线性方程组的迭代求解java

线性方程组的迭代求解java
线性方程组的迭代求解java

线性方程组的迭代求解

摘要

迭代法是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行。迭代法具有循环的计算方法,方法简单,适宜解大型稀疏矩阵方程组

本文总结了解线性方程组的三个迭代法,Jacobi迭代法,Gauss-Seidel迭代法,SOR 迭代法,并且介绍了软件JA V A在这方面的应用。

关键词: Jacobi迭代法;Gauss-Seidel迭代法;SOR迭代法;计算

SOLUTION OF LINEAR EQUATIONS OF ITERATION WITH

THE EXPERIMENTAL

ABSTRACT

Iteration is a kind of method to solve questions by step-by-step approximation. When we are getting the solution of linear equations by using iteration, the coefficient matrix is always staying the same in computation process. Computer could operate fastly so that it is suitable for operating again and again. Iteration is easy to operate to solve the large matrix equations by using a calculate method called circulation.

This summary understanding of linear equations three kind of iteration, Jacobi iteration, Gauss-Seidel iteration, successive over relaxation method ,and introduce modern software JA V A in this respect.

Key words:Jacobi iteration; Gauss-Seidel iteration; Successive Over Relaxation method ;

calculating

目录

1迭代法概述 (1)

1.1迭代法定义 (1)

1.2迭代法基本原理 (1)

2迭代法解线性方程组 (1)

2.1雅克比(Jacobi)迭代法 (1)

2.2 高斯—赛德尔(Gauss-Seidel)迭代法 (4)

2.3超松弛(SOR)迭代法 (7)

3 总结 (9)

参考文献 (10)

附录 (11)

1 迭代法概述

迭代法也称辗转法,是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或步骤)时,都从变量的原值推出它的一个新值。

迭代法具有循环的计算方法,方法简单,适宜解大型稀疏矩阵方程组,在用计算机

计算时只需存储A 的非零元素(或可按一定公式形成系数,这样A 就不需要存储) [1]

1.1 迭代法定义

(1)对于给定的方程组x Bx f =+,用式子

(1)(0)(2)(1)

(1)()k k x Bx f

x Bx f

x

Bx f +?=+?=+??

??=+

? (1-1) 逐步代入求近似解的方法称为迭代法(或称为一阶定常迭代法,这里与B 和k 无关) (2)如果()lim k x x →∞

存在(记作x *),称此迭代法收敛,显然x *就是方程组的解,否则

称此迭代法发散。

1.2 迭代法基本定理

设有方程组x Bx f =+,对于任意初始向量(0)x 及任意f,解此方程组的迭代法(即

(1)()k k x Bx f +=+)收敛的充要条件是()1B ρ<.

2 迭代法解线性方程组

2.1 雅克比(Jacobi )迭代法 2.1.1 Jacobi 迭代法的定义

设有方程组

n

1

ij j i

j

a x b

=

=

∑(1,2,,

i n

=),

记作Ax b

=(2-1)

A为非奇异阵且a0(1,2,,)

ij

i n

≠=。将A分裂为A D L U

=--,其中

11

12

nn

a

a

D

a

??

??

??

??

=

??

??

??

?

?

21

3132

12,1

n n n n

a

a a

L

a a a

-

??

??

??

??

=

??

??

??

??

12131

232

1,

n

n

n n

a a a

a a

U

a

-

??

??

??

??

=-

??

??

??

??

将式(2-1)第i(1,2,,

i n

=)个方程用

ij

a去除再移项,得到等价方程组

1

1

()

n

i ij j

j

ij

j i

x b a x

a=

=-∑(1,2,,

i n

=), (2-2)

简单记作

x B x f

=+,其中11

()

B I D A D L U

--

=-=+, 1

f D b

-

=

对方程组(2-2)应用迭代法,得到(2-1)的迭代公式

(0)(0)(0)(0)

12

(1)()

1

(,,,)

1

()

T

n

n

k k

i i ij j

j

ij

j i

x x x x

x b a x

a

+

=

?=

??

?=-

?

??

∑(2-3)

其中(0)(0)(0)(0)

12

(,,,)T

n

x x x x

=为第k次迭代向量,设()k x已经算出,由式(2-3)可计算下一次迭代向量(1)(0,1,2,;1,2,,)

k

x k i n

+==。

显然迭代公式(2-3)的矩阵形式为

(0)

(1)(

()

+f

k k

i

x

x B x

+

?

