潜艇水下通信的意义

潜艇水下通信的意义
潜艇水下通信的意义

在水下,潜艇和潜艇之间是不进行联系的。潜艇主要联系是与基地或类似于转发站的单位。潜艇之间如果一定要进行联系也是通过类似于地面转发站进行单向接收。也就是,潜艇只接收来自外界的指令,而不进行主动发报的。当然除了U571那条倒霉到了家的潜艇。

在二战大战时,潜艇和潜艇/(外界)之间进行联系时,是必需将潜艇上浮到水面才能用无线电进行通讯。但浮起来用无线电来通信那就使潜艇失去隐蔽的意义了,这样也容易被水面舰只和飞机发现。为了解决此问题,现代潜艇可以采用浮标天线或浮力天线,即把天线通过一根长长的绳索施放到水面,这样潜艇在水下也可发射信号。实际上,这样仍然存在一个潜艇自我暴露的问题,因为潜艇在远距离用短波通信,其信号本身就不保密,可能被敌方截获破译,并测出潜艇的位置,而且露出水面的浮标天线也有被敌方雷达探测到的可能。所以即便是核潜艇在水下如不施放通讯浮标,是无法主动与外界联络的。而且,即便要给潜艇的指令也是只能发送一些预先规定好的简单易懂的信号。

但随着激光技术的发展,现在军事大国又把目光投向卫星对潜激光通信。激光是极高频、频段在10千千赫以上(波长 3—30微米)的电磁波,通过卫星将信息发送或反射至潜艇。激光通信传输速率快,比极长波系统快几十万倍,具有方向性好、亮度高、能量集中、保密性强和有很强的抗核破坏能力等特性。激光通信设备可以做得轻便而经济,尤其天线小,一般天线仅几十厘米,重量不过几千克。激光通信的这些特点,可使潜艇在水下最佳安全巡航状态完成通讯任务。但总的来说,不管是用浮标天线或浮力天线还是用激光通讯,潜艇目前还是以接收通讯为主。

潜艇要遂行军事任务必须要与外界有安全可靠的通信方式,短波在水中不能使用,因为短波在水中衰减得太快,为了解决此问题,可以采用浮标天线或浮力天线,即把天线通过一根长长的绳索施放到水面,这样潜艇在水下也可发射信号。实际上,这样仍然存在一个潜艇自我暴露的问题,因为潜艇在远距离用短波通信,其信号本身就不保密,可能被敌方截获破译,并测出潜艇的位置,而且露出水面的浮标天线也有被敌方雷达探测到的可能。

目前潜艇在水下如不施放通讯浮标,是无法主动与岸上联络的,所以核潜艇只能被动地单方面接收岸上的无线电超长波信号或极长波信号,这是岸上向潜艇通信的主要方式。超长波的波长为1万到10万米,它能从空中钻入水里,在水中的衰耗比较小,穿透海水的深度最大可达30米,使水下的潜艇接收到岸上发来的电波。极长波的波长大于10万米,几乎可以在全球范围内实现对潜通信,穿透水层的深度达200米以上,即使在最大距离上也可达到水下80米左右。美国海军威斯康星州极长波通信试验基地于1972年做发射试验,一艘远在4600千米以外的大西洋水下120米处的美国黑鲹号核潜艇接收到了该台的信号。由于超长波和极长波发射设施非常庞大,占地达数平方千米,在潜艇上不可能安装,所以只能建在陆地,对潜艇来说,超长波通信和极长波通信只是单向广播式的通信,如

果潜艇要接收岸上指挥机构的指令,必须按规定的时间和频率接收。潜艇在水下接收这种长波信号的深度是依据岸上长波发射台的发射功率大小决定的。由于极长波在单位时间内传送的信息量少,所以通讯速度很慢。据试验,发送20个英文字母需用几十分钟时间,只能给核潜艇发送一些预先规定好的简单易懂的信号,如给弹道导弹核潜艇发送发射核弹的命令等。

随着激光技术的发展,人们又把目光投向卫星对潜激光通信。激光是极高频、频段在10千千赫以上(波长 3—30微米)的电磁波,通过卫星将信息发送或反射至潜艇。激光通信传输速率快,比极长波系统快几十万倍,具有方向性好、亮度高、能量集中、保密性强和有很强的抗核破坏能力等特性。激光通信设备可以做得轻便而经济,尤其天线小,一般天线仅几十厘米,重量不过几千克。激光通信的这些特点,可使潜艇在水下最佳安全巡航状态完成通讯任务。

一,水中通讯——利用声呐设备:

