大样本多位点检测。 2、测序方法------微测序方法(SNaPshot) 微测序流程: 1).设计PCR 扩增含SNPs 位点的一段DNA 2).对PCR 产物进行纯化(去除引物和dNTP) 3).引物延伸 4).延伸产物检测(放射性同位素标记法、发光检测法、凝胶为基础的荧光检测法、质谱分析法、变性高压液相色谱法等) 优势: 类似普通测序,但10 个位点PCR 产物同时引物延伸,通量增加。 劣势: 前处理等同普通测序:每个样品的每个位通过点都需要PCR预先扩增,跑胶,割胶,DNA 纯化。不同是10 个位点可以同时测序,提高了测序效率,但对延伸引物要求极高,如每个引物有4-6 个碱基差异,不能有互补区段,还要相同条件延伸,除厂家已经验证的少数位点外,很难自己设计针对新位点的检测。多个分散步骤,费钱费时,易出错。 3、测序方法------费用成本组成: ?基因组DNA提取费用

氮的相关指标检测方法

一、沉积物总氮测定方法:凯式定氮法 1.1方法原理 凯式定氮法是测定化合物或混合物中总氮的一种常用方法,它是用浓硫酸消煮,借催化剂和增温剂等的作用加速有机质分解,并使有机氮转化为氨氮而进入溶液,最后用标准酸滴定蒸馏出的氨,以氨氮的量反应总氮含量。 具体反应式如下 2NH2(CH2)2COOH + 13H2SO4 = (NH4)2SO4 + 6CO2 + 12SO2 + 16H2O (NH4)2SO4 + 2NaOH = 2NH3 + 2 H2O + Na2SO4 2 NH 3 + 4H3BO3 = (NH4)2B4O7 + 5 H2O (NH4)2B4O7 + H2SO4 + 5 H2O = (NH4)2SO4 + 4H3BO3 或(NH4)2B4O7 + 2HCI+ 5 H2O = 2NH4CI+ 4H3BO3 凯式定氮仪的主要工作原理是Kjeldahl蒸馏法测定氨氮含量,测氮时水样不经消解直接加碱调为弱碱性蒸馏,用硼酸溶液吸收,然后用电位滴定仪滴定。 硼酸溶液吸收氨后,溶液pH值上升,用硫酸溶液滴定至初始pH值,pH计控制滴定终点,当接近终点时,降低滴定速度,利用消耗硫酸的量计算氨氮含量。 1.2 需要的设备与实验条件 (1)分析天平:精度0.0001g; (2)自动凯式定氮分析仪; (3)通风橱; (4)消煮炉; (5)烘干箱; (6)pH计:精度0.01pH单位; (7)沸水浴器; (8)干燥器。 1.3所需试剂及操作步骤 1.所需试剂 (1)40%NaOH:称取400g NaOH加入1000 ml蒸馏水中,边加边搅动,防止黏结。 (2)甲基红-溴甲酚绿指示剂:0.1g甲基红和0.07g溴甲酚绿溶解于100 ml乙醇中。 (3)混合加速剂:硫酸钾、硫酸铜、硒粉按100:10:1的比例混合,研磨,过80

