旅行商问题_TSP_算法的比较

旅行商问题_TSP_算法的比较
旅行商问题_TSP_算法的比较

旅行商问题概述_郭靖扬

旅行商问题(TravelingSalesmanProblem,简称TSP)是一个著名的组合优化问题:给定n个城市,有一个旅行商从某一城市出发,访问每个城市各一次后再回到原出发城市,要求找出的巡回路径最短。如果用图论来描述,那就是已知带权图G= (C,L),寻出总权值最小的Hamilton圈。其中C={c1,c2,…,cn}表示n个城市的集合,L={lij|ci,cj∈C}是集合C中元素(城市)两两连接的集合,每一条边lij,都存在与之对应的权值dij,实际应用中dij可以表示距离、费用、时间、油量等。 TSP的描述虽然简单, 解决起来却很困难。最简单思路是用穷举法把所有可能的巡回路径全部列出来,最短的一个就是最优解,但这样只能处理很小规模的问题。旅行商问题属于 NP-complete问题, 是NP(non-deterministicpoly-nominal)问题中最难的一类,不能在多项式时间内求解。如果有n座城市,那么巡游路径共有(n-1)!/2条,计算的时间和(n-1)!成正比。当 城市数n=20,巡回路径有1.2×1018种,n=100, 巡回路径就有多达4.6×10155种,而据估计宇宙中基本粒子数“仅仅只有”1087个。 尽管如此,随着算法研究的逐步深入和计算机技术飞速提高,对TSP问题的研究不断取得进展。70年来,被征服的TSP规模从几十个城市增加到上万个城市。目前的最高记录是在2004年5月,找到的巡游瑞典24978个城镇的最优路径 (sw24978), 花费了84.8个CPU年。图1展示了TSP的研究进展,最近的二三十年时间里,被攻克的TSP规模高速增长,差不多是每十年增加一个数量级。照这样发展下去的话,再过20年就能解决上百万个城市的TSP,有专家甚至已经为此准备好了数据:全球190,4711个城市的坐标。当然,能不能达到这 个目标,有赖于未来计算技术的发展。 图1TSP的发展 字母后面的数字表示城市数,“sw24978”就是瑞典的 24978个城镇。 一、应用 旅行商问题具有重要的实际意义和工程背景。它一开始 是为交通运输而提出的,比如飞机航线安排、送邮件、快递服务、设计校车行进路线等等。实际上其应用范围扩展到了许多其他领域,下面举几个实例。 印制电路板转孔是TSP应用的经典例子,在一块电路板上打成百上千个孔,转头在这些孔之间移动,相当于对所有的孔进行一次巡游。把这个问题转化为TSP,孔相当于城市,孔到孔之间的移动时间就是距离。 为了避免大气干扰,使光学系统达到其衍射极限分辨率,欧美发达国家提出发展空间光干涉仪和综合孔径望远镜的计划。美国航空航天局有一个卫星群组成空间天文台(Space-basedObservatories)的计划, 用来探测宇宙起源和外星智慧生命。欧洲空间局也有类似的Darwin计划。对天体成像的时候,需要对两颗卫星的位置进行调整,如何控制卫星,使消耗的燃料最少,可以用TSP来求解。这里把天体看作城市,距离就是卫星移动消耗的燃料。 美国国家卫生协会在人类基因排序工作中用TSP方法绘制放射性杂交图。把DNA片断作为城市,它们之间的相似程度作为城市间的距离。法国科学家已经用这种办法作出了老鼠的放射性杂交图。 此外,旅行商问题还有电缆和光缆布线、晶体结构分析、数据串聚类等多种用途。更重要的是,它提供了一个研究组合优化问题的理想平台。很多组合优化问题,比如背包问题、分配问题、车间调度问题,和TSP同属NP-complete类,它们都是同等难度的,如果其中一个能用多项式确定性算法解决,那么其他所有的NP-complete类问题也能用多项式确定性算法解决。很多方法本来是从TSP发展起来的,后来推广到其他NP-complete类问题上去。 二、TSP求解方法 求解旅行商问题的方法可以分为两大类,一类是精确算法,目的是要找到理论最优解;另一类是近似算法,不强求最优解,只要找到“足够好”的满意解就可以了。 (一)精确算法 如前面所述,穷举法和全局搜索算法属于精确算法,但 旅行商问题概述 郭靖扬 (电子科技大学光电信息学院, 四川成都610054) 【摘要】旅行商问题是组合优化的经典问题,应用广泛,而且长期以来被作为NP-complete问题的理想研究平台。文章介绍 了旅行商问题的基础知识、应用,以及常用的求解方法。 【关键词】旅行商问题;组合优化;NP-complete;k-opt;智能算法【中图分类号】TP182【文献标识码】A【文章编号】1008-1151(2006)08-0229-02大众科技 DAZHONGKEJI2006年第8期(总第94期) No.8,2006 (CumulativelyNo.94) 【收稿日期】2006-03-18【作者简介】郭靖扬(1980-),四川宜宾人,电子科技大学光电信息学院硕士研究生。 229--

