NEW太阳能光伏组件系统生产术语中英文对照表

太阳能光伏组件支架的设计选型

1.引言 目前,在全球能源供应紧张和环境问题日益严重的情况下,经济和社会的可持续发展受到了巨大挑战,发展和利用清洁而安全的可再生能源受到了广泛重视。虽然目前已经实现利用的可再生替代能源种类较多,但从可用总量上看,水能、风能、潮汐能都太小,不足以满足人类需求。太阳能作为一种资源丰富,分布广泛且可永久利用的可再生能源,具有极大的开发利用潜力。特别是进入21世纪,太阳能光伏发电产业发展非常迅速。太阳能光伏发电在不远的将来不仅要替代部分常规能源,而且将成为世界能源供应的主体,将给能源发展带来革命性的变化。根据欧洲联合委员会研究中心(JRC)的预测,到21世纪末,可再生能源在能源结构中将占到80%以上,其中太阳能发电占到60%以上,充分显示出其重要的战略地位。 太阳能光伏组件支架是固定太阳能电池板的重要部件,在获得太阳能电池板最大发电效率的前提下,保证支架的安全可靠性是光伏组件厂家需要考虑和研究。根据不同形式的太阳能光伏发电的需要,支架系统一般分为单立柱太阳能支架、双立柱太阳能支架、矩阵太阳能支架、屋顶太阳能支架、墙体太阳能支架、追踪系统系列支架等若干规格型号,同时按照不同的安装方式又分为地面安装系统、屋顶安装系统和建筑节能一体化支架安装系统。 2.光伏组件支架设计 2.1 光伏组件支架结构 目前商品化的太阳能光伏组件安装支架大多不可以调节角度,采用跟踪方式进行太阳能发电又浪费大量人力物力,投入产出比受到一定程度的局限。本文设计了一种可根据不同纬度地区而调节角度的光伏系统支架,(如图1所示)该支架系统可以根据需要调节水平角度,不但适应于地面光伏电站的使用,同时还可以在屋顶光伏电站使用,在安装过程中可以快速调整支架的安装角度,避免了常规光伏组件支架不能够迅速调整安装角度的缺点,同时该组件支架采用高碳钢结构,表面经过热镀锌材料,具有成本低,强度高,选材耐腐蚀强,可以

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能光伏组件生产制造实用技术教程

太阳能光伏组件生产制造实用技术教程第1xx 太阳能光伏发电及光伏组件 1.1 太阳能光伏发电概述 1.2 太阳能光伏发电系统的构成及工作原理 1.3 太阳能光伏组件与方阵 第2xx 太阳能光伏组件的主要原材料及部件 2.1 太阳能电池片 2.2 面板玻璃 2.3 EVA胶膜 2.4 背板材料TPT 2.5 铝合金边框 2.6 互连条及助焊剂 2.7 有机硅胶 2.8 接线盒及连接器 2.9 原材料的检验标准及方法 第3xx 太阳能光伏组件生产工序及工艺流程 第4xx 电池片的分选、检测和切割工序 第5xx 电池片的焊接工序 第6xx 叠层铺设工序 第7xx 层压工序 第8 章装边框及清洗工序

第9xx 光伏组件的检验测试 第10xx 光伏组件的包装 第11xx 常用设备及操作、维护要点 第12xx 光伏组件的生产管理 12.1 光伏组件生产常用图表及技术文件 12.2 光伏组件的板型设计 12.3光伏组件生产的6S管理 12.4 光伏组件生产车间管理制度 12.5 光伏组件生产工序布局 附录 1 常用光伏组件规格尺寸及技术参数 附录2 IEC61215质量检测标准 附录3 ............. 第1xx 太阳能光伏发电及光伏组件 本章主要介绍太阳能光伏发电系统的特点、构成、工作原理及分类。 使读者对太阳能光伏发电系统有一个大致的了解。 1.1 太阳能光伏发电概述 1.1.1 太阳能光伏发电简介 太阳能光伏发电的基本原理是利用太阳能电池(一种类似于晶体二极管的半导体器件)的光生伏打效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能光伏发电的能量转换器就是太阳能电池,也叫光伏电池。当太阳光照射到由P、N 型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,一部分光线被吸收,还有一部分光线透过电池片。被吸收的光能激发被束缚图1-1 太阳能光伏电池发电原理