水质检测42项常规指标所需仪器试剂

水质检测42 项常规指标所需仪器试剂 一、42 项检测指标 根据农村饮水水质特点和现行国家饮用水水质卫生标准以及《全国农村饮水安全工程“十二五”规划》、《农村饮水安全水质中心建设导则》,水质检测指标为《生活饮用水卫生标准》(GB5749-2006)中的42项水质常规指标。水质检测中心检测指标即: 1、感官性状4项:色度(度)、浑浊度(NTU、臭和味(描述)、肉眼可见物。 2、一般化学指标13 项:pH 铝(mg/L)、铁(mg/L)、锰(mg/L)、铜(mg/L)、锌(mg/L)、氯化物(mg/L)、硫酸盐(mg/L)、溶解性总固体、总硬度(mg/L以CaCO计)、耗氧量(mg/L)、挥发酚类(以苯酚计,mg/L)、阴离子合成洗涤剂 (mg/L)。 3、毒理指标15 项:砷(mg/L)、镉(mg/L)、铬(六价,mg/L)、铅(mg/L)、汞(mg/L)、硒(mg/L)、氰化物、氟化物(mg/L)、硝酸盐(以N计)(mg/L)、三氯甲烷(mg/L)、四氯化碳(mg/L)、溴酸盐(使用臭氧时,mg/L)、甲醛(使用臭氧时,mg/L)、亚氯酸盐(使用二氧化氯消毒时,mg/L)、氯酸盐(使用复合二氧化氯消毒时,mg/L)。 4、微生物学指标4项:菌落总数(CFU/mL、总大肠菌群(MPN /100mL、耐热大肠菌群(MPN /100mL、大肠埃希氏菌(MPN /100mL。 5、与消毒有关的指标4项:应根据水消毒所用消毒剂的种类选择检测指标,游离余氯(mg/L)、臭氧(mg/L)、二氧化氯(mg/L)、一氯胺(总氯,mg/L)。 &放射性指标2项:总a放射性、总B放射性。 说明:根据卫生部、国家发展改革委、水利部关于加强农村饮水安全工程卫生学评价和水质卫生监测工作的通知(卫疾控发〔2008〕3号)附件内容要求监测指标包括: 1. 感官性状4项:色度(度)、浑浊度(NTU、臭和味(描述)、肉眼可见物。 2. 一般化学指标9项:卩日、铁(mg/L)、锰(mg/L)、氯化物(mg/L)、硫酸盐 (mg/L)、溶解性总固体、总硬度(mg/L以CaCO3^)、耗氧量(mg/L)、氨氮(mg/L)。 3. 毒理指标3项:砷(mg/L)、氟化物(mg/L)、硝酸盐(以N计)(mg/L)。 4?微生物学指标3项:菌落总数(CFU/mL、总大肠菌群(MPN /100mL、耐热大肠菌群(MPN /100mL)。 5. 与消毒有关的指标3项:应根据水消毒所用消毒剂的种类选择监测指标,如游离余氯(mg/L)、臭氧(mg/L)、二氧化氯(mg/L)等。 各地可结合当地的实际情况适当增加监测指标。