为了达到隐蔽的目的,潜艇大部分时间是在深水活动,声音在空气中的传播速度为每秒340米,而在水中高达每秒1435米。有一种水下通信声呐,它能向水中发射长短不一的声波信号,组成电报的密码,或将语言和声波相互转换来通话,它的任务是保证潜艇的集群活动或配合其它兵力通讯联络需要;敌我识别声呐是在水下偶然发现水面或水下潜艇时,用对口令的方式判断敌我,这种声呐发出一个特殊的信号(口令)询问对方,对方若是自己的潜艇,就回答一个信号,若不是就收不到信号,即使收到也不能正确回话。水中使用声纳是严格控制的,因为容易被敌方截获。

二,在水中与外界通讯——利用无线电波

潜艇要遂行军事任务必须要与外界有安全可靠的通信方式,短波在水中不能使用,因为短波在水中衰减得太快,为了解决此问题,可以采用浮标天线或浮力天线,即把天线通过一根长长的绳索施放到水面,这样潜艇在水下也可发射信号。实际上,这样仍然存在一个潜艇自我暴露的问题,因为潜艇在远距离用短波通信,其信号本身就不保密,可能被敌方截获破译,并测出潜艇的位置,而且露出水面的浮标天线也有被敌方雷达探测到的可能。

目前潜艇在水下如不施放通讯浮标,是无法主动与岸上联络的,所以核潜艇只能被动地单方面接收岸上的无线电超长波信号或极长波信号,这是岸上向潜艇通信的主要方式。超长波的波长为1万到10万米,它能从空中钻入水里,在水中的衰耗比较小,穿透海水的深度最大可达30米,使水下的潜艇接收到岸上发来的电波。极长波的波长大于10万米,几乎可以在全球范围内实现对潜通信,穿透水层的深度达200米以上,即使在最大距离上也可达到水下80米左右。美国海军威斯康星州极长波通信试验基地于1972年做发射试验,一艘远在4600千米以外的大西洋水下120米处的美国黑鲹号核潜艇接收到了该台的信号。由于超长波和极长波发射设施非常庞大,占地达数平方千米,在潜艇上不可能安装,所以只能建在陆地,对潜艇来说,超长波通信和极长波通信只是单向广播式的通信,如果潜艇要接收岸上指挥机构的指令,必须按规定的时间和频率接收。潜艇在水下接收这种长波信号的深度是依据岸上长波发射台的发射功率大小决定的。由于极长波在单位时间内传送的信息量少,所以通讯速度

很慢。据试验,发送20个英文字母需用几十分钟时间,只能给核潜艇发送一些预先规定好的简单易懂的信号,如给弹道导弹核潜艇发送发射核弹的命令等。

随着激光技术的发展,人们又把目光投向卫星对潜激光通信。激光是极高频、频段在10千千赫以上(波长3—30微米)的电磁波,通过卫星将信息发送或反射至潜艇。激光通信传输速率快,比极长波系统快几十万倍,具有方向性好、亮度高、能量集中、保密性强和有很强的抗核破坏能力等特性。激光通信设备可以做得轻便而经济,尤其天线小,一般天线仅几十厘米,重量不过几千克。激光通信的这些特点,可使潜艇在水下最佳安全巡航状态完成通讯任务。