货郎担问题或旅行商问题动态规划算法

#include #include #define maxsize 20 int n; int cost[maxsize][maxsize]; int visit[maxsize]={1}; //表示城市0已经被加入访问的城市之中 int start = 0; //从城市0开始 int imin(int num, int cur) { int i; if(num==1) //递归调用的出口 return cost[cur][start]; //所有节点的最后一个节点,最后返回最后一个节点到起点的路径 int mincost = 10000; for(i=0; i

{ /*if(mincost <= cost[cur][i]+cost[i][start]) { continue; //其作用为结束本次循环。即跳出循环体中下面尚未执行的语句。区别于break } */ visit[i] = 1; //递归调用时,防止重复调用 int value = cost[cur][i] + imin(num-1, i); if(mincost > value) { mincost = value; } visit[i] = 0;//本次递归调用完毕,让下次递归调用 } } return mincost;

} int main() { int i,j; // int k,e,w; n=4; int cc[4][4]={{0,10,15,20}, {5,0,9,10}, {6,13,0,12}, {8,8,9,0}}; for(i=0; i

仿真的多目标优化(蚁群算法在旅行商问题中的应用)

(多目标优化模型)

蚁群算法在旅行商问题中的应用 摘要 本文将对蚁群算法的仿真学原理进行概要介绍和对蚁群算法产生、发展、优化进行介绍以及阐述蚁群算法的几点重要基本规则,并对蚁群算法的优缺点进行讨论。蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能多目标优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用。 关键字:蚁群算法;旅行商问题;仿真;多目标优化