太阳能发电系统的结构和工作原理

太阳能发电系统的结构和工作原理 在理解太阳能发电原理之前,如果您对太阳能还有所疑问的话,建议您先看一下什么是太阳能。 所谓太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材 料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。 1、太阳能发电原理 太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中 ,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。 1.1 太阳能电源系统 太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。 (1) 电池单元: 由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的 电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。 理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。(2) 电能储存单元: 太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十 分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。 1.2 控制器 控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常 采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。 1.3 DC-AC逆变器 逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电 。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。 2、太阳能发电系统的效率 在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及 负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明 上面已经说过,太阳能电池组件的设计就是满足负载年平均每日用电量的需求。所以,设计和计算太阳能电池组件大小的基本方法就是用负载平均每天所需要的用电量(单位:安时或瓦时)为基本数据,以当地太阳能辐射资源参数如峰值日照时数、年辐射总量等数据为参照,并结合一些相关因素数据或系数综合计算而得出的。 在设计和计算太阳能电池组件或组件方阵时,一般有两种方法。一种方法是根据上述各种数据直接计算出太阳能电池组件或方阵的功率,根据计算结果选配或定制相应功率的电池组件,进而得到电池组件的外形尺寸和安装尺寸等。这种方法一般适用于中小型光伏发电系统的设计。另一种方法是先选定尺寸符合要求的电池组件,根据该组件峰值功率、峰值工作电流和日发电量等数据,结合上述数据进行设计计算,在计算中确定电池组件的串、并联数及总功率。这种方法适用于中大型光伏发电系统的设计。下面就以第二种方法为例介绍一个常用的太阳能电池组件的设计计算公式和方法,其他计算公式和方法将在下一节中分别介绍。 1.基本计算方注 计算太阳能电池组件的基本方法是用负载平均每天所消耗的电量(Ah)除以选定的电池组件在一天中的平均发电量(Ah),就算出了整个系统需要并联的太阳能电池组件数。这些组件的并联输出电流就是系统负载所需要的电流。具体公式为: 负载用电10A,负载工作8小时。(220V ) ) 组件日平均发电量()负载日平均用电量(电池组件并联数Ah Ah = 其中, 组件日平均发电量=组件峰值工作电流(A)×峰值日照时数(h)。 假设告知负载日耗电(KWh ),如何计算负载日平均用电量(Ah )。 再将系统的工作电压除以太阳能电池组件的峰值工作电压,就可以算出太阳能电池组件的串联数量。这些电池组件串联后就可以产生系统负载所需要的工作电压或蓄电池组的充电电压。具体公式为: 组件峰值工作电压 系数)系统工作电压(电池组件串联数 1.43V ?= 系数1.43是太阳能电池组件峰值工作电压与系统工作电压的比值。例如,为工作电压12V 的系统供电或充电的太阳能电池组件的峰值电压是17~17.5V ;为工作电压24V 的系统

光伏组件基本结构知识

光伏组件基本结构知识

目录 一、光伏发电系统 (1) 二、光伏电站系统的主要组成部分 (2) 1、光伏组件 (3) 2、光伏逆变器 (7) 3、直流防雷智能汇流箱 (10) 4、就近升压箱室变电站 (11) 5、高压开关柜 (12) 6、SVG及连接变 (13) 7、主变 (14) 8、高压配电设备 (15) 9、中性点接地保护装置 (16) 10、自动化系统 (17) 三、光伏系统的设计 (17) 1、设计依据 (17) 2、设计流程 (18) 3、设计阶段 (18) 4、设计原则 (19) 四、光伏电站的运营与维护 (20) 1、维护要求 (20) 2、日常维护 (20) 五、光伏组件施工知识 (23)

一、光伏发电系统 光伏发电系统是利用太阳能组件和配套电气设备将太阳能转换成所需要电能的发电系统。 当光线照射到太阳能电池表面时,一部分光子被硅材料吸收,使电子发生了跃迁,成为自由电子,该自由电子在PN结两侧聚集形成电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的功率输出。该过程的实质是光子能量转换成电能的过程。 光伏电站主要由光伏方阵、防雷汇流箱、直流配电柜、并网逆变器、交流配电柜、SVG无功补偿系统、升压系统、高压保护系统、直流系统、计量接入系统、监控通讯系统、交直流电缆、气象站、支撑系统、防雷保护系统、照明系统、消防系统、暖通系统、给排水系统、安保系统等构成;另设计单元逆变房、低压配电室、高压配电室、消防通讯室、综合楼(用于站区生活办公、监控管理)。