数字光纤通信设备的应用与维护探讨

数字光纤通信设备的应用与维护探讨 发表时间:2019-11-15T10:32:29.157Z 来源:《城镇建设》2019年2卷16期作者:杨洲 [导读] 当今时代,数字光纤通信技术对社会和经济的发展愈加重要,数字时代和智能时代的到来更加离不开数字光纤通信技术的支持。 摘要:当今时代,数字光纤通信技术对社会和经济的发展愈加重要,数字时代和智能时代的到来更加离不开数字光纤通信技术的支持,数字通信技术在社会生产和生活中支持着社会进步,发挥着其独特的作用。数字光纤通信技术因为其容量大、干扰少、传输远、保密性强等优点代替了旧有通信技术在市场的地位,已经成为通信行业支柱型和基础型技术。数字光纤通信设备因其科学性、专业性等特点被得到广泛应用,因此对其有效、合理的维护必须得到重视,制定相关机制实现对数字光纤通信设备的良好维护,以提高其性能,完善我国的通信工作,建立良好的通信环境。 关键词:数字光纤;通信设备;应用;维护分析 一、数字光纤通信设备的主要特点以及重要性 (1)数字光纤通信设备的科学性 数字光纤通信设备在近几年被研发后,逐步走向成熟并被广泛应用。数字光纤通信设备是高科技的产物,具有极高的科技含量和科学性。PCM设备、光发送端设备、光中继器、光接收端设备、光纤等通信设备都是增强了数字光纤通信设备的科学性,提高了其运行效率。 (2)数字光纤通信设备的安全性 数字光纤通信设备相较于传统的通信设备具有更高的安全性,而这也是被广泛使用的原因之一。随着科技的发展,在进行通信设备研发过程中,通信设备的科研工作愈加先进和完善,数字光纤设备运用更加科学的加密设计和光纤技术,提高了通信设备的安全性能。数字光纤通信的主要功能就是实现信息的传输,所以在通信过程中必须要做到信息传递的流畅性和快速性。而这就要求数字光纤通信设备必须具备极高的安全性,所以在进行数字光纤通信设备研发时以此为基本方向,保证数字光纤通信设备安全性的基本功能。 (3)数字光纤通信设备的专业性 通信技术的发展历程并不长,而数字光纤通信技术的研发到使用的时间更加短暂,因此这就决定了数字光纤通信设备在研发过程中必须具备极高的专业性,才能满足现实的需要。当前阶段数字光纤通信设备在生产过程中主要运用的是表面安装工艺技术,这种生产工艺可以极大程度的提高数字光纤通信设备的功效。但是也正是因为数字光纤通信设备的专业性和科学性的提高,对其的维护工作也更加复杂,难度也更大,所以数字光纤通信设备的维护工作对设备维护人员提出了更高的要求,通信行业为做好通信设备的维护工作必须提高重视,加大维护管理力度。 二、数字光纤通信设备的日常管理 (一)形成有效的数字光纤通信设备监督、管理结构 在数字光纤通信设备运行中,要做好设备中的硬件监督、管理和控制,利用科学设备做好监管工作,这样才能实时监控光纤通信系统与设备。当系统与设备出现问题后及时作出反应,选出最佳方案处理好问题。因此,在日常维护中,要做好专业人才的培养工作,从各方面提高问题处理能力与综合素养;同时形成健全的服务体系与管理网络,这样才能让通讯系统与通信设备更加规范、制度化。在规范管理制度、健全光纤通信设备的同时,对光纤通信设备进行全方位、全面系统的监控与管理,同时由专人做好信号监控与各种记录工作,一旦出现故障问题,利用历史数据就能及时排查故障,了解故障原因,这样才能提高维修效率。在优化监管框架的同时,为今后光纤通信设备的日常工作夯实基础。 (二)定期进行设备维护 在数字光纤通信设备维护与管理中,必须结合相关原则进行。在维护管理中,工作人员需要结合设备性能、参数、故障率、操作规范等各种问题进行把握,在了解技术指标、通信原理、故障排除方式的过程中,做好技术更新,并且结合容易出现的问题进行预防,这样才能有针对性的做好整修与管理工作。在开展维护工作前,要有针对性的结合各类仪器设备做好维护与规划工作,结合维护方案与规划对数字光纤设备进行有效评估,这样才能落实光纤通信设备的管理与维护工作。 (三)细化工作步骤,规范设备管理 在日常的光纤通信设备管理中,要统计好实际应用的光纤通信设备性能与参数,利用编号的形式进行标记。通过这种模式,一旦出现问题,能快速提出解决方法。为了落实该目标,维护单位必须设置良好的管理制度,在实践中不断归纳、管理、总结存在的问题,然后再细化工作步骤,利用标序管理、档案管理等方法,及时排除故障,细化管理,提高维护效率。 (四)优化人才管理 数字光纤通信设备是当代盛行的通讯设备,它在科学性、专业性等方面有很多要求,所以要求配备专业素养过硬、设备管理良好的专业人才。就当前市场反馈的信息来看:在数字光纤通信设备维护中,需要建成一支专业认真、完整的设备维护团队,个人能力有限,所以需要借助团队的模式,让设备维护与管理更加规范、科学、高效。 三、光纤数字通信设备维护工作具体内容 (一)光纤通信系统中的主要设备分析 光纤通信系统中的主要设备有:PCM设备、光发送端设备、光中继器、光接收端设备、光纤等。PCM设备的应用:光纤中传输的信号是二进制光脉冲码,该码是利用数字信号对光源进行通断调制而产生的。PCM设备主要用于将数字信号转变为可在光信道中传输的光脉冲。光发送端设备的应用:光发送机将接收到的电信号进行码型转换,变换为适合光路传输的mBnB码或者插入码,然后送入光发送电路,利用该电路将电信号转变为光信号。光中继器的应用:光信号在传输过程中会产生衰落,若不对信号进行放大、整型、再定,则会因为信号的失真产生误码等,影响信号的后续使用。光接收端设备的应用:光接收端的设备与光发送端的设备作用相反,主要用于光信号向电信号的还原。光纤设备的应用:光纤是光通信网络中的最基本设备。根据应用环境不同光纤设备具有多种类型,在进行光纤选取时,要根据实际应用环境进行具体分析而确定,如光纤的机械性、电能性、抗雷保护性能、易维护性等。 (二)光纤通信系统中的光纤设备 基本的光纤通信系统包括数据源、光发送端、光学信道、光接收机几部分。数据源用来将所需传输的信号进行数字化处理,以便于信号在光网络中传输。光发送机和调制器组成光发射端,将数字信号转变为光信号,以便于在光学信道中进行传输。

