阻抗计算

阻抗计算
阻抗计算

阻抗线计算

一.传输线类型

1 最通用的传输线类型为微带线(microstrip)和带状线(stripline)

微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1)

非嵌入(我们目前常用)

(图2)

嵌入(我们目前几乎没有用过)

带状线:在绝缘层的中间,有两个参考平面。如下图:

(图3)

2 阻抗线

2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120

2.2特性阻抗(图5)

特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm

二.PCB叠层结构

1板层、PCB材质选择

PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6)

首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。

防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77.

防焊对阻抗的影响是使得阻抗变小2~3ohm左右

阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm).

铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层.

半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段:

A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态

B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态

C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态.

常用半固化片的类型(表一)

由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。

同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

三.应用Polar计算50ohm线②④⑤

1 走在表层,次表层不挖

①选用模型,根据叠层结构知道,实际上是表层微带线,非嵌入,可以选用图1的模型

②输入参数

注意:一般情况下,此类微带线的线宽都在0.1MM左右,可以先输入w1=0.1,w2=0.09计算一下Zo是多少,然后再根据结果调整w1,w2.w2比w1小10um,是考虑到了PCB上铜线的实际腐蚀结果

③模型结果(图7)

注意该模型中实际上没有考虑到阻焊对阻抗的影响,实际上阻焊对阻抗大概有1ohm左右的影响。

2 走在表层,次表层挖空,参考地是第3层

①选用模型,根据叠层结构知道,实际上是表层微带线,非嵌入,选用如下模型

图8

②输入参数

注意H1和H2的值,H2的值实际上应该是第1、2层之间的介质厚度再加上2层的铜厚。

③模型结果(图9)

注意;由于我们在模拟过程中没有考虑到阻焊对阻抗的影响,实际上阻焊对阻抗的影响在2~3左右,可以将结果算大一点,便于厂家调整。

3 走在第4层,参考地是第3、5层

①选用模型,根据叠层结构知道,是带状线,可以选用图3来做模型

②输入参数

注意,根据模型实际上,H1的厚度是芯板的厚度,H2是第4、5层间介质厚度加第4层铜厚

③模型结果(图10)

对于电路板的高频阻抗控制,对于许多客户而言应不陌生,但就特性阻抗是如何设计而来?或者特性阻抗在线路设计时有何限制?甚至高频特性阻抗传输线又应设计多长才能达到最好的传输匹配环境?等多方面的问题尚不甚明了。

欢迎访问无线模块淘宝店(https://www.360docs.net/doc/265586328.html,/本店出售多种R F模块)

今就电子学的领域出发解译影响高频特性阻抗品质〝谐振(resonance)〞。所谓的谐振意指可发生于任一物理系统中,只要该系统具有相对形式之贮能零件。当贮存于这些零件中之能量作相互交换时,就不需再自能源取得额外之能量,而将有谐振存在。

我们都知道当驾驶一前轮不平衡之车辆时,在某些特定速率下,不平衡的轮子之振动率等于前端悬吊者之自然谐振频率,则存在在一系统中之弹簧及质量中之能量可彼此互作交换导致一大的振动及方向盘之移动,这些情形司机常见到之。

在此文中,我们将讨论在电路中之谐振特性及一些应用。电路中之谐振,要求电抗量必须能互相抵销。在一串联RLC电路中,此需电抗性电压降抵消:在一并联RLC电路中,则需电抗性电流互相抵消。

一串联电路的阻抗,为电阻值及电抗值之向量和。在一串联RLC电路中,将有一频率,在该频率下可使其电感抗及电容抗相等,此频率称为谐振频率。可使电抗值互相抵销,导致净电抗值为0,在谐振频率(f 0),|XL|=|XC|。

其中所言的RLC电路即指电阻、电感、电容组件所组合而成的电子回路,所以了解何为特性阻抗之前,甚至何谓谐振频率应先就其材料特性加以了解。

就电阻而言:电阻器(resistor)在高频电路中应用甚广,但是一般对电阻特性的了解,仍多局限于电阻在直流电路中所呈现的阻尼特性。实际上,电阻在高频电路中,因受信号频率的影响,不仅电阻值会随之改变,更可能会呈现电感或电容的特性。