一、问题重述 旅行商问题(TSP)是一个经典的组合优化问题。TSP可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton 回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个N P完全问题。随着问题规模的增大,人们对复杂事物和复杂系统建立数学模型并进行求解的能力是有限的,目标函数和约束条件往往不能以明确的函数关系表达,或因函数带有随机参、变量,导致基于数学模型的优化方法在应用于实际生产时,有其局限性甚至不适用。基于仿真的优化(Simulation Based Optimization,SBO)方法正是在这样的背景下发展起来的。本文将使用一种近似算法或启发式算法—蚁族算法。 1、蚁群算法的提出 蚁群算法(Ant Colony Optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 2、蚁群算法的仿生学原理 蚁群算法最初是通过对蚂蚁群落的观察,受蚁群行为特征启发而得出的。蚂蚁是一种群居昆虫,在觅食、清理巢穴征启发而得出的。蚂蚁是一种群居昆虫,在觅食、等活动中,彼此依赖、相互协作共同完成特定的任务。等活动中,彼此依赖、相互协作共同完成特定的任务。就个体来讲,单个蚂蚁的智力和体力是极其有限的,体来讲,单个蚂蚁的智力和体力是极其有限的,服务于整个群落的生存与发展;就群体来讲,蚁群在行为上的分工协作、群落的生存与发展;就群体来讲,蚁群在行为上的分工协作、在完成任务过程中所体现的自组织特征等反应出蚁群具有较高的智能和自我管理能力,具有很高层次组织性,高的智能和自我管理能力,具有很高层次组织性,这使得蚁群能够完成一些复杂的任务。群能够完成一些复杂的任务。 蚁群的行为是整体协作,相互分工,蚁群的行为是整体协作,相互分工,以一个整体去解决一些对单个蚂蚁看上去是不可能完成的任务。些对单个蚂蚁看上去是不可能完成的任务。就目前来讲,蚁群至少有三个方面的行为特征对算法研究有很好的启发意义,分别是觅食行为、任务分配、死蚁堆积阁。蚁群的觅食行为指蚂蚁从巢穴出发寻找食物并且将食物搬回巢穴的行为.当蚂蚁出外寻找食物时,会在自己走过的路径上释放一种称为信息家的物质,径上释放一种称为信息家的物质,后续的蚂蚁一般更愿意走那些信息素强度更高的路径。这样,那些信息素强度更高的路径。这样,较短路径上单位时间内通过的蚂蚁数目较多,留下的信息素也较多(浓度更高) 通过的蚂蚁数目较多,留下的信息素也较多(浓度更高),对蚂蚁产生了更强的吸引,使得更多的蚂蚁走较短的路径。妈蚁产生了更强的吸引,使得更多的蚂蚁走较短的路径。这就形成了一个正反馈机制,就形成了一个正反馈机制,使得最终所有的蚂蚁都走蚁穴到食物源的最短路径. 食物源的最短路径. 3、蚁群算法实现的重要规则 (1)范围 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范

TSP问题算法分析

T S P问题算法分析集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

算法第二次大作业 TSP问题算法分析 021251班 王昱(02125029) 一.问题描述 “TSP问题”常被称为“旅行商问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。 TSP问题在本实验中的具体化:从A城市出发,到达每个城市并且一个城市只允许访问一次,最后又回到原来的城市,寻找一条最短距离的路径。 二.算法描述 2.1分支界限法 2.1.1算法思想 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

2.1.2算法设计说明 设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down,up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。 对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即: bound(x1)≥bound(x1,x2)≥…≥bound(x1,…,xn) 若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。 再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。 直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值 bound(x1,…,xn)。 2.2A*算法 算法思想 对于某一已到达的现行状态,如已到达图中的n节点,它是否可能成为最佳路径上的一点的估价,应由估价函数f(n)值来决定。假设g*(n)函数值表示从起始节点s到任意一个节点n的一条最佳路径上的实际耗散值。h*(n)函数值表示从任意节点n到目标节点ti的最佳路径的实际耗散值。其中ti是一个可能的目标节点。f*(n)函数值表示从起始s,通过某一指定的n到达目标节点ti的一条最佳路径的实际耗散值,并有 f*(n)=g*(n)+h*(n)。

Tsp问题的几种算法的分析

摘要 本文分析比较了tsp问题的动态规划算法,分支界限法,近似等算法。分析了旅行商问题的时间度特点,针对启发式算法求解旅行商问题中存在的一些问题提出了改进算法。此算法将群体分为若干小子集,并用启发式交叉算子,以较好利用父代个体的有效信息,达到快速收敛的效果,实验表明此算法能提高寻优速度,解得质量也有所提高。 关键词:旅行商问题TSP Abstract this paper analyzed the time complexity of traveling salesman problem,then put forward some imprivement towards the genetic algorithm for solving this problen: divding the population into some small parent individual well.so it can quickly get into convergence, the experimental result indicates the impwoved algorithm can accelerate the apeed of finding solution and improve the precision. Keywords traveling salesman problem; genetic algorithm; subset; henristic crossover operator