量子纠缠及其在量子通信中的应用

量子纠缠及其在量子通信中的应用 吴家燕物理学专业15346036 摘要 量子理论为我们描绘了一幅与我们容易感知的由经典力学统治的现实世界有大不同的量子世界图象,而量子纠缠是量子世界特有的现象,在经典世界中没有对应。纠缠态的制备和各种测量仍然是现在前沿研究的一个热点话题。这小小的量子纠缠正在当今世界中,从量子密码到完全保密的量子通信,从量子计算机到未来的量子互联网,给人类带来新的希望。 关键词 量子纠缠量子比特量子隐形量子密钥量子通信 正文 量子纠缠现象 史上最怪、最不合理、最疯狂、最荒谬的量子力学预测便是“量子纠缠”。量子纠缠是一种理论性的预测,它是从量子力学的方程式中得来的。如果两个粒子的距离够近,它们可以变成纠缠状态而使某些性质连接。出乎意料的是,量子力学表明,即便你将这两个粒子分开,让它们以反方向运动,它们依旧无法摆脱纠缠态。 以电子的“自旋”作例子,电子的自旋直到你观测它的那一刻才能决定,当你观测它时,就会发现它不是顺时针转就是逆时针转。假设有两个互相纠缠的电子对,当其中一个顺时针转时,另一个就逆时针转,反之亦然。不过奇怪之处是它们并没有真正连接在一起。对量子理论坚信不疑的波尔和他的同事们相信,量子纠缠可以预测相隔甚远的电子对的状态,即便它们一个在地球,一个在月球,没有传输线相连,如果你在某个时刻观测到其中一个电子在顺时针旋转,那么另一个在同一时刻必定是在逆时针旋转。换句话说,如果你对其中一个粒子进行观测,那么你不止是影响了它,你的观测也同时影响了它所纠缠的伙伴,而且这与两个粒子间的距离无关。两个粒子的这种怪异的远距离连接,爱因斯坦称之为“鬼魅般的超距作用”。 波尔所拥护的量子力学方程式表明,相互纠缠的粒子即使相距很远,也可以互相连接。而克劳泽与阿斯佩的实验证明了量子力学的方程是正确的,纠缠是真实的,粒子可以跨越空间连接——对其一进行测量,确实可以瞬间影响到它远方的同伴,仿佛跨越了空间限制。 量子纠缠态特性 经典信息的基本单元是比特(bit),它是一个两态系统,可制备为两个可识别状态中的一个,例如:0或1。量子信息的基本单元称为量子比特(qubit),它也是一个两态系统,且是两个线性独立的态。量子比特的两个可能状态可表示为:|0>和|1>。量子比特和比特之间的最大区别在于量子比特还可以处在|0>和|1>之间的叠加态(superposition)上,因此量子比特的状态可看成是二维复向量空间中的单位向量。比特可以看成是量子比特的特例。 信息用量子态来表示便实现了信息的“量子化”,这是量子信息学的出发点。信息一旦量子化,量子力学特性便成为信息处理过程的物理基础:信息的演化遵从薛定谔方程,信息的传输就是量子态在量子通道中的传送,信息处理和计算是对量子态的幺正变换,信息提取则是对量子系统实行量子测量。

数字光纤通信系统及其设计教学文案

数字光纤通信系统及 其设计

数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM)Digital optical communications system and its design Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to practical and large,

光纤通信实验材料

实验一半导体激光器P-I特性测试实验 一、实验目的 1、学习半导体激光器发光原理和光纤通信中激光光源工作原理 2、了解半导体激光器平均输出光功率与注入驱动电流的关系 3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法 二、实验内容 1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线 2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率 三、实验仪器 1、ZY12OFCom23BH1型光纤通信原理实验箱1台 2、FC接口光功率计1台 3、FC-FC单模光跳线 1根 4、万用表1台 5、连接导线 20根 四、实验原理 光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。 光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。第三,光源应具有高度可靠性,工作寿命至少在10万小时以上才能满足光纤通信工程的需要。第四,光源的输出光谱不能太宽以利于传输高速脉冲。第五,光源应便于调制,调制速率应能适应系统的要求。第六,电—光转换效率不应太低,否则会导致器件严重发热和缩短寿命。第七,光源应该省电,光源的体积、重量不应太大。 作为光源,可以采用半导体激光二极管(LD,又称半导体激光器)、半导体发光二极管(LED)、固体激光器和气体激光器等。但是对于光纤通信工程来说,除了少数测试设备与工程仪表之外,几乎无例外地采用半导体激光器和半导体发光二极管。 本实验简要地介绍半导体激光器,若需详细了解发光原理,请参看各教材。 半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。 半导体激光器的特性,主要包括阈值电流Ith、输出功率P0、微分转换效率η、峰值波长λp、光束发散角、脉冲响应时间t r、t f等。除上述特性参数之外,有时也把半导体激光器的工作电压、工作温度等列入特性参数。