?

=

?)

初始向量

(2-4)

其中

B称为Jacobi方法迭代矩阵。

2.1.2 JAVA程序实现Jacobi迭代法

编写java程序用Jacobi迭代法解如下方程组:

例1:

123

123

123

5+2+12

4220

23103

x x x

x x x

x x x

=-

?

?

-++=

?

?-+=

?

实验结果如下图所示(JA V A程序设计详见附录源程序1)

2.2 Gauss-Seidel迭代法

2.2.1 高斯—赛德尔(Gauss-Seidel)迭代法的定义

雅克比迭代法的优点是公式简单,迭代矩阵容易计算。在每一步迭代时,用)(k

x

的全部分量求出)1

(+

k

x的全部分量,因此称为同步迭代法,计算时需保留两个近似解)

(k

x和)1

(+

k

x。

但在雅克比迭代过程中,对已经计算出的信息未能充分利用,即在计算第i个

分量)1

(+

k

i

x时,已经计算出的最新分量)1

(

1

)1

(

1

,

,+

-

+k

i

k x

x 没有被利用。从直观上看,在收

敛的前提下,这些新的分量)1

(

1

)1

(

1

,

,+

-

+k

i

k x

x 应比旧的分量)(

1

)

(

1

,

,k

i

k x

x

-

更好,更精确一

些。因此,如果每计算出一个新的分量便立即用它取代对应的旧分量进行迭代,可

能收敛的速度更快,并且只需要储存一个近似解向量即可。据此思想可构造高斯—

赛德尔(Gauss-Seidel)迭代法,其迭代公式为

)

(

1)(

1

11

)1

(

)1

(

i

k

j

i

j

n

i

j

ij

k

j

ij

ii

k

i

b

x

a

x

a

a

x+

-

=∑∑

-

=+

=

+

+(i=1,2,…,n) (2-5) 也可以写成矩阵形式

S

G

k

S

G

k f

x

B

x

-

-

++

=)(

)1

(

仍将系数矩阵A分解为U

L

D

A-

-

=

则方程组变为b

x

U

L

D=

-

-)

(

得b

Ux

Lx

Dx+

+

= (2-6)

将最新分量代替为旧分量,得

b

Ux

Lx

Dx k

k

k+

+

=+

+)

(

)1

(

)1

(

即b

Ux

x

L

D k

k+

=

-+)(

)1

(

)

(

于是有b

L

D

Ux

L

D

x k

k1

)

(

1

)1

()

(

)

(-

-

+-

+

-

= (2-7)

所以U

L

D

B

S

G

1

)

(-

-

-

=b

L

D

f

S

G

1

)

(-

-

-

=

因为高斯—赛德尔迭代法比雅克比迭代法收敛快,这个结论在多数情况下是成

立的,但也有相反的情况,即高斯—赛德尔迭代法比雅克比迭代法收敛慢,甚至还

有雅克比迭代法收敛,高斯—赛德尔迭代法发散的情形。

2.2.2 JAVA程序实现高斯—赛德尔(Gauss-Seidel)迭代法

编写java程序用Gauss-Seidel迭代法解上述例1方程组:

实验结果如下图所示(JAVA程序设计详见附录源程序2):

2.3 超松弛(SOR )迭代法

2.3.1 超松弛(SOR )迭代法的定义

超松弛迭代法(Successive Over Relaxation Method, SOR 方法)是高斯—赛德尔迭代法的一种改进,是解大型稀疏方程组的有效方法之一。

设已知第k 次迭代向量)(k x ,及第k+1次迭代向量的前i-1个分量)1(+k j x ,(j=1,2,…i-1),现在研究如何求向量)1(+k x 的第i 个分量)1(+k i x 。

首先,有高斯—赛德尔迭代法求出一个值,记为

)(1~1

)()1(11)1(∑∑+=+-=+--=n

i j k j ij k j i j ij i ii k i x a x a b a x (i=1,2,…n ) (2-8) 再将第k 次迭代向量的第i 个分量)(k j x 与)1(~+k i x 进行加权平均, 得)1(+k i x ,即:

)1(+k i x )1()(~)1(++-=k i k i x x ωω

)~()()1()(k i k i k i x x x -+=+ω (2-9) 于是的SOR 迭代公式 )()(1

)1(1

1

)()1(k j n

j ij k j

i j ij i ii

k i

k i

x a x

a b a x

x ∑∑=+-=+--+

(i=1,2,…

n) …① 或

)()1()(1

)1(1

1

)()1(k j

n

i j ij

k j

i j ij i ii

k i

k i x

a x

a b a x

x

∑∑+=+-=+-

-+

-=ω

ω (i=1,2,…n ) …②

当ω=1时,式①即为高斯—赛德尔迭代法;

当0<ω<1时,式①称为低松弛方法,当某些方程组用高斯—赛德尔迭代法不收敛时,可以用低松弛方法获得收敛;

当ω>1时,式①称为超松弛方法,可以用来提高收敛速度。 将式②写成矩阵的形式,得:

)()1()()1()()1(k k k k UX LX b DX DX +++-=++ωω

即 b x U D x L D k k ωωωω++-=-+)()1(])1[()( (2-10) 于是得SOR 迭代的矩阵表示

ωωf X B x k k +=+)()1( (2-11) 其中 ])1[()(1U D L D B ωωωω+--=- b L D f 1)(--=ωωω 2.3.2 JAVA 程序实现超松弛(SOR )迭代法 编写java 程序用SOR 迭代法解上述例1方程组:

实验结果如下图所示(JAVA 程序设计详见附录源程序3):

3 总结

在数学课程的学习中,应注重学生数学计算能力和应用能力的培养。利用数学软件来解决课程中的计算和作图问题,提高学习效率,加深学习兴趣。

本次课程设计课题是关于我们本学期的课程——数值分析中的迭代求解方程组内容,在数值分析学习中主要使用MATLAB或是C++进行迭代计算,从未使用过JA V A 编程进行迭代计算,这次课程设计对我来说也是一项挑战。

编程过程其实也是一个学习的过程,加深了我对JA V A的认识,同时也更督促我在JA V A方面下工夫。在编写JA V A程序的过程中,遇到很多问题,比如编写错误,或是难以实现目的等。通过网上查找资料,求助同学帮助一起解决问题。意识到自己很大的不足,进步空间很大,需要多练习编程才能在JA V A学习中更进一步。

我们在理解掌握数学理论知识的同时,能借助现代软件利用迭代法简单迅速地计算出繁杂的数学运算结果,大大提高了解题效率和学习效果。

参考文献

[1] 印旻王行言.Java语言与面向对象程序设计(第二版).北京:清华大学出版社,2012.5

[2] 李庆扬王能超.数值分析(第四版).武汉:华中科技大学出版社,2006.7

[3] 奥特加J M.数值分析[M].张丽君张乃玲,译.北京:高等教育出版社,1983

附录

源程序1:

package https://www.360docs.net/doc/258789279.html,.Test;

import java.util.Scanner;

public class Jacobi {

/**

* @雅可比迭代法求线性方程组

*/

static double a[][]; //矩阵A的值

static double b[]; //矩阵B的值

static double x[]; //现在矩阵X的值

static double x2[]; //以前矩阵X的值,以便计算精度

static int n; //元数

static double e; //精度

public static void IT(){

int k=0;

System.out.println("k x1 x2 x3");

System.out.print(k+" ");

for(int i=1;i<=n;i++)

{

System.out.print(x[i]+" ");

}

System.out.println("\n");

do{

k++;

for(int i=1;i<=n;i++)

x2[i]=x[i];

for(int i=1;i<=n;i++)

{

x[i]=f_x(i);

}

System.out.print(k+" ");

for(int i=1;i<=n;i++)

{

System.out.print(x[i]+" ");

}

System.out.println("\n");

}while(jisuan()>=e);

}

public static double jisuan(){ //计算精度

double max=0.0;

for(int i=1;i<=n;i++)

{

double x3=Math.abs(x[i]-x2[i]);

if(x3>max) max=x3;

}

return max;

}

public static double f_x(int i){//算迭代式的值double x1=0.0;

for(int j=1;j<=n;j++)

if(j!=i) x1=x1+a[i][j]*x2[j];

double x2=(b[i]-x1)/a[i][i];

return x2;

}

public static void Print_Jie()//输出方程组的解

{

System.out.print("方程组的解为:");

for(int i=1;i<=n;i++)

System.out.print("x"+i+" = "+x[i]);

}

public static void main(String[] args) {

Scanner as=new Scanner(System.in);