分布式光伏发电系统主要分为并网光伏发电系统和离网光伏发电系统。并网发电系统又分为集中式光伏发电系统和分布式光伏发电系统。 二、光伏电站系统的主要组成部分 集中式光伏发电系统规模较大,安装集中,整体升压输送到电网。建设地点主要是荒山荒坡、滩涂、戈壁、鱼塘等地。 集中式光伏发电系统主要由光伏组件、直流汇流箱、并网逆变器、交流配电柜、光伏支架、监控系统、电缆等部分组成。

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。 近几年,我国光伏行业发展也非常迅速。国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工

太阳能光伏组件分原材料及部件

太阳能光伏组件的原材料及部件性能,作 用,特点,及检验 1.太阳能电池片 外形与特点: 太阳能电池片是太阳能电池组件中的主要材料,电池片表面有一层蓝色的减反射膜,还有银白色的电极栅线。其中很多条细的栅线,是电池片表面电极向主栅线汇总的引线,两条宽一点的银白线就是主栅线,也叫电极线或上电极。电池片的背面也有两条(或间断的)银白色的主栅线,叫下电极或背电极。电池片与电池片之间的连接,就是把互连条焊接到主栅线上实现的。一般正面的电极线是电池片的负极线,背面的电极线是电池片的正极线。太阳能电池片无论面积大小(整片或切割成小片),单片的正负极间输出峰值电压都是0.48~0.5v。而电池片的面积大小与输出电流和发电功率成正比,面积越大,输出电流和发电功率越大。 合格的太阳能电池片应具有以下特点。 (1)具有稳定高效的光电转换效率,可靠性高。 (2)采用先进的扩散技术,保证片内各处转换效率的均匀性。 (3)运用先进的pecvd成膜技术,在电池片表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。 (4)应用高品质的银和银铝金属浆料制作背场和栅线电极,确保良好的导电性、可靠的附着力和很好的电极可焊性。 (5)高精度的丝网印刷图形和高平整度,使得电池片易于自动焊接和激光切割。 太阳能电池片的分类及规格尺寸 太阳能电池片按用途可分为地面用晶体硅太阳能电池、海上用晶体硅太阳能电池和空间用晶体硅太阳能电池,按基片材料的不同分为单晶硅电池和多晶硅电池。目前太阳能电池片常见的规格尺寸主要有125mm×125mm、150mm×150mm和156mm×156mm等几种,厚度一般在170~220μm。 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。 对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。单晶硅电池和多晶硅电池的寿命和稳定性都很好。虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保 分类及规格尺寸 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这

光伏系统的组成和原理

光伏系统的组成和原理 光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -维修保养简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电 池寿命可达到25年以上; -根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济

可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。图1-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件: ●光伏组件方阵:由太阳电池组件(也称光伏电池组件)按 照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 ●蓄电池:将太阳电池组件产生的电能储存起来,当光照不 足或晚上、或者负载需求大于太阳电池组件所发的电量

光伏组件课程设计

课程设计报告 题目太阳能节能灯的设计与分析 系别物理与电子工程学院 年级 2011级专业光伏技术与产业 班级光伏111 学生姓名宋梦丹 学号050411139 指导教师薛春荣 设计时间2013-12

产品简介 【使用优点】 无需电线,按一下底部的开关,白天晒太阳,晚上自动亮光,环保,不用交电费!灯体造型美观大方,轻巧灵活多样,动感十足,太阳能充满电能亮8小时以上。 【安装及使用方法】 把灯罩向左旋开,拨动开关,把灯具插地,放置在阳光下 【技术参数】 ?品牌: MODAS ?型号: MD9548 ?颜色分类: 白色(MD9548W) ?灯具是否带光源: 带光源 ?光源类型: LED ?太阳能板:0.08W(2V 40MA) ?电源:600MAH 1.2V NI-MH ?光源:1*LED(15000MCD) ?产品尺寸:6.7*6.7*36.7CM ?一盒重量:260g 【工作原理】 通过顶部的太阳能板转换成电能,白天光通过太阳能板转换成电能储存在充电电池中,等到晚上天黑时,太阳能板不再对电池充电,灯就自动亮起来。 原理分析 太阳能光伏发电LED照明系统组成高效节能的太阳能光伏发电LED照明系统包括太阳能电池组、DC-DC变换器、最大功率跟踪控制、储存电能的蓄电池组和LED照明控制、LED光源等部分。 太阳能LED自动照明系统的基本原理,是在有光照的情况下,太阳能电池板把光能转变成电能对蓄电池充电,并将电能储存在蓄电池中。夜晚,蓄电池中的电能为半导体发光二极管LED充电发光起到照明的效果。系统采用全自动工作方式,无须人工介入,可以采用声、光或延时控制方式,做到“人在灯亮,人走灯灭”(指楼道、走廊等)或“天黑即亮,延时关灯”(指道路、庭院、景点等)或每日24小时“常明不灭”(指地下停车场、隧道等)。对连续阴雨天,系统可根据