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

2021公需课量子通信技术与应用

2021公需课量子信息技术及应用 单选题: 1.关于量子计算带来的全新挑战,下列表述错误的是()。(3.0分) A.1994年由P.Shor证明量子计算机高效解决大数分解和离散对数问题 B.1984年BB84协议的发表,量子密码学终于正式诞生了 C.后量子公钥密码学目前正处于发展中,尚未破解 D.量子中继已经发展成熟,不需要依赖可信中继组网 我的答案:D √答对 2.墨子号量子科学实验卫星(简称“墨子号”),于(),在酒泉卫星发射中心用长征二号丁运载火箭成功发射升空。( 3.0分) A.2013年6月16日 B.2016年6月16日 C.2013年8月16日 D.2016年8月16日 我的答案:D √答对 3.我国成功构建的世界上最长的QKD骨干网络是()。(3.0分) A.北京至上海 B.上海至合肥 C.合肥至济南 D.济南至北京 我的答案:A √答对 4.关于量子计算技术在我国的应用,下列表述错误的是()。(3.0分) A.2014年,完成第一个超导量子比特 B.2015年,提高量子比特相干寿命,达到国际水平 C.2016年,四超导量子比特芯片,演示求解线性方程组 D.2017年,十超导量子比特芯片,是已公开资料中超导量子比特纠缠数目最多的 我的答案:D √答对 5.后量子公钥密码(PQC)是由:NIST于()正式启动PQC项目,面向全球征集PQC算法,推动标准化。(3.0分) A.2013年12月 B.2016年12月 C.2013年8月 D.2016年8月 我的答案:B √答对 6.关于量子计算对密码学的影响,下列表述错误的是()。(3.0分) A.RSA、D—H、DSA等非对称密码体系会被Shor算法完全破坏 B.对于对称密码体系,量子计算机带来的影响稍小 C.目前已知的Grover量子搜索算法使得加密密钥的有效长度减半 D.RSA、ECC、DSA等公钥密码体制都是绝对安全的 我的答案:D √答对 7.关于量子的原理特性,下列表述错误的是()。(3.0分) A.量子态的不可分割 B.量子态的叠加、不可复制 C.量子态的纠缠