如图所示电阻器在高频时的等效电路,R为电阻器的电阻值,L为其两端引线的电感,C为存在于电阻器内所有杂散电容的总和。杂散电容形成的原因,随电阻器结构的不同而异。以碳粒合成电阻(carbon co mposite resistor)为例,由于其结构为以微小碳粒压合而成,故在各碳粒之间都存有电容。此即为等效电路中杂散电容C的来源之一。由此可以推知碳粒合成电阻的高频特性甚差。

另外就TDR测量空板上的传输线而言亦可依上述的方式解译,其中上述所提L的效应来自电阻的两端引线,同理推验可知,TDR所使用探棒的测头如接于导通孔时即产生传输路径,此输入信道愈长则L效应

相对愈大,此现象将如同业先前所提的测阻抗泥效应,亦指目前TDR在测试时所看到前端振荡效应。该效应对于愈短距离的传输线而言,将会造成观察的困难。

就电容器而言:电容器对基本结构,是以两片金属平板中间隔以绝缘介质而成的组件,该组件在电路设计大都用作高频旁路或交连电容如与电感器结合,则可设计为滤波电路或为调谐电路,但一般对高频电路设计者来说其设计使用的电容器,往往不一定是选择最适合的,常以取得方便为主做为考虑,所以往往高频讯号传输过程将因电容器所造成的谐振点不同而使阻抗值偏差,所以电容器在设计时即应慎重考虑其品质。

另就空板电路板的结构,且以目前多层板的结构而言,往往层与层之间的结构形同为电容器的结构如图。

就电容器而言有一品质因子Q,其公式为Q = 1/DF (Dissipation factor散逸因子)。当DF值愈小时即Q值愈大,所以就真正的电容器或电路板的层与层之间的结构而言,讯号传输过程的能量损失愈小则品质愈佳。

所以就板材材料而言,在单体材料时即应做电容值测试甚至于材料后加工后,亦应做电容值测试,因在压合后每平方单位面积上的流胶分布将因温度、压力而异于原始材料结构,因为材料于加工后其特性会有所差异,再者就电路板厂制程的一铜制程而言,在做电化学铜时因电镀的效应关系,所以往往在该铜层之中会有缝隙,而该缝隙或漏洞将同前叙所言,电阻组件中碳粒之间都存有电容,意指铜层中的漏洞将产生额外的杂散电容,如此将导致以后谐振频率中所需的|XC|不易控制,最后终将导致特性阻抗的无法精确控制,因此一铜的制程将不只影响到二铜的结果而已。所以在预估阶段的特性阻抗时往往无法有效掌控压合后真正的介电常数值。

就电感器而言,电感器(inductor)多以导线绕制而成,导线在绕成线圈后,其所呈现的电感量,都比同样长度的导线为大。使得线圈电感量增加的原因,在于线圈每匝所产生的磁通量,都能通过相邻各匝,进而形成较强的磁场所致。因此,任何能加强磁场的方法,都能使电感量增加。电感量的大小,与线圈的形状有关。

电感器在高频电路中,是为常用组件之一,诸如谐振、滤波、相移以及延时等电路,都必须应用电感器。

如上述所言,今为就电路设计者而言应考虑在设计高频讯号传输环境时此参数即因甚重考虑。因如前之所述,在谐振率(f0)时|XL|=|XC|此时的匹配阻抗将达最完美状态,但就一条高频的传输线而言本身的自感量尚不及1nH,所含的电感量不多,此将如何增加磁通量将是一大困难。传输线上并无增加磁通量的装置,因此如要解决下列问题应如何进行呢?简单,只要在主要改传输线的二旁加入并行的传输线并控制彼此之间的间距即可,因为诸如此类对设计此方法可有效加强电感量于电路中,如RAMBUS线路如下图。

计算公式为:L=

r =线圈的半径cm N =线圈匝数

L =线圈的长度cm

当一电感量增加时再控制所需的|XL|的量,即可与|XC|平衡达到谐振频率。如此,对谐振的问题将可有效控制,进而达到高品质的高频传输线路。你可试着思考如果RAMBUS传输线二旁的地线或一些在试片上曾加入的仿真线于二边的传输线,今如去掉仿真线就最后的特性阻抗将又如何?