两种血沉检测方法的比较分析

两种血沉检测方法的比较分析 发表时间:2012-02-01T09:20:22.603Z 来源:《中外健康文摘》2011年第38期供稿作者:杨占甲[导读] 统计学处理将所得数值导入2003版的EXCEL,并对其进行Student-t检验和相关性分析。 杨占甲(河南省郑州人民医院河南郑州450000) 【中图分类号】R446【文献标识码】A【文章编号】1672-5085(2011)38-0080-01 【摘要】目的采用传统的魏氏法和倾斜管法两种方法来测定红细胞的沉降率,并对两种血沉检测方法进行比较分析。方法随机采集100例血液标本,对这100例血液标本同时采用倾斜管法和魏氏法两种方法进行红细胞沉降率的测定,并对两种血沉检测方法进行统计比较和分析。结果对两种血沉检测方法进行比较分析,两种方法测定的红细胞沉降率差异并不显著(P>0.05),没有统计学意义,相关性很好。结论采用倾斜管法对红细胞的沉降率进行测定是一种简单、便捷的方法,可以在特点的条件下使用,具有推广价值。【关键词】魏氏法倾斜管法红细胞沉降率相关性分析 红细胞沉降率是指在一定条件下,红细胞沉降速度的指标,简称为血沉,英文表示为ESR。一个健康人红细胞沉降率通常在一个比较狭窄的范围内上下波动,不会有大幅度的升降变化,而在很多病例情况的干涉下,红细胞沉降率会表现出明显的增快。血沉检查时非特异性试验的一种,但即使如此,将血沉结果与临床资料相互对照显示,血沉检查在临床上很可以有很多应用,可以辅助判断患者机体是否有炎症,患者病变是否有活动性等等,可以为临床检查提供参数具有很重要的参考价值,临床上也常常采用血沉检测的方法来作为试验诊断的方式。在进行红细胞血沉率的测定时,一定要及时进行,只有这样才不会影响记过,所以可以理解,在医院中,采集患者血液样本进行血沉测定时,并不是有专业的医务人员在实验室进行检测和诊断,而是当护士对患者抽血后,立刻将血液移到无菌处置室来进行血沉测定的,但是不可避免的是,护士可能同时有很多工作需要去处理,便不能保证在准确的时间1h读取血沉值,可能晚些甚至将其以往,有鉴于此,本文介绍另一种测量血沉的方法:倾斜管法,并在此将倾斜管法和魏氏法进行血沉比较分析。魏氏法是国际血液学标准化委员会推荐的常规方法,将倾斜管法与魏氏法进行比较分析更具有说服力。 1 资料与方法 1.1一般资料在2006年~2011年诊科病房的患有不同性质疾病的患者中,随机抽取100例患者的血液标本,其中男53例,女47例,年龄53~81岁,平均年龄67岁。 1.2方法清晨,在患者空腹的情况下从患者身上抽取血液,抽取患者的3.2ml的血液,并将其与3.8%枸橼酸钠溶液混合,枸橼酸钠溶液的体积控制在0.8ml,与此同时向其中注入两支魏氏血沉管至“0”刻度,结束后,将其分别放置在两个魏氏血沉架上,在放置时,两支试管放置的方式不同,其中一个按照常规方法放置,即垂直放置,1h后要低于血浆段的高度进行读取并记录,另一个要放置在特定的自制的等腰直角三角形架子上,保持倾斜45°角,并于10min后将血沉值读取。 1.3统计学处理将所得数值导入2003版的EXCEL,并对其进行Student-t检验和相关性分析。 2 结果 经过1h后采用魏氏法测得的血沉值平均为33.12±32.556mm/h,而经过10min后采用倾斜管法测得的血沉值平均为33.39±32.509mm/h,用统计学方法对两组数据进行Student-t检验,结果表明两种方法检测结果没有统计学意义(t=0.59,P=0.52>0.05),对两组结果进行相关性分析,分析结果显示两种方法的检测结果呈正相关,相关系数为r=0.97,数据显示两者相关性较好。 3 讨论 测量红细胞沉降率在临床上应用很广泛,将血沉结果与临床资料相互对照显示,血沉检查在临床上很可以有很多应用,可以辅助判断患者机体是否有炎症,患者病变是否有活动性等等,可以为临床检查提供参数具有很重要的参考价值,临床上也常常采用血沉检测的方法来作为试验诊断的方式。魏氏法是最经典最传统最常规最可靠的检测血沉的方法,魏氏法也是国际血液学标准化委员会推荐的常规方法,但是在实际应用中,魏氏法的过程比较复杂,需要手工操作,而且对观察记录的时间也有比较严格的要求,人们近年来一直在寻求一种更简便、更省事的测量血沉方法,比较熟悉的是采用自动电子血沉仪,这种电子血沉仪虽然更加便捷,且检测的时间也不长,但所得的检测结果受到很多外界因素的影响,但是仪器的成本比较高,并不是所有的医院都可以普及。倾斜管法对仪器并没有新的要求,而且检测的时间短,仅需10min便可,且检测结果可以直接读出来而并不需要进行换算,从两种血沉检测方法的比较分析中,倾斜管法与魏氏法几乎没有差别,相关性较好,对于血沉增高患者结果更加明显,所以倾斜管法适用于血沉增高患者或者需要经常复查血沉的患者,可以对其进行动态检测。 参考文献 [1]陆金春,李春德,黄宇烽.临床检验报告速查手册[M].上海:上海第二军医大学出版社,2009. [2]卢雁英,赖桂凤,郑丹丹.血液标本采集对检验结果的影响[J].包头医学院学报,2011(3):14-15. [3]马翠萍,魏以壁.二级医院检验科生物安全管理现状及对策[J].医学理论与实践,2011(10):132-133. [4]李恵,高洪国,张元梅.两种红细胞沉降率检测方法的比较[J].齐齐哈尔医学院学报,2011(7):67-68.

检测鉴定报告范本

报告编号:××××共8页第1 页工程名称名称要与现有学校名称一致,如与原始资料不符要在括号内注明(原某某学校)工程地点现在名称 委托单位现在名称 鉴定时间×年×月×日至×月×日检验类别委托 鉴定项目安全及抗震鉴定 仪器设备检测所使用设备名称 鉴定依据详见附页 鉴定结论及处理意见 1.鉴定结论 1)有无影响结构安全性缺陷。 2)检测材料强度值是否满足《建筑抗震鉴定标准》规定。 3)抗震构造措施是否满足要求,如不满足,需说明哪里不满足什么标准或规范的要求。 4)安全性等级和试修性评估等级,并注明等级含义。(例:该工程的安全性等级为C su,(安全性不符合标准要求,显著影响整体承载),适修性评估等级为:B'r/ B r (稍难修,改造后的功能尚可达到现行设计标准要求,适修性尚好,宜予修复或改造)。) 2.加固建议 根据鉴定结论,需要加固的项目给出加固建议,如需拆除,则此条改为拆除;如满足各项要求,则无需此条。 (本页以下无正文) 单位名称(盖章) 年月日