数字光纤通信设备的应用与维护分析 李娇

数字光纤通信设备的应用与维护分析李娇 发表时间:2018-07-18T13:25:45.980Z 来源:《基层建设》2018年第17期作者:李娇[导读] 摘要:近几年,高新科技发展迅速,数字光钎通信就是在这个时期被研究开发出来的。 身份证号:13102819841205xxxx 摘要:近几年,高新科技发展迅速,数字光钎通信就是在这个时期被研究开发出来的。随着数字光钎通信设备的逐渐完善,各个领域已经都在使用。相比以前的通信技术,数字光纤通信设备传输数据量大、抗干扰能力强。利用该技术,人们可以在生活和工作中更方便的完成通信功能。本文就数字光纤通信设备的特点、应用和维护进行了分析和研究。 关键词:数字光纤特点通信设备应用维护 数字光纤通信设备是数字光纤通信技术的主要组成部分,它?c光纤通信系统共同作用才能更有效的完成光纤通信技术上各方面的通信功能。因此它在保证通信流畅上起着重要的作用,对于数字光纤通信设备的应用与维护我们有必要进行深入的了解和分析。 一、数字光纤通信设备的主要特点 要想熟练的使用数字光纤通信技术,就需要掌握各种数字光纤通信设备的使用;想要熟练地使用光纤通信设备,就要对它进行全面的了解。它的特点是我们必须要了解的内容,以下就是对数字光钎通信设备特点的分析和论述。 1.1数字光纤通信设备的科学性 数字光纤通信设备是高新科技的产物,是最近几年才被研究开发出来的,并逐渐成熟然后投入使用。不可否认的是,它是人类伟大的科技产物之一,它的高的科技含量决定了它具有较强的科学性。 1.2数字光纤通信设备的安全性 光纤通信就是进行信息传递,信息传递的流畅和快速是通信的必备的要求。这就决定了数字光纤通信设备的研究方向和基本功能,故其要具有更高的安全性能。 1.3数字光纤通信设备的专业性 通信技术只有短短几十年的发展历程,光纤技术的开发时间更短,这就决定了光纤技术的高度专业性。许多的经济不发达或是偏远地区都还没有听说过光纤技术,更别说开发应用了。 二、数字光纤通信设备的应用 数字光纤通信设备在通信技术的应用中是必不可少的部分,也贯穿整个通信过程。因为数字光纤通信技术是近几年才被开发出来研究使用的,所以数字光纤通信设备就是高端的科技技术产品,这就决定了它拥有自身所特有的使用和功能特点。光纤通信系统中的主要设备有PCM设备、光发送端设备、光中继器、光接收端设备、光纤等。PCM设备主要用于将数字信号转变为可在光信道中传输的光脉冲。数据源用来将所要传输的信号进行数字化处理,以便于信号在光纤网络中传输。光发送机的功能是将接收到的电信号进行码型转换,变换为适合光路传输的mBnB码或者插入码,然后送入光发送电路,利用该电路将电信号转变为光信号。应用环境的不同决定了光纤设备具有多种类型,所以在进行光纤选取时,要根据实际应用环境进行具体分析然后再确定。 三、数字光纤通讯设备的维护 光纤通信设备与光纤通信系统是互相关联的,因此,对数字光纤通信设备的维护不光只是简单的对光纤设备自身的维护,光纤通信设备的稳定、正常工作的维护也非常重要。要根据这些反应作出进一步的处理和维修。[2]根据以上对于光纤通信设备所作出的一些分析,应当对光纤通信设备的特点和应用有了一些基础性的认识。而光纤通信设备的维护应当根据光纤的工作内容和功能特点做出维护要求。 3.1对于设备维护工作人员的基本要求 光纤通信设备的工作人员应该是专业的通信技术人员。而且光纤通信设备的维护工作人员应该对光纤通信设备的基本功能、工作原理有足够的了解与认识,应该基本的了解设备的构成甚至能做简单的维修。因为光纤通信设备在通信技术工作上占有重要地位,所以工作人员专业素质的培养和选择性购买设备至关重要,这也就决定了我们应该认真的对待通信设备的维护工作。但是光纤通信设备都是些高科技的产品,具有很强的专业性,所以要有专业人员来弥补国内通信科技上专业性能的缺口。 3.2对整个光纤通信系统的网络全面监控 光纤通信设备的使用贯穿了光纤通信的全过程。要想对光纤通信设备进行全面有效的维护就应该对整个光纤通信系统的网络进行全面监控。光纤的通信系统与光纤通信是不可分割的,想要监控光纤通信系统的工作正常与否,可以直接判断出光纤通信设备的正常工作与否。光纤通信系统和光纤通信是息息相关的,光纤通信系统通常能够直观的反应问题,可以直接反应出是哪个设备,并且还能知道是哪里出了故障。 四、结语 随着信息技术的发展,数字光纤通信技术已经在越来越多的领域所运用,所产生的效率也有明显显著。为增强设备的使用效率,维护好通信设备是不可或缺的环节,所以说,数字光纤通信设备的应用与维护要我们共同努力,通过系统的了解各设备的功能并且熟练的对各光纤通信设备进行管理和应用。 参考文献: [1]蔚斌冀巍.数字光纤通信设备的应用与维护[J].科技传播.2014:180 [2]刘辉.数据光纤通信设备的应用和维护[J].信息与科技.2015:66 [3]李艳娟.数字光纤通信设备的应用研究.新技术:76

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信设备概述

光纤通信设备概述 1.走进通信机房 通信机房,无论大小,走进去看到的是: 一排排的机柜,里面装有各种各样的设备,大部分机柜是19英寸宽,有2米高,也有2.2米高的. 地板,下面往往是走线槽, 上面也许有走线槽(地槽和顶槽2选1). 网管系统:用计算机管理通信设备. 电源系统

2.从电话机到机房的线路 家里的电话机通过双绞线连接到楼道里的电话分线盒,然后用50对或100对的音频电缆, 连到了小区附近的电缆交接箱,再用更大对数的电缆接到电话局里的音频配线架,也叫总配线架,就是112机房,在音频配线架上,每个电话机都对应有1对电话线接点,并且一般都配有防雷击的音频保安器,电话线在电话局内部还用电缆连到了交换机.或PCM30设备。 3.112机房的总配线架,也叫MDF,还叫VDF 4.电话交换机 交换机可以分为3部分,一是用户电路,负责为用户馈电,发铃流,发送忙音,拨号音,记录用户话机所拨的号码,同时将模拟的电话语音变成数字信号;二叫绳路,也就是交换系统,负责电话的交换接续;三是中继器,分入局中继器和出局中继器,中继器的接口是数字信号是2.048Mb/s的速率,叫E1口。 5.PCM30设备 电话机到电话局,如果距离近(2公里),可以用电缆直接连接,如果距离远,就必须用光纤 连接光纤通信中传输的信号是数字信号,而电话机使用的是模拟信号,因此必须要变换