System.out.println("输入方程组的元数:");

n=as.nextInt();

a=new double[n+1][n+1];

b=new double[n+1];

x=new double[n+1];

x2=new double[n+1];

System.out.println("输入方程组的系数矩阵a:");

for(int i=1;i<=n;i++)

for(int j=1;j<=n;j++)

a[i][j]=as.nextDouble();

System.out.println("输入方程组矩阵b:");

for(int i=1;i<=n;i++)

b[i]=as.nextDouble();

System.out.println("输入精度e:");

e=as.nextDouble();

IT();

Print_Jie();

}

}

源程序2:

import java.util.Scanner;

public class Gauss_Seidel {

/**

* @高斯-赛德尔迭代法求线性方程组

*/

static double a[][];

static double b[];

static double x[];

static double x2[];

static int n;

static double e;

public static void IT(){

int k=0;

System.out.println("k x1 x2 x3");

System.out.print(k+" ");

for(int i=1;i<=n;i++)

{

System.out.print(x[i]+" ");

}

System.out.println("\n");

do{

k++;

for(int i=1;i<=n;i++)

x2[i]=x[i];

for(int i=1;i<=n;i++)

{

x[i]=f_x(i);

}

System.out.print(k+" ");

for(int i=1;i<=n;i++)

{

System.out.print(x[i]+" ");

}

System.out.println("\n");

}while(jisuan()>=e);

}

public static double jisuan(){

double max=0.0;

for(int i=1;i<=n;i++)

{

double x3=Math.abs(x[i]-x2[i]);

if(x3>max) max=x3;

}

return max;

}

public static double f_x(int i){//算迭代式的值double x1=0.0;

for(int j=1;j<=n;j++)

if(j!=i) x1=x1+a[i][j]*x[j];

double x2=(b[i]-x1)/a[i][i];

return x2;

}

public static void Print_Jie()//输出方程组的解{

System.out.print("方程组的解为:");

for(int i=1;i<=n;i++)

System.out.print("x"+i+" = "+x[i]);

public static void main(String[] args) {

Scanner as=new Scanner(System.in);

System.out.println("输入方程组的元数:");

n=as.nextInt();

a=new double[n+1][n+1];

b=new double[n+1];

x=new double[n+1];

x2=new double[n+1];

System.out.println("输入方程组的系数矩阵a:"); for(int i=1;i<=n;i++)

for(int j=1;j<=n;j++)

a[i][j]=as.nextDouble();

System.out.println("输入方程组矩阵b:");

for(int i=1;i<=n;i++)

b[i]=as.nextDouble();

System.out.println("输入精度e:");

e=as.nextDouble();

IT();

Print_Jie();

}

}

源程序3:

import java.util.Scanner;

public class SOR {

/**

* @高松弛迭代法求线性方程组

static double a[][];

static double b[];

static double x[];

static double x2[];

static int n;

static double e;

public static void IT(){

int k=0;

System.out.println("k x1 x2 x3");

System.out.print(k+" ");

for(int i=1;i<=n;i++)

{

System.out.print(x[i]+" ");

}

System.out.println("\n");

do{

k++;

for(int i=1;i<=n;i++)

x2[i]=x[i];

for(int i=1;i<=n;i++)

{

x[i]=f_x(i);

}

System.out.print(k+" ");

for(int i=1;i<=n;i++)

{

System.out.print(x[i]+" ");

}

System.out.println("\n");

迭代法求解线性方程组的研究

迭代法求解线性方程组的研究 【摘要】:本文总结了解线性方程组的三个迭代法,Jacobi 迭代法,Gauss-seidel 迭代法,SOR 迭代法,并且介绍了现代数值计算软件MATLAB 在这方面的应用,即分别给出三个迭代法的数值实验。 【关键字】:Jacobi 迭代法 Gauss-seidel 迭代法 SOR 迭代法 数值实验 一. 引言 迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重 要方法。 迭代法的基本思想是用逐次逼近的方法求解线性方程组。 设有方程组 b Ax = …① 将其转化为等价的,便于迭代的形式 f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式 f Bx x k k +=+)() 1( …③ 式中B 称为迭代矩阵,f 称为迭代向量。对任意的初始向量) 0(x ,由式③可求得向量序列 ∞0)(}{k x ,若*) (lim x x k k =∞ →,则*x 就是方程①或方程②的解。此时迭代公式②是收敛的,否则称为发散的。构造的迭代公式③是否收敛,取决于迭代矩阵B 的性质。 本文介绍三种解线性方程组的最主要的三种迭代法:Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 迭代法。本文结构如下:第二部分介绍Jacobi 迭代法及其数值实验,第三部分介绍Gauss-Seidel 迭代法及其数值实验,第四部分介绍SOR 迭代法及其数值实验,第五部分总结。 二. 雅克比(Jacobi )迭代法 1. 雅克比迭代法的格式 设有方程组