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶 硅 5 8.75 0.57 10.5 0.6 6 265*265*25 APM36M5W27x27单晶 硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶 硅 5 8.75 0.57 10.5 0.6 6 265*265*25 APM36P5W27x27多晶 硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶 硅 8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶 硅 8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶 硅 10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶 硅 10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶 硅 15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶15 17.5 0.86 21.5 0.97 356*426*28

APM36M20W63x28单晶 硅 20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶 硅 20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶 硅 25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶 硅 25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶 硅 30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶 硅 30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶 硅 35 17.5 2.00 21.5 2.26 537*617*40 APM36P35W82x36多晶 硅 35 17.5 2.00 21.5 2.26 356*816*28 APM36M40W62x54单晶 硅 40 17.5 2.29 21.5 2.58 537*617*40 APM36P40W67x58多晶 硅 40 17.5 2.29 21.5 2.58 576*670*40 APM36M45W76x54单晶 硅 45 17.5 2.57 21.5 2.91 537*758*40 APM36P45W67x58多晶 硅 45 17.5 2.57 21.5 2.91 576*670*40 APM36M50W76x54单晶 硅 50 17.5 2.86 21.5 3.23 537*758*40 APM36P50W88x51多晶 硅 50 17.5 2.86 21.5 3.23 510*880*40 APM36M55W76x54单晶 硅 55 17.5 3.14 21.5 3.55 537*758*40 APM36P55W88x51多晶 硅 55 17.5 3.14 21.5 3.55 510*880*40 APM36M60W90x54单晶 硅 60 17.5 3.43 21.5 3.88 537*899*40 APM36P60W82x67多晶 硅 60 17.5 3.43 21.5 3.88 670*816*40 APM36M65W90x54单晶65 17.5 3.71 21.5 4.20 537*899*40

光伏组件与阵列设计复习过程

光伏组件与阵列设计

1.1 引言 太阳电池是将太阳光直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是

太阳能电池组件生产的主要工艺流程

太阳能电池组件生产的主要工艺流程:测试分选T单片焊接T串联焊接T叠层T中间测试T层压T装框注胶T清洗T最终测试 (1)测试分选 电池片分选主要是为了检出不合格的电池片,同时,电池片的颜色一般呈蓝褐色、蓝紫色、蓝色、浅兰色等几种不同档次的蓝色,对电池片进行颜色分选并分档放置,保证单个组件所用到的电池片为同档次的颜色,从而使单个组件生产出来后颜色外观美观,各电池单片之间无明显色差现象。若电池片不经过色差分选就直接做组件,做出来的组件外表颜色“参差不齐” ,不美观。因此,为了保证电池片的质量、外观和生产顺利高效率的运行,通过初选将缺角、栅线印刷不良、裂片、色差等电池片筛选出来。 在标准测试环境(温度25 ±2 C、湿度w 60%RH、光强1000 士 50W )下,绘制I-V曲线图,根据电池片的开路电压Voc、短路电流Isc、工作最佳功率Pm、工作最佳电压Vm、工作最佳电流Im、填充因子FF、转换效率n等指标把电池电性参数相近的电池分到一类,之后根据生产、工艺的数据分析要求,和客户的分档要求,对电池片进行测试并分档。 (2)单片焊接单片焊接将汇流带焊接到电池正面(负极)的主栅线上,从上至 下,匀速焊接。单片焊接的目的是将连接带(锡铜合金带)平直地焊接到电池片的主栅线上,要求保证电气和机械连接良好,外观光亮;焊带

的长度约为电池边长的2倍,多出的焊带在串联焊接时与后面的电池片的背面电极相连。 ⑶串联焊接 背面焊接是将电池片接在一起形成一个电池片的串组,电池的定位主要靠一个膜具板,上面有放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经是设计好的,不同规格的组件使用不同的模板,操作者使用电烙铁和连接带(锡铜合金带)将单片焊接好的电池片的正面电极(负极)焊接到另一片的背面电极(正极)上,以此类推,依次将电池片串接在一起,并在组件串的正负极焊接出为叠层时准备的引线。 串接结构示意图 (4)叠层 背面串接好且经过检验合格后,将电池片串、钢化玻璃和切割好的EVA、背板(TPT)按照一定的层次敷设好,玻璃事先涂一层试剂(primer )以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:钢化玻璃、EVA、电池片、EVA、背板)。叠层 是将电池片串按照所设计的方案进行排列,为下面的工序层压做准备,叠层的主要目的还是在于对组件中电池片位置的控制(假设在层压过程中电池片不发生移动)。