PCM30设备就是将模拟信号变成数字信号的设备,它将30路电话,变成1路E1接口的数字信号。 6.同轴电缆与同轴头 7.数字配线架DDF 无论是交换机的中继器接口,还是PCM30的数字口,都是E1口,要用同轴电缆接到光端机,为了方便电缆的检修,和调换电路,就要使用数字配线架(DDF)设备.DDF就是一块装有同轴 头的面板,同轴电缆上的同轴头,接到DDF的同轴头上。 8.光传输设备(光端机) 将多路E1接口的数字信号变成1路光信号的设备叫光端机,来自交换机,或PCM30设备的数字信号E1信号,靠同轴电缆经过DDF接到光端机。光端机的输出就是激光了光端机的光接口有2根光纤,1根是发光的,另1个是收光的。 9.光缆线路器材 光缆每2公里就要有1个接头,2根光缆的接续是在光纤接续盒里完成。1条完整的光缆的两个终端是通信机房里的光缆终端盒,它将光缆里的很细的光纤与尾纤相连,尾纤是单根的,有外套,有牙签那样粗,一般是黄色的,尾纤带有1个光接头,可以通过法兰盘跟另1根尾纤相连,尾纤线束,是多根尾纤做在一起的,但是比单根尾纤细一点。 10.其他设备1 电源和电池:通信机房为了保证供电,一直采用电池作为停电后的供电,电池是直流的,所以电源设备就是将交流220V的交流电,变成-48V的直流电。电源列头柜:通信机房里有很多设备,光通信的,交换机,载波机,微波等,这些设备都要用到-48V的电源,列头柜就是将总电源通过保险然后再分配到各个通信机柜的设备。 11.其他设备2 接口变换器,传输设备的接口是E1口,在通信领域是标准的但是计算机领域的标准跟通信不同,随着计算机通信的发展,两者的接口越来越多,计算机通常采用以太网接口,和V35接口,因此他们跟E1口的变换器,就经常要用到。以太网光纤收发器,计算机的局域网已经趋向于以太网,而用光纤组网是越来越多,这就要用到光纤收发器。

光纤通信实验报告汇总(参考)

实验一用户电话接口实验 一、实验目的 1、掌握用户电话接口电路的主要功能 2、了解实现用户接口电路功能芯片Am79R70的主要性能和特点 二、实验内容 1、掌握用户线接口电路的主要功能 2、了解Am79R70的结构和工作原理 3、了解电话接续的原理及其各种语音控制信号的波形 三、实验仪器 1、ZY1804I型光纤通信原理实验系统1台 2、20MHz 双踪数字示波器1台 3、电话机2部 4、连接导线20根 四、实验原理 1、用户线接口电路功能及其作用 在现代通信设备与程控交换中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些功能放到“用户电路”来实现。 在程控交换机中,用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。根据用户电话机的不同,用户接口电路可分为模拟用户电话接口电路和数字用户电话接口电路。模拟用户电话接口电路与模拟电话相连,数字用户电话接口电路和数字终端相连(如ISDN),而在此实验箱中采用模拟用户电话接口电路。 模拟用户线接口电路在实现时最大的压力应是能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器、继电器等分立元件构成,但随着微电子技术的发展,各种集成的SLIC相继出现,他们大都采用半导体工艺或是薄膜、厚膜会合工艺,性能稳定,价格低廉,已实现了通用化。 在程控交换机中模拟用户接口电路一般要具有B(馈电),R(振铃),S(监视),C(编译码),H(混合),T(测试),O(过压保护)七项功能。具体含义是: 1、馈电(B-Battery feeding):向用户话机馈送直流电流。通常要求馈电电压为-48V,环路电流不小于18mA。 2、过压保护(O-Overvoltage protection):防止过压过流冲击损坏电路和设备。 3、振铃控制(R-Ringing Control):向用户话机馈送铃流,通常为25Hz/75Vrms正弦波。 4、监视(S-Supervision):监视用户线的状态,检测话机摘机、挂机与拨号脉冲灯信号已送往控制网络和交换网络。 5、编解码与滤波(C-CODEC/Filter):在数字交换中,它完成模拟话音与数字码间的转换。编译码通常采用PCM码的方式,其编码器(Coder)和译码器(Decoder)统称为CODEC。相应的防混叠与平滑低通滤波器的带宽范围为:300Hz~3400Hz,编码速率为64Kb/s。 6、混合(H-Hybird):完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送和接收数字四线信号之间的分离。 7、测试(T-Test):对用户电路进行测试。 模拟用户接口电路的结构如图所示:

数字光纤通信系统简介

浅谈数字光纤通信系统 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。 本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。 关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码 内容 一.数字光纤通信系统概况 光纤是数字通信的理想的传输信道。与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。大容量长距离的光纤通信系统几乎都是采用数字传输方式。 在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。 二.数字光纤通信系统组成 数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。 1.模数转换设备。它将来自用户的模拟信号转换为对应的数字信号。数字 复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信 号,以便在单根光纤中传输。 2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传 输的形态。

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验报告

光纤通信实验报告 课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。 二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平

均光功率的测试。 1、半导体光源的P -I 特性 I(mA) LD 半导体激光器P -I 曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P -I 的线性关系。 P -I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,没有扭折点, P -I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P -I 特性可以清楚地看出消光比的物理概念,如下图所示。