),,3,2,1(1 n i b x a j j n j ij ==∑= …① 矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠ 从式①中第i 个方程中解出x ,得其等价形式 )(1 1 1j n j j ij ii i x a b a x ∑≠=-= …② 取初始向量),,,() 0()0(2)0(1) 0(n x x x x =,对式②应用迭代法,可建立相应的迭代公式: )(11 1)() 1(∑≠=++-=n j j i k j ij ii k i b x a a x …③ 也可记为矩阵形式: J x J k F B x k +==) () 1( …④ 若将系数矩阵A 分解为A=D-L-U ,式中 ???? ? ? ? ??=nn a a a D 2211, ?? ? ?? ?? ? ??=--00 00121323121nn n n a a a a a a L , ?? ? ??? ? ? ? ?=--00 00122311312n n n n a a a a a a D 。 则方程Ax=b 变为 b x U L D =--)( 得 b x U L Dx ++=)( 于是 b D x U L D x 1 1 )(--++=

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

研究线性方程组迭代收敛速度

研究解线性方程组迭代收敛速度 一. 实验目的 科学研究与生产实践中许多问题都可归结为线性方程组的求解,高效求解线性方程组成为了许多科学与工程计算的核心.迭代法就是用某种极限过程去逼近线性方程组精确解的方法,该方法具有对计算机的存贮单元需求少,程序计算简单,原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法。常用的迭代法有Jacobi 迭代法、Gauss —seidel 迭代法、逐次超松驰法(SOR 法)等。 二. 实验摘要 由迭代法平均收敛速度与渐进收敛速度的关系引入近似估计法,即通过对迭代平均收敛速度取对数,然后利用Mathematica 软件对其进行拟合,给出拟合函数,最终得到了Jacobi 迭代法、Gauss —seidel 法的平均收敛速度收敛到渐进收敛速度的近似收敛阶,以及逐次超松驰法(SOR 法)的渐进收敛速度,且该法适用于其他迭代法收敛速度的估计。 三. 迭代法原理 1.Jacobi 迭代法(J 法) 设方程组b Ax =,其中, n n n n ij R a A ??∈=)(,。n R b x ∈, A 为可逆矩阵,可分裂为,U D L A ++=其中, ??????? ???? ???? ?=-00 00 1 ,21323121 n n n n a a a a a a L ΛO O M M ??????? ????? ??? ?=-00 0,1223 11312n n n n a a a a a a U M O O ΛΛ

??????? ? ???? ??? ?=nn a a a D O O 22 11 从而由b Ax =得到, b D x A D I b D x A D D b D x U L D x 111111)()()(------+-=+-=++-= 令 A D I B J 1--=, b D f J 1-=, 由此可构造出迭代公式:J k J k f x B x +=+)()1( 令初始向量)0,...,0,0()0(=x ,即可得到迭代序列,从而逼近方程组的解 这种方法称为Jacobi 迭代法,其中J B 称为Jacobi 迭代矩阵。 2. Gauss-Seidel 迭代法(GS 法) 与Jacobi 迭代法类似,将方程组b Ax =中的系数矩阵 A 分裂为 ,U D L A ++=,其中U L D ,,与前面相同。 与Jacobi 迭代法所不同的是,Gauss-Seidel 迭代法将Jacobi 迭代公式中的 b Ux Lx Dx k k k +--=+)()()1( 改为 b Ux Lx Dx k k k +--=++)()1()1( 从而b Ax =可写成矩阵形式 b Ux x D L k k +-=++)()1()(, 若设1 )(-+D L 存在,则 b D L Ux D L x k k 1)(1)1()()(--++++-=, 其中, U D L B G 1)(-+-=,b D L f 1)(-+=, 于是Gauss —Seidel 迭代公式的矩阵形式为f x B x k G k +=+)() 1(。