目录 1、摘要--------------------------------------------------------------1 2、Abstract---------------------------------------------------------1 3、Tsp问题的提法------------------------------------------------2 4、回溯法求Tsp问题--------------------------------------------3 5、分支限界法求Tsp问题--------------------------------------7 6、近似算法求解Tsp问题-------------------------------------10 7、动态规划算法解Tsp问题----------------------------------12

算法报告-旅行商问题模板讲解

《算法设计与课程设计》 题目: TSP问题多种算法策略 班级:计算机技术14 学号: 姓名: 指导老师: 完成日期: 成绩:

旅行商问题的求解方法 摘要 旅行商问题(TSP 问题)时是指旅行家要旅行n 个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。本文主要介绍用动态规划法、贪心法、回溯法和深度优先搜索策略求解TSP 问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。 关键字:旅行商问题;动态规划法;贪心法;回溯法;深度优先搜索策略 1引言 旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。研究TSP 的求解方法对解决复杂工程优化问题具有重要的参考价值。关于TSP 的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。归纳起来,目前主要算法可分成传统优化算法和现代优化算法。在传统优化算法中又可分为:最优解算法和近似方法。最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法、回溯法和深度优先搜索策略。 2正文 2.1动态规划法 2.1.1动态规划法的设计思想 动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。 2.1.2 TSP 问题的动态规划函数 假设从顶点i 出发,令'(,)d i V 表示从顶点i 出发经过'V 中各个顶点一次且仅一次,最后回到出发点i 的最短路径长度,开始时,{}'V V i =-,于是,TSP 问

基于蚁群算法的旅行商问题解决方案

基于蚁群算法的旅行商问题解决方案 一引言 旅行商问题(TSP, Traveling Salesman Problem)是在1859年由威廉·汉密尔顿爵士首次提出的,它是物流领域中的典型问题,这个问题的求解具有十分重要的理论和现实意义。所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志。如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。 二蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-mone)。当它们碰到一个还没有走过的路口时,就随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。这样形成了一个正反馈。最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。 三基于蚁群算法的旅行商问题求解方案 TSP问题描述如下: 设有n个城市C=(1,2,...,n),任意两个城市i,j之间的距离为d ij ,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。

基于MATLAB的蚁群算法解决旅行商问题 (附带源程序、仿真)

摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。 关键词:蚁群算法;旅行商问题;MATLAB;优化 一、意义和目标 旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。 已被广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。 二、国内外研究现状 仿生学出现于20世纪50年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。 20世纪90年代意大利科学家M.Dorigo M最早提出了蚁群优化算法——蚂蚁系统(Ant system, AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。 旅行商问题(TSP, Traveling Salesman Problem)被认为是一个基本问题,是在1859年由威廉·汉密尔顿爵士首次提出的。所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。