太阳能光伏组件种类

光伏系统的分类与介绍 光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(Small DC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。 3 大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通讯基站工程。 4 交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。

太阳能电池组件的封装

太阳能电池组件的封装

太阳能电池组件的封装 (二)组件的封装结构 (三)组件的封装材料 1上盖板2黏结剂3底板4边框(四)组件封装的工艺流程 不同结构的组件有不同的封装工艺。平板式硅太阳能电池组件的封装工艺流程,如图17所示。可将这一工艺流程概述为:组件的中间是通过金属导电带焊接在一起的单体电池,电池上卞两侧均为EVA膜,最上面是低铁钢化白玻璃,背面是PVF复合膜。将各层材料按顺序叠好后,放人真空层压机内进行热压封装。最上层的玻璃为低铁钢化白玻璃,透光率高,而且经紫外线长期照射也不会变色。EVA膜中加有抗紫外剂和固化剂,在热压处理过程中固化形成具有一定弹性的保护层,并保证电池与钢化玻璃紧密接触。PVF复合膜具有良好的耐光、防潮、防腐蚀性能。经层压封装后,再于四周加上密封条,装上经过阳极氧化的铝合金边框以及接线盒,即成为成品组件。最后,要对成品组件进行检验测试,测试内容主要包括开路电压、短路电流、填充因

子以及最大输出功率等。 硅片划片切割工艺概况 1用激光来划片切割硅片是目前最为先进的,它使用精度高、而且重复精度也高、工作稳定、速度快、操作简单、维修方便。 2激光最大输出≧50W(可调)、激光波长为1.064μm、 切割厚度≦1.2mm、光源是用Nd:YAG晶体组成激光器、是单氪灯连续泵浦、声光调Q、并用计算机控制二维工作台可预先设定的图形轨迹作各种精确运动。 ± 部件分析: 1操作可分为外控与内控。 2计算机操作系统-有专用软件设立工作台划片步骤实现划片目标。 3电源控制盒-供应激光电源、Q电源驱动、水冷系统的输入电源进行分配及自控,当循环水冷系统出现故障时,自动断开激光电源及Q电源驱动盒的供电。 4激光电源盒-点燃氪灯的自动引燃恒流电源。 5 Q电源驱动盒-产生射频信号并施加到Q开

太阳能光伏电池的设计与制作

河南工程学院 《光伏材料设计》 实习实训报告书 太阳能光伏电池的设计与制作2016 -2017学年第二学期 学院:赵博 学生姓名:理学院 学号:201411004215 学生班级:应用物理1442 指导教师:牛金钟赵瑞锋 日期:2017 年6 月14日

摘要:太阳能光伏电池的设计与制造是我们本专业的最主要内容之一,本次实训的目的是让我们更加深刻了解太阳能光伏电池的发电原理,了解太阳能电池组件的生产流程和生产工艺,了解太阳能光伏电池的应用,并且制作一件太阳能光伏电池板。本文主要讲的是本次的太阳能光伏太阳能电池制作过程,包括选择制作材料,电池板的设计,焊接太阳能电池片,组装太阳能电池,以及对电池组件进行测试。 关键词:电池组件设计组装测试

目录 一、简介 (1) 二、材料及其性质 (1) 1.黏结剂 (1) 2.玻璃-上盖板材料 (1) 3.背面材料 (1) 4.边框 (1) 5.接线盒 (2) 6.硅胶 (2) 7.电池片 (2) 三、设计原理及组装 (2) 1.设计原理 (2) 2.太阳能电池组件设计 (3) 3.电池组件的制作 (3)