第六章解线性方程组的迭代法

第五章 解线性方程组的迭代法 本章主要内容: 迭代法收敛定义,矩阵序列收敛定义,迭代法基本定理,雅可比迭代法,高斯-塞德尔迭代法,系数矩阵为严格对角占优阵的采用雅可比迭代、高斯-塞德尔迭代的收敛性。 教学目的及要求: 使学生了解迭代法收敛定义,迭代法基本定理,掌握雅可比迭代法、高斯-塞德尔迭代法。 教学重点: 雅可比迭代法,高斯-塞德尔迭代法。 教学难点: 迭代法基本定理的证明以及作用。 教学方法及手段: 应用严格的高等代数、数学分析知识,完整地证明迭代法基本定理,讲清雅可比迭代法与高斯-塞德尔迭代法的关系,介绍雅可比迭代法与高斯-塞德尔迭代法在编程中的具体实现方法。 在实验教学中,通过一个具体实例,让学生掌握雅可比迭代法与高斯-塞德尔迭代法的具体实现,并能通过数值计算实验,揭示高斯-塞德尔迭代法是对雅可比迭代法的一种改进这一事实。 教学时间: 本章的教学的讲授时间为6学时,实验学时4学时。 教学内容: 一 迭代法定义 对于给定的线性方程组x Bx f =+,设它有唯一解*x ,则 **x Bx f =+ (6.1) 又设(0)x 为任取的初始向量,按下述公式构造向量序列 (1)(),0,1,2,k k x Bx f k +=+=L (6.2) 这种逐步代入求近似解的方法称为迭代法(这里B 与f 与k 无关)。如果() lim k k x →∞ 存在 (记为*x ),称此迭代法收敛,显然*x 就是方程组的解,否则称此迭代法发散。 迭代法求方程近似解的关键是是讨论由(6.1)式所构造出来的向量序列() {} k x 是否收敛。为此,我们引入误差向量 (1)(1)*k k x x ε++=- 将(6.2)式与(6.1)式相减,我们可得 (1)*()*()k k x x B x x +-=- (1)(),0,1,2,k k B k εε+==L 递推下去,得 ()(1)2(2)(0)k k k k B B x B x εε--====L

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

线性方程组的迭代求解java

线性方程组的迭代求解 摘要 迭代法是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行。迭代法具有循环的计算方法,方法简单,适宜解大型稀疏矩阵方程组 本文总结了解线性方程组的三个迭代法,Jacobi迭代法,Gauss-Seidel迭代法,SOR 迭代法,并且介绍了软件JA V A在这方面的应用。 关键词: Jacobi迭代法;Gauss-Seidel迭代法;SOR迭代法;计算

SOLUTION OF LINEAR EQUATIONS OF ITERATION WITH THE EXPERIMENTAL ABSTRACT Iteration is a kind of method to solve questions by step-by-step approximation. When we are getting the solution of linear equations by using iteration, the coefficient matrix is always staying the same in computation process. Computer could operate fastly so that it is suitable for operating again and again. Iteration is easy to operate to solve the large matrix equations by using a calculate method called circulation. This summary understanding of linear equations three kind of iteration, Jacobi iteration, Gauss-Seidel iteration, successive over relaxation method ,and introduce modern software JA V A in this respect. Key words:Jacobi iteration; Gauss-Seidel iteration; Successive Over Relaxation method ; calculating

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

SOR迭代法求解线性方程组

实验三:用SOR 迭代法求解线性方程组 ?????? ? ??=??????? ????????? ??----------74.012.018.168.072.012.006.016.012.001.103.014.006.003.088.001.016.014.001.076.04321x x x x 取初始点T x )0,0,0,0()0(=,松弛因子05.1=ω,精度要求610-=ε。 1,建立SOR.m 函数文件,此函数文件可调用,程序源码如下: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4 eps= 1.0e-6;%精度要求 M = 200; elseif nargin<4 error; return elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A 的对角矩阵 L=-tril(A,-1); %求A 的下三角阵 U=-triu(A,1); %求A 的上三角阵 B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) disp('Warning: 迭代次数太多,可能不收敛!'); return; end end

2,输入矩阵。并根据要求调用函数,运行结果如下图所示: 即经过7次迭代算出结果,且求得: 1.27151.28440.48581.2843x ?? ? ?= ? ???

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

高斯-赛德尔迭代法解线性方程组精选.