旅行商问题的几种求解算法比较

旅行商问题的几种求解算法比较 作者: (xxx学校) 摘要:TSP问题是组合优化领域的经典问题之一,吸引了许多不同领域的研究工作者,包括数学,运筹学,物理,生物和人工智能等领域,他是目前优化领域里的热点.本文从动态规划法,分支界限法,回溯法分别来实现这个题目,并比较哪种更优越,来探索这个经典的NP(Nondeterministic Polynomial)难题. 关键词:旅行商问题求解算法比较 一.引言 旅行商问题(Travelling Salesman Problem),是计算机算法中的一个经典的难解问题,已归为NP一完备问题类.围绕着这个问题有各种不同的求解方法,已有的算法如动态规划法,分支限界法,回溯法等,这些精确式方法都是指数级(2n)[2,3]的,根本无法解决目前的实际问题,贪心法是近似方法,而启发式算法不能保证得到的解是最优解,甚至是较好的解释.所以我认为很多问题有快速的算法(多项式算法),但是,也有很多问题是无法用算法解决的.事实上,已经证明很多问题不可能在多项式时间内解决出来.但是,有很多很重要的问题他们的解虽然很难求解出来,但是他们的值却是很容易求可以算出来的.这种事实导致了NP完全问题.NP表示非确定的多项式,意思是这个问题的解可以用非确定性的算法"猜"出来.如果我们有一个可以猜想的机器,我们就可以在合理的时间内找到一个比较好的解.NP-完全问题学习的简单与否,取决于问题的难易程度.因为有很多问题,它们的输出极其复杂,比如说人们早就提出的一类被称作NP-难题的问题.这类问题不像NP-完全问题那样时间有限的.因为NP-问题由上述那些特征,所以很容易想到一些简单的算法――把全部的可行解算一遍.但是这种算法太慢了(通常时间复杂度为O(2^n))在很多情况下是不可行的.现在,没有知道有没有那种精确的算法存在.证明存在或者不存在那种精确的算法这个沉重的担子就留给了新的研究者了,或许你就是成功者. 本篇论文就是想用几种方法来就一个销售商从几个城市中的某一城市出发,不重复地走完其余N—1个城市,并回到原出发点,在所有可能的路径中求出路径长度最短的一条,比较是否是最优化,哪种结果好. 二.求解策略及优化算法 动态规划法解TSP问题 我们将具有明显的阶段划分和状态转移方程的规划称为动态规划,这种动态规划是在研究多阶段决策问题时推导出来的,具有严格的数学形式,适合用于理论上的分析.在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段法反而麻烦.一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决.所以动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的,相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略. 旅行商问题(TSP问题)其实就是一个最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解.若存在若干个取最优值的解的话,它只取其中的一个.在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算. 关于旅行商的问题,状态变量是gk(i,S),表示从0出发经过k个城市到达i的最短距离,S为包含k 个城市的可能集合,动态规划的递推关系为:

用遗传算法解决旅行商问题

用遗传算法解决旅行商问题 姓名:王晓梅 学号:1301281 班级:系统工程6班

一、问题背景 有一个销售员,要到n 个城市推销商品,他要找出一个包含所有n 个城市的具有最短路程的环路。 现在假设有10个城市,他们之间的距离如下。 { 0, 107, 241, 190, 124, 80, 316, 76, 152, 157}, { 107, 0, 148, 137, 88, 127, 336, 183, 134, 95}, { 241, 148, 0, 374, 171, 259, 509, 317, 217, 232}, { 190, 137, 374, 0, 202, 234, 222, 192, 248, 42}, { 124, 88, 171, 202, 0, 61, 392, 202, 46, 160}, { 80, 127, 259, 234, 61, 0, 386, 141, 72, 167}, { 316, 336, 509, 222, 392, 386, 0, 233, 438, 254}, { 76, 183, 317, 192, 202, 141, 233, 0, 213, 188}, { 152, 134, 217, 248, 46, 72, 438, 213, 0, 206}, { 157, 95, 232, 42, 160, 167, 254, 188, 206, 0} 将这10个城市分别编码为0,1,2,3,4,5,6,7,8,9。要求走完这10个城市,目标是使走的距离最短。 二、建立模型 ),...,1,(1) ,...,1,(1. .)(min 11 11n j j i n i j i t s j i n j ij n i ij ij n i n j ij x x d x =≠==≠=≠∑∑∑∑====

算法论文:旅行商问题的求解方法(动态规划法和贪心法)

旅行商问题的求解方法 摘要 旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。 关键字:旅行商问题;动态规划法;贪心法;分支限界法 1引言 旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。归纳起来,目前主要算法可分成传统优化算法和现代优化算法。在传统优化算法中又可分为:最优解算法和近似方法。最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。 2正文 2.1蛮力法 2.1.1蛮力法的设计思想 蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。在基本的数据结构中,一次处理每个元素的方法是遍历。 2.1.2算法讨论 用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。如对于图1,我们求解过程如下: (1)路径:1->2->3->4->1;路径长度:18; (2)路径:1->2->4->3->1;路径长度:11; (3)路径:1->3->2->4->1;路径长度:23; (4)路径:1->3->4->2->1;路径长度:11;

相关文档
最新文档