报告编号:××××共8页第2 页 1.工程概况 包括建成年份,建筑面积,结构形式,层数,楼板形式,基础形式,基本尺寸;原勘察设计单位,施工单位,监理单位,质检部门,产权所有人等,如果没有资料可查,应注明。 写明鉴定原由。(例:为了保证河北省中小学校舍安全工程顺利实施,按照国务院关于中小学校舍安全工程的统一部署及《全国中小学校舍安全工程实施方案》和《全国中小学校舍安全工程技术指南》的要求,依据《河北省中小学校舍鉴定实施细则》和《河北省中小学校舍安全排查实施细则》,×单位接受委托于×年×月×日~×月×日对以上工程进行了建筑物抗震鉴定与安全性鉴定。) 注明当地设防烈度。 图1该项目正立面图(建筑实体照片) 2.抗震鉴定依据 2.1 该工程设计文件、设计变更及地质勘查报告; 2.2《建筑抗震鉴定标准》(GB 50023-2009); 2.3《民用建筑可靠性鉴定标准》(GB 50292-1999); 2.4《建筑工程抗震设防分类标准》(GB 50223-2008); 2.5《建筑抗震设计规范》(GB 50011-2001)(2008版); 2.6《建筑结构检测技术标准》(GB/T 50344-2004)。 3.鉴定内容、要求及方法 3.1鉴定内容及要求 此次抗震鉴定包括下列内容及要求: 3.1.1搜集该工程的勘察报告、施工和竣工验收的相关原始资料;当资料不全时,应根据鉴定的需要进行补充实测。 3.1.2调查该工程现状与原始资料相符合的程度、施工质量和维护状况,普查相关的非抗震缺陷,工程现状调查又包括如下内容:1)该建筑的使用状况与原设计或竣工时有无不同;2)该建筑存在的缺陷是否仍属于“现状良好”的范围,并从结构受力的角度,检查结构的使用与原设计有无明显的变化;3)检测结构材料的实际强度等级。

水质中常规项目的检测方法自已编制实用

色度 ——铂—钴标准比色法 1、取50ml透明的水样于比色管中(如水样色度过高,可少取水样,加纯水稀释后比色)。 2、另量比色管11支,分别加入铂—钴标准溶液0,0.50,1.00,1.50,2.00,2.50,3.00,3.50,4.00,4.50及5.00ml,加纯水至刻度,摇匀,即配制成色度为0,5,10,15,20,25,30,35,40,45及50度的标准色列,可长期使用。 3、将水样与铂—钴标准色列比较。 4、计算:C=M/V×500 C—水样的色度 M—相当于铂—钴标准溶液用量,ml V—水样体积,ml 浑浊度 ——目视比浊法1、吸取浑浊度为400NTU的标准混悬液0ml,0.25ml,0.50ml,0.75ml,1.00ml,1.25ml,2.50ml,3. 75ml和5.00ml分别置于成套的50ml比色管内,加纯水至刻度,摇匀后即得浑浊度为0NTU,2NTU,4NTU,8NTU,10NTU,20NTU,30NTU,及40NTU的标准混悬液。 2、取50ml摇匀的水样,置于同样规格的比色管内,与浑浊度标准混悬液系列同时振摇均匀后,由管的侧面观察,进行比较,水样的浑浊度超过40NTU时,可用纯水稀释后测定。 水中PH值测定 ——玻璃电极法

1、玻璃电极在使用前应放入纯水中浸泡24小时以上。 2、用PH标准缓冲溶液(PH=4.00)检查仪器和电极必须正常。 3、测定时用接近于水样PH的标准缓冲溶液校准仪器刻度。 4、用洗瓶以纯水缓缓淋洗两电极数次,再以水样淋洗6~8次,然后插入水样中,1分钟后直接从仪器上读出PH值。 水中总硬度的测定 ——乙二胺四乙酸二钠滴定法 1、吸取50ml水样置150ml三角瓶中。 2、加2ml缓冲溶液再加一小勺铬黑T指示剂。 3、立即用EDTA-2N a(0.01mol/L)标液滴定,当溶液由 紫红色刚变为纯兰色时即为滴定终点。同时做空白 对照。 4、计算 C(CaCO3)—水样 总硬度mg/L V0—空白消耗 EDTA-2N a标准溶液的量ml V1—样品消耗EDTA-2N a标准溶液的量ml C—EDTA-2N a标准溶液的浓度mol/L V—水样体积ml 水中氨氮的测定 ——纳氏试剂分光光度法 1、吸取50.0ml澄清水样于50ml比色管中,向水样管中加入1ml酒石酸钾钠溶液(500g/L),混匀。 2、加入1.0ml纳氏试剂,混匀,后放置10分钟。 C(CaCO3)= (V1-V0)×C×100.09×1000 V

实验方法汇总(水质监测指标)