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪 费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量) 1(+k i x 时, 用最新分量) 1(1 +k x ,???+) 1(2 k x ) 1(1 -+k i x 代替旧分量)(1k x ,???) (2 k x ) (1-k i x ,可以起到节省存储 空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 )()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=, 则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+)()1( 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(1111 1 )() 1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)() 1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

解线性方程组的直接法和迭代法

数值分析方法中方程求解的直接法和迭代法 第3章 解线性方程组的直接法 一、 消元法 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? (1)(1)(1)(1)(1)11 121311(2)(2)(2)(2)222322 (3)(3)(3)3333()()000 00 n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ?? ? 步骤如下: 第一步:1 11 1,2,,i a i i n a -? +=第行第行 11121121222212 n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? 111211(2)(2)(2)2222 (2)(2)(2)2 00n n n nn n a a a b a a b a a b ?? ? ? ? ??? 第二步:(2)2 (2)222,3, ,i a i i n a -?+=第行第行 111211(2)(2)(2)2222 (2)(2)(2)200n n n nn n a a a b a a b a a b ?? ? ? ? ?? ? 111213 11 (2)(2)(2)(2) 222322 (3)(3)(3) 33 33(3)(3)(3) 3 00000n n n n nn n a a a a b a a a b a a b a a b ?? ? ? ? ? ? ?? ? 类似的做下去,我们有: 第k 步:() ()k ,1, ,k ik k kk a i i k n a -?+=+第行第行。 n -1步以后,我们可以得到变换后的矩阵为:

线性方程组的直接法和迭代法

线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 线性方程组迭代法 迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法.该方法具有对计算机的存贮单元需求少,程序设计简单、原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法.迭代法不是用有限步运算求精确解,而是通过迭代产生近似解逼近精确解.如Jacobi 迭代、Gauss — Seidel 迭代、SOR 迭代法等。 1. 线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 1.1 Cramer 法则 Cramer 法则用于判断具有n 个未知数的n 个线性方程的方程组解的情况。当方程组的系数行列式不等于零时,方程组有解且解唯一。如果方程组无解或者有两个不同的解时,则系数行列式必为零。如果齐次线性方程组的系数行列式不等于零,则没有非零解。如果齐次线性方程组有非零解,则系数行列式必为零。 定理1如果方程组Ax b =中0D A =≠,则Ax b =有解,且解事唯一的,解为1212,,...,n n D D D x x x D D D ===i D 是D 中第i 列换成向量b 所得的行列式。 Cramer 法则解n 元方程组有两个前提条件: 1、未知数的个数等于方程的个数。 2、系数行列式不等于零 例1 a 取何值时,线性方程组

1231231 2311x x x a ax x x x x ax ++=??++=??++=?有唯一解。 解:2111111 11011(1)11001 A a a a a a a ==--=--- 所以当1a ≠时,方程组有唯一解。 定理2当齐次线性方程组0Ax =,0A ≠时该方程组有唯一的零解。 定理3齐次线性方程组0Ax =有非零解0A <=>=。 1.2 Gauss 消元法 Gauss 消元法是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。 1.2.1 用Gauss 消元法为线性方程组求解 eg :Gauss 消元法可用来找出下列方程组的解或其解的限制: ()()()123283211223x y z L x y z L x y z L +-=??--+=-??-++=-? 这个算法的原理是:首先,要将1L 以下的等式中的x 消除,然后再将2L 以下的等式中的y 消除。这样可使整个方程组变成一个三角形似的格式。之后再将已得出的答案一个个地代入已被简化的等式中的未知数中,就可求出其余的答案了。 在刚才的例子中,我们将132 L 和2L 相加,就可以将2L 中的x 消除了。

迭代法解线性方程组(C语言描述)

用Gauss-Seidel迭代法解线性方程组的C语言源代码:#include #include #include struct Line{ int L; struct Row *head; struct Line *next; }; struct Row{ int R; float x; struct Row *link; }; //建立每次迭代结果的数据存储单元 struct Term{ float x; float m; }; struct Line *Create(int Line,int Row){ struct Line *Lhead=NULL,*p1=NULL,*p2=NULL; struct Row*Rhead=NULL,*ptr1,*ptr2=NULL; int i=1,j=1; float X; while(i<=Line){ while(j<=Row+1){ scanf("%f",&X); if(X!=0||j==Row+1){ ptr1=(struct Row*)malloc(sizeof(Row)); if(ptr1==NULL){ printf("内存分配错误!\n"); exit(1); } ptr1->x=X; ptr1->R=j; if(ptr2==NULL){ ptr2=ptr1; Rhead=ptr1; } else{