量子通信理论和应用

图2单光子偏振态(斜线模式 ) 量子通信理论和应用 王 尊 (上海电机学院电子信息学院,上海200000) 摘要:量子通信是经典通信和量子力学结合的一门交叉学科。文章综述了量子通信的基本原理、方法与应用;介绍了量子通信技术近年来取得的应用,并对未来发展作了展望。关键词:量子通信;BB84协议量子密码中图分类号:O413;TN918 文献标识码:A 文章编号:1006-8937(2015)18-0084-02 作者简介:王尊(1994-),女,大学本科, 研究方向:通信工程。在信息时代,网络安全是一个严峻的问题。信息安全已经得到了各国政府的高度重视, 一方面要保护自己的安全,另一方面要攻击对方,信息保护的升级刻不容缓。 1现代密码学 现代密码学的基本思想是发送方使用加密算法和密钥,将要保密的信息变成数字发送给接收方。密钥是随机数0、1,将其与要传送的数字明文放在一起,用加密算法把它们变成密文,密文就是传送的信息。接收方使用事先定好的相应的解密算法,反变换将明文提取出。 密码体制分为两类:一类叫对称密钥(非公开密钥),它的加密密钥和解密密钥相同,通信双方需要事先共享相同的密钥,关键在于如何安全地传递密钥。其中有一种一次一密(one time pad)的密码,用与明文等长的二进制密钥与明文异或得密文,并且每个密钥使用一次就销毁,根据香农的证明一次一密是无法破译的。 另一类叫非对称密钥(公开密钥),加密密钥和解密密钥不相同,加密密钥公开,发送者发送密钥与明文混合之后的密文,接受者使用不相同的密钥解出密文。 从公开的加密密钥推导出解密密钥需要耗费极巨大的资源,虽然原则上可破解,但实际做不到,所以,在当今社会受到广泛使用。 一旦量子计算机研制成功,它可以更快速的破解数学难题,公开密钥就面临了严峻挑战。 2量子密码 无论采用哪种方法,都无法避免“截取-重发”的威胁。为了应对强大的量子计算机,需要无条件安全的一次一密的加密方案;但必须解决密钥分配的安全性,可以借助于量子信息作为密钥传输的工具。一次一密不可破译加上密钥传输不可以窃听,从理论上就可以做一个“绝对安全” 的量子保密通信。量子密码是利用信息载体(例如光子等粒子)的量子特性,以量子态作为符号描述的密码,它的安全性是由量子力学的物理原理保障的。 ①测量塌缩理论:除非该量子态本身即为测量算符的本征态,否则对量子态进行测量会导致“波包塌缩”,即测量将会改变最初的量子态。②不确定原理:不能同时精准测量两个非对易物理量。③不可克隆原理:无法对一个未知的量子态进行精确的复制。④单个光子不可再分: 不存在半个光子。3量子通信 量子通信,广义是指量子态从一个地方传送到另一个地方,内容包括量子隐形传态、量子纠缠交换、量子密钥分配;狭义上是指量子密钥分配或基于量子密钥分配的密码通信。本文讲述的是狭义的量子通信。 3.1单光子的偏振态 本文介绍采用BB84协议实现的量子通信,在发送者和接收者之间用单光子的偏振态作为信息的载体。有两种模式:一个是直线模式,光子偏振态的偏振方向是垂直或者水平,如图1所示;一个是斜线(对角)模式,光子偏振态的偏振方向与垂直线称45?角,如图2所示。 3.2基于BB84协议下的 “制备-测量”依照惯例,密码学家称发送者为Alice,接收者为Bob。Alice 随机用直线模式或对角模式发出光子,并记录下不同的指向。Bob也随机决定用两种模式之一测量接收到的光子,同时记下采用检偏器的模式和测量结果值。传送结束后,Alice与Bob联络,Bob告诉Alice他分别采用哪种模式测量,然后Alice会告诉Bob哪些模式是错误的,这一过程无须保密。之后他们会删除使用错误模式测量的光子,而正确模式测量出的光子按照统一规定变成0、1码后,就成为量子密钥。 3.3发生窃听 根据“海森堡测不准原理”,任何测量都无法穷尽量子的所有信息。因此,窃听者想要复制一个完全相同的光子是根本不可能的事情。同时,任何截获或测量量子密钥的操作都会改变量子状态,窃听者只得到无意义的信息,而信息合法接受者也可以从量子态的改变,知道存在窃听者。 密码学家通常称窃听者为Eve,同Bob一样只能随机选择一种测量模式,当她采用错误的测量方式对某一光子测量时,由于波包塌缩,光子的偏振态会改变。比如,Eve使用对角模式测量直线模式下的光子态,光子态会塌缩为对角模式。之后即使Bob选择了正确的测量模式测量该光子,Bob可能会得到不符 图1单光子偏振态(直线模式)企业技术开发 TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 第34卷第18期Vol.34No.18 2015年6月Jun.2015

相关文档
最新文档