实验方法汇总 第一部分水样的采集和储存 第一节进水取样 用烧杯从进水箱中取样,根据不同指标的测定频率确定取样量的大小,从中取约20mL水样过0.45um滤膜后存于聚乙烯瓶中,标明取样日期后4℃储存于冰箱中用于硝氮、亚硝氮的测定;另取约10mL水样过玻璃纤维膜后用硫酸调pH至小于2,存于玻璃试管中,标明取样日期后4℃储存于冰箱中用于TOC 的测定。其余水样用于COD、氨氮、色度、pH、总铁、蛋白质和多糖指标的测定,测定BOD的当天取样量约300mL。 第二节出水取样 用烧杯从出水口接取一定量水样,其它同进水。 第三节上清液取样 将适量混合液用定性滤纸过滤,取滤液进行各项指标的测定,具体同进水取样,将过滤后余下的污泥倒回反应器内(整个实验中,除测定MLVSS外,其它指标测定完毕后都要将污泥倒回反应器内)。

第二部分理化指标的测定方法 第一节DO、水温的测定 采用溶解氧仪进行DO和水温的测定:将溶氧仪的电极与仪器连接并将电极浸没入反应器内混合液液面以下(每次的测定位置都固定在同一死角处并保证温度感应部分也没入水面以下),打开溶解氧仪,调至显示mg/L单位的状态下,待读数稳定后记录下DO和水温。测试完毕后关掉溶氧仪,拔下电极依次用清水和蒸馏水清洗后,用滤纸小心擦干电极后将溶氧仪放回固定位置处。 第二节pH的测定 1.仪器:pH计10mL小烧杯 2.试剂 用于校准仪器的标准缓冲液,按《pH标准溶液的配制》中规定的数量称取试剂,溶于25 oC水中,在容量瓶内定容至1000ml、水的电导率应低于 2μS/cm,临用前煮沸数分钟,赶走二氧化碳,冷却。取50ml冷却的蒸馏水,加1滴饱和氯化钾溶液,测量pH值,如pH在6~7之间即可用于配制各种标准缓冲液。 pH标准液的配制 标准物质 pH(25 oC)每1000ml水溶液中所含试剂的质量(25 oC) 基本标准 酒石酸氢钾(25 oC饱 3.557 6.4gKHC4H4O6①

检测方法比较

激光散射速率法:激光散射技术是指用激光作光源,在入射光方向以外,借检测 散射光强度、频移及其角度依赖等而得到粒子重量、尺寸、分布及聚集态结构等信息的方法的统称,有着广阔的用途。就检测纳米材料而言,主要涉及频移及其角度依赖性的检测,这种散射技术又称动态光散射、准弹性光散射及光子相关光谱,分别以测定参数的性质、能量转移的大小及测定方法的原理而得名。 散射比浊法:散射比浊法是根据待验样品在凝固过程中散射光的变化来确定检测终点的。在该方法中检测通道的单色光源与光探测器呈90°直角,当向样品中加入凝血激活剂后,随样品中纤维蛋白凝块的形成过程,样品的散射光强度逐步增加。当样品完全凝固以后,散射光的强度不再变化,通常是把凝固的起始点作为0%,凝固终点作为100%,把50%作为凝固时间。光探测器接收这一光学的变化,将其转化为电信号,经过放大再被传送到监测器上进行处理,描出凝固曲线 透射比浊测定法:是测定入射光强度由于溶液中粒子的散射而降低的程度,它并不直接测定散射的光强。这一点与分光光度测定法极为类似。用这种方法时,多用聚乙二醇(PEG)作为反应增强剂。这种非离子型聚合物可以降低抗原抗体复合物的溶解度。 免疫层析法:是近几年来国外兴起的一种快速诊断技术,其原理是将特异的抗体先固定于硝酸纤维素膜的某一区带,当该干燥的硝酸纤维素一端浸入样品(尿液或血清)后,由于毛细管作用,样品将沿着该膜向前移动,当移动至固定有抗体的区域时,样品中相应的抗原即与该抗体发生特异性结合,若用免疫胶体金或免疫酶染色可使该区域显示一定的颜色,从而实现特异性的免疫诊断。 目的: 评估透射免疫比浊法和速率散射比浊法检测C反应蛋白(CRP)的灵敏度和特异性.方法: 用免疫透射比浊法和速率散射比浊法同时检测了80例各种患者血清中CRP浓度. 结果: 两种方法在8~20 mg/L 、20~40 mg/L、40~80 mg/L、80~160 mg/L、160~300 mg/L范围内测定C 反应蛋白的相关系数是0.990、0.996、0.995、0.992、0.997,说明两种方法的相关性是良好的,而在低值1~8 mg/L的测定中两方法的相关系数为0.928.结论: 速率散射免疫比浊法在低值和高值测定中可以得到较为准确的CRP检测结果.

相关文档
最新文档