一、简介 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。通常采用硅半导体 二、材料及其性质 真空层压封装太阳能电池,主要使用的材料有黏结剂、玻璃、复合模、连接条、铝框等。合理地选用封装材料和采取正确的封装工艺能保证太阳能电池的高效利用并延长使用寿命。优良的太阳能电池组件,除了要求太阳能电池本身效率高外,优良的封装材料和合理的封装工艺也是不可缺少的。 1.黏结剂 黏结剂是固定和保证电池与上、下盖板密合的关键材料,要求可见光范围内具有高透光性,抗紫外线老化;具有一定弹性,可缓冲不同材料见的热胀冷缩;具有良好的电绝缘性能和化学稳定性,不产生有害电池的气体和液体;具有优良的气密性,适用于自动化的组件封装。本次实训中采用的是EVA膜。 2.玻璃-上盖板材料 玻璃是覆盖在电池板正面的上盖板材料,构成组件最外层,既要求透光高,又要坚固,耐风霜雨雪,经受沙砾冰雹冲击,起到长期保护电池作用。 普通玻璃体内含铁量过高及玻璃表面的光反射过大是降低太阳能利用率的主要原因。目前在商业化生产中标准太阳能电池组件的上盖板材料通常采用低铁钢化玻璃,其特点是:透光率高、抗冲击能力强、使用寿命长。厚度一般为3.2mm,透光率达90%以上,对于波长大于1200nm的红外线有较高的反射率,同时能耐太阳紫外线的辐射。 3.背面材料 组件底板对电池既有保护作用又有支撑作用。对底板的一般要求为:具有良好的耐气候性能,能隔绝从背面进来的潮气和其他有害气体:在层压温度下不起任何变化:与黏结材料结合牢固。一般所用的底板材料为玻璃、铝合金、有机玻璃以及PVF复合膜等。目前生产上较多应用的是PVF复合膜。 4.边框 平板式组件应有边框,以保护组件和便于组件与方阵支架的连接固定。边框

太阳能电池组件规定

太阳能电池组件规定 1、电池组件方阵概况 1.1电站容量20MW,均采用多晶硅太阳能电池组件,为固定式17°倾角安装。 1.2太阳能方阵由太阳能组件经串联、并联组成。光伏电池组件串联的数量由并网逆变器的最高输入电压、最低工作电压、太阳能电池组件的最大系统电压以及当地气候等条件确定;组串并联的数量由逆变器的额定容量确定。 1.3 组件方阵:每22块电池组件串为一个支路,12条支路进入一个汇流箱,每8或9个汇流箱进入一个直流柜,由两台直流柜分别分配电能到两台500kW的逆变器,2个逆变器(500kW)和1台1000KV A箱变组成一个发电单元(1MW),共20个发电单元;每10MW的联合单元进入一个进线柜,2个10MW联合单元构成总容量为:20MW。

2 、太阳能电池组件型号及参数 序号名称 单 位 型号备注1 太阳电池种类多晶硅 2 光伏组件尺寸 结构1650mm×992mm×40mm 3 光伏组件重量kg 19.0 4 组件效率% 14.98 5 最大输出功率Wp 255 6 最大功率偏差% ±3% 7 开路电压 (V oc) V 38.1 8 短路电流 (Isc) A 8.78 9 最佳工作电压V 31.5 10 最佳工作电流 A 8.13

序号名称 位 型号备注11 最大系统电压V 1000 序号名称 单 位 型号备注1 太阳电池种类多晶硅 2 光伏组件尺寸 结构1650mm×992mm×40mm 3 光伏组件重量kg 19.0 4 组件效率% 14.98 5 最大输出功率Wp 250 6 最大功率偏差% ±3% 7 开路电压 (V oc) V 37.8 8 短路电流 (Isc) A 8.72

电池组件生产工艺流程及操作规范

电池组件生产工艺 目录 太阳能电池组件生产工艺介绍 (11) 晶体硅太阳能电池片分选工艺规范 (55) 晶体硅太阳能电池片激光划片工艺规范 (88) 晶体硅太阳能电池片单焊工艺规范 (1212) 晶体硅太阳能电池片串焊工艺规范 (1616) 晶体硅太阳能电池片串焊工艺规范 (1818) 晶体硅太阳能电池片叠层工艺规范 (2121) 晶体硅太阳能电池组件层压工艺规范 (2727) 晶体硅太阳能电池组件装框规范 (3232) 晶体硅太阳能电池组件测试工艺规范 (3535) 晶体硅太阳能电池组件安装接线盒工艺规范 (3838) 晶体硅太阳能电池组件清理工艺规范 (4141)

太阳能电池组件生产工艺介绍 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1流程图: 电池检测——正面焊接—检验—背面串接—检验—敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试—外观检验—包装入库; 2组件高效和高寿命如何保证: 2.1高转换效率、高质量的电池片 2.2高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装 剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 2.3合理的封装工艺; 2.4员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 3太阳电池组装工艺简介:

相关文档
最新文档