ptr2->link=ptr1; ptr2=ptr1; } } j++; } if(ptr2!=NULL){ ptr2->link=NULL; ptr2=NULL; } if(Rhead!=NULL){ p1=(struct Line*)malloc(sizeof(Line)); if(p1==NULL){ printf("内存分配错误!\n"); exit(1); } p1->L=i; p1->head=Rhead; if(p2==NULL){ Lhead=p1; p2=p1; } else{ p2->next=p1; p2=p1; } } i++; Rhead=NULL; j=1; } if(p2!=NULL) p2->next=NULL; return Lhead; } struct Line *Change(struct Line*Lhead,int n){ struct Line*p1,*p2,*p3,*p; struct Row*ptr; int i=1,k,j; float max,t; if(Lhead==NULL){ printf("链表为空!\n");

线性方程组的迭代法

第六章 线性方程组的迭代法 一、教学目标及基本要求 通过对本节的学习,使学生掌握线性方程组的数值解法。 二、教学内容及学时分配 本节主要介绍线性方程组的数值解法,迭代公式的建立,迭代收敛性。 三、教学重点难点 1.教学重点:迭代公式的建立、迭代收敛性。 2. 教学难点:迭代收敛性。 四、教学中应注意的问题 多媒体课堂教学为主。适当提问,加深学生对概念的理解。 6.2 解线性方程组的迭代法 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用。如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题。在实际问题中产生的线性方程组的类型有很多,如按系数矩阵含零元素多少分类,有稠密和稀疏(零元素占80%以上)线性方程组之分;如按阶数的高低分类,有高阶(阶数在1000阶以上)中阶、(500~1000阶) 和低阶(500阶以下)线性方程组之分;如按系数矩阵的形状和性质分类,有对称正定、三对角、对角占优线性方程组之分。因为数值解法必须考虑方法的计算时间和空间效率以及算法的数值稳定性。因此,不同类型的线性方程组,其数值解法也不相同。但是,基本的方法可以归结为两大类,即直接法和迭代法。 分类:线性方程组的解法可分为直接法和迭代法两种方法。 (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解。最基本的直接法是Gauss 消去法,重要的直接法全都受到Gauss 消去法的启发。计算代价高。但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解,如何避免舍入误差的增长是设计直接法时必须考虑的问题。 (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列。收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题。迭代法要求方程组系数矩阵具有某种特殊形式(如对角占优阵),是解高阶稀疏矩阵方程组的重要方法。 §6.1 迭代公式的建立 迭代法的基本思想是用逐次逼近的方法求线性方程组的解。 设有方程组b Ax = (1) 将其转化为等价的便于迭代的形式f Bx x += (2) (这种转化总能实现,如令b f A I B =-=,)并由此构造迭代公式

解线性方程组的迭代法

解线性方程组的迭代法 Haha 送给需要的学弟学妹 摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。系数矩阵H 为Hilbert 矩阵,是著名的病态问题。因而决定求解Hx b =此线性方程组来验证上述问题。 详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。 关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法 目录: 一、问题背景介绍 二、建立正确额数学模型 三、求解模型的数学原理 1、Gauss 消去法求解原理 2、Jacobi 迭代法求解原理 3、G-S 迭代法求解原理 4、SOR 迭代法求解原理 5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程 (一)Hilbert 矩阵维数n=6时 1、Gauss 消去法求解 2、Jacobi 迭代法求解 3、G-S 迭代法求解 4、SOR 迭代法求解 (二)Hilbert 矩阵维数n=20、50和100时 1、G-S 迭代法求解图形 2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果 1、Gauss 消去法误差分析 2、G-S 迭代法误差分析 3、SOR 迭代法误差分析 G-S 迭代法与SOR 迭代法的误差比较 七、心得体会 正文: 一、问题背景介绍。 理论的分析表明,求解病态的线性方程组是困难的。实际情况是否如此,会出现怎样的现象呢? 二、建立正确的数学模型。 考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵, ,,1 (), , ,1,2, ,1 i j n n i j H h h i j n i j ?== =+- 这是一个著名的病态问题。通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。 三、求解模型的数学原理。 1、Gauss 消去法求解原理 对于Ax b =(A 非奇异)求解时,可以先将A 分解成一个下三角矩阵L 和一个上三角矩阵U 的乘积,即A LU =,就可以通过

相关文档
最新文档