今将就R.L.C在高频时所衍生出来的串联谐振特性说明如下,但在此之前就高频电路板设计者首先要先决定多少的匹配阻抗值适用于高频主动组件与被动组件之间的传输线阻抗。其必备已知的条件如下

1. 主动组件的输出阻抗值(Output Impedance)

2. 被动组件的输入阻抗值(Input Impedance)

说明:已知主动组件的输出阻抗值为50Ω,及希望与已知被动组件的输入阻抗值为68Ω,如此即可得出传输线的阻抗匹配值将为58.31Ω,公式为:

如1-1公式算出匹配的传输线阻抗将为58.3Ω,若转换成频率对阻抗的曲线图则如下所示:

由上述所言可知在谐振频率时(f0)其阻抗刚巧等于电路之总电阻值,因此时可使电感抗与电容抗相等,并使电抗值抵销此时的频率即为谐振频率。

在较f0为低之频率时,电容抗大于电感抗。故电路之总阻抗是电阻值与净电抗值之相量和。明显地,工作频率较谐振频率愈低,则净电抗值愈大,总阻抗值亦愈大。且阻抗的落后之相位角亦愈大,简言之,对低于谐振频率之频率的串联RLC的电路将呈电容性。

在较f0为高之频率时,电感抗大于电容抗,阻抗为电阻值及净电感抗之相量和。频率较谐振频率愈高时,电路变为更具电感性。阻抗之导前的相位角亦愈大,总阻抗值亦愈大。我们综合上述诸效应如下:

f< f0 : ZT="R-j" (XC-XL)

=tan-1 XC-XL

R

f< f0 : ZT="R" 0

f> f0 : ZT="R"+j (XL-XC)

=tan-1 XL-XC

R

因此如上说明后可得知,传输线的特性阻抗值将来自谐振频率点(f0)的位置而定,而该位置则影响来自容抗及感抗的含量而定。

电路设计者另要对高频传输线在高频讯号传输时的传输介质做选择,因就传输线的等效电路图而言将如下所示:

由前述得知当电容的容抗及电感的感抗不相等时,即会使传输线的阻抗特色呈现电容或电感效应,其中电容效应尤为剧烈,因此如能调整电容参数即能控制介质常数的稳定,将进而可调整谐振点(f0)及得到

最后传输线上的匹配阻抗值,因此就材料内的电容参数阻计算公式如下

C=εr×8.85×10-12 F/m

条件εr=4.3则

C=4.3×8.85×10-12 F/m=38PF

其中上述公式8.85×10-12 F/m为自然界的空气介质常数,F则为电容的容量单位法拉。

电路设计者对于未来传输线上的传输线长度亦要做考虑,因不同的传输频率及不同的传输介质,将影响传输线的长度,举例说明

设计一串联谐振的回路线路在50Ω的同轴电缆线,其介质为PTFE材料,其传输频率为402MHz

条件Z0=50Ω,εr=2.10( PTFE介质常数)

公式λg=

=0.5149m=20.27in

λg/4 =0.5149m/4=0.1287m=5.07in

其中公式中λg为导体内的波长长度,f-c为光速空气介质的传播值,因此就该传输频率其最短的传输线长度应为5.07inch。

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.360docs.net/doc/265586328.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

阻抗计算公式、polarsi9000(教程)

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义。 传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线 层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

PCB阻抗计算参数说明

阻抗计算: 1.介电常数E r E r(介电常数)就目前而言通常情况下选用的材料为 F R-4,该种材料的E r 特性为随着加载频率的不同而变化,一般情况下E r的分水岭默认为1 G H Z(高频)。目前材料厂商能够承诺的指标<5.4(1M H z),根据我们实际加工的经验,在使用频率为1G H Z以下的其E r认为4.2左右。1.5—2.0G H Z的使用频率其仍有下降的空间。故设计时如有阻抗的要求则须考虑该产品的当时的使用频率。 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。 ●7628----4.5(全部为1G H z状态下) ●2116----4.2 ●1080----3.6 2. 介质层厚度H H(介质层厚度)该因素对阻抗控制的影响最大故设计中如对阻抗的宽容度很小的话,则该部分的设计应力求准确,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),一般情况下常用的半固化片为: ●1080 厚度0.075MM、 ●7628 厚度0.175MM、 ●2116厚度 0.105MM。 3.线宽W 对于W1、W2的说明:

5.铜箔厚度 外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1 OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um,大致相当于铜厚1 OZ、1.5 OZ、2 OZ。注意:在用阻抗计算软件进行阻抗控制时,外层的铜厚没有0.5 OZ的值。 走线厚度T与该层的铜厚有对应关系,具体如下: 铜箔厚度单位转换: Oz 本来是重量的单位Oz(盎司ang si )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下

特征阻抗那点事

特征阻抗那点事 关键词:特征阻抗 PCB 电缆 传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。但是很多人对这个概念并不理解,有时还会错误的理解为直流阻抗。弄明白这个概念对我们更好的进行高速电路设计很有必要。高速电路的很多设计规则都和特征阻抗有关。 要理解特征阻抗的概念,我们先要弄清楚什么是传输线。简单的说,传输线就是能够传输信号的连接线。电源线,视频线,USB连接线,PCB板上的走线,都可以称为传输线。如果传输线上传输的信号是低频信号,假设是1KHz,那么信号的波长就是300公里(假设信号速度为光速),即使传输线的长度有1米长,相对于信号来说还是很短的,对信号来说传输线可以看成短路,传输线对信号的影响是很小的。但是对于高速信号来说,假设信号频率提高到300MHz,信号波长就减小到1米,这时候1米的传输线和信号的波长已经完全可以比较,在传输线上就会存在波动效应,在传输线上的不同点上的电压电流就会不同。在这种情况下,我们就不能忽略传输线对信号造成的影响。传输线相对信号来说就是一段长线,我们要用长线传输里的理论来解决问题。 特征阻抗就属于长线传输中的一个概念。信号在传输线中传输的过程中,在信号到达的一个点,传输线和参考平面之间会形成电场,由于电场的存在,会产生一个瞬间的小电流,这个小电流在传输线中的每一点都存在。同时信号也存在一定的电压,这样在信号传输过程中,传输线的每一点就会等效成一个电阻,这个电阻就是我们提到的传输线的特征阻抗。这里一定要区分一个概念,就是特征阻抗是对于交流信号(或者说高频信号)来说的,对于直流信号,传输线有一个直流阻抗,这个值可能会远小于传输线的特征阻抗。一旦传输线的特性确定了(线宽,与参考平面的距离等特性),那么传输线的特征阻抗就确定了.此处省略一万字的公式推导过程,直接给出PCB走线的特征阻抗计算公式: 其中L是单位长度传输线的固有电感,C是单位长度传输线的固有电容。肯定有人会问,什么是单位长度?是1cm,1mm,还是1mil?其实这里的单位长度是多少并不重要。单位越小精度越高,学过微积分对这个概念应该就更清楚了。通过这个简单的计算公式我们能看出来,要改变传输线的特征阻抗就要改变单位长度传输线的固有电感和电容。这样我们就能更好的理解影响传输线特征阻抗的几个因素: a. 线宽与特征阻抗成反比。增加线宽相当于增大电容,也就减小了特征阻抗,反之亦然 b. 介电常数与特征阻抗成反比。同样提高介电常数相当于增大电容

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

PCB阻抗计算参数说明

1.介电常数E r E r(介电常数)就目前而言通常情况下选用的材料为 F R-4,该种材料的E r 特性为随着加载频率的不同而变化,一般情况下E r的分水岭默认为1 G H Z(高频)。目前材料厂商能够承诺的指标<(1M H z),根据我们实际加工的经验,在使用频率为1G H Z以下的其E r认为4.2左右。—的使用频率其仍有下降的空间。故设计时如有阻抗的要求则须考虑该产品的当时的使用频率。 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。 (全部为1G H z状态下) 2. 介质层厚度H H(介质层厚度)该因素对阻抗控制的影响最大故设计中如对阻抗的宽容度很小的话,则该部分的设计应力求准确,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),一般情况下常用的半固化片为: 1080 厚度0.075MM、 7628 厚度0.175MM、 2116厚度 0.105MM。 3.线宽W 对于W1、W2的说明:

5.铜箔厚度 外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1 OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um,大致相当于铜厚1 OZ、1.5 OZ、2 OZ。注意:在用阻抗计算软件进行阻抗控制时,外层的铜厚没有0.5 OZ的值。 走线厚度T与该层的铜厚有对应关系,具体如下: 铜箔厚度单位转换: Oz 本来是重量的单位Oz(盎司ang si )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下

什么是特征阻抗

高速设计领域一个越来越重要也是越来越为设计工程师所关注议题就是受控阻抗的电路板设计以及电路板上互联线的特征阻抗。然而,对于非电子的设计工程师来说,这也是一个最容易混淆也最不直观的问题。甚至很多的电子设计工程师对此也同样感到困惑。这篇资料将对特征阻抗作一个简要而直观的介绍,希望帮助大家了解传输线最基本的品质。什么是传输线?什么是传输线?两个具有一定长度的导体就构成传输线。其中的一个导体成为信号传播的通道,而另外的一个导体则构成信号的返回通路(在这里我们提到信号的返回通路,实际上就是大家通常理解的地,但是为了叙述的方便,暂且忘掉地这一概念。)。在一个多层的电路板设计中,每一个PCB互联线都构成传输线中的一个导体,该传输线都将临近的参考平面作为传输线的的第二个导体或者叫做信号的返回通路。什么样的PCB互联线是一个好的传输线呢?通常如果在同一个PCB互联线上特征阻抗处处保持一致,这样的传输线就成为高质量的传输线。什么样的电路板叫做受控阻抗的电路板?受控阻抗的电路板是指PCB板上所有传输线的特征阻抗符合统一的目标规范,通常是指所有传输线的特征阻抗的值在25Ω到70Ω之间。从信号的角度来考察考虑特征阻抗最行之有效的办法是考察信号沿着传输线传播时信号本身看到了什么。为简化问题的讨论起见,假定传输线为微波传输带(microstrip)类型,并且信号沿传输线传播时传输线各处的横断面保持一致。给该传输线加入幅度为1V 的阶跃信号。阶跃信号是一个1V的电池,由前端接入,分别连接在信号线和返回通路之间。在接通电池的瞬间,信号电压波形将以光速在电介质中行进,速度通常约为6英寸/ns(信号为什么行进如此快速,而不是接近电子传播的速度大约1cm/s,这是另外一个话题,这里不做进一步介绍)。当然在这里信号仍然具有常规的定义,信号定义为信号线与返回通路上的电压差,总是通过测量传输线上任何一点与之临近的信号返回通路之间的电压差值来获得。信号沿传输线方向以6英寸/ns的速度向前传输。在传输的过程中信号会遇到什么样的情况呢?在最开始的10ps时间间隔内,信号沿传输线方向行进了0.06英寸的距离。假定锁定时间在这一时刻,来考虑传输线发生的情况。在行进的这一段距离上,信号的传输为这一段传输线和相应临近的信号返回通道之间建立起了稳定的幅度为1V的常量信号。这意味着在行进的这一段传输线和对应的返回路径上已经积聚起了额外的正电荷和额外的负电荷来建立这一稳定的电压。也正是这些电荷的差异在这两个导体之间建立并维持了一个稳定的1 V 电压信号,而导体之间稳定的电压信号就为两个导体之间建立了一个电容。传输线上位于这一时刻信号波前后面的传输线段并不清楚会有信号要传播过来,因而仍然维持信号线同返回通路之间的电压为零。在接下来的10ps时间间隔内,信号又会沿传输线行进一定的距离,信号继续传播的结果是又会在另一段长度为0.06英寸的传输线段同对应的信号返回通路之间的建立起1V的信号电压。而为了做到这一点,必须为信号线注入一定量的正电荷,同时为信号的返回通路注入同等数量的负电荷。信号沿传输线每传播0.06英寸的长度,都会有更多的正电荷注入该信号线,也会有更多的负电荷注入信号返回通路。每隔10ps时间间隔,就会有另外一段传输线被充电到1 V,同时信号也会沿传输线方向继续向前传播。这些电荷从何而来?答案是来自信号源,也就是我们用来提供阶跃信号、连接在传输线前端的电池。随着信号在传输线上的传播,信号不断地为传播经过的传输线段充电,确保信号传输过程中所到之处信号线与返回路径之间建立并维持起1 V的电压。每隔10ps时间间隔,信号会在传输线上传播一定的距离,并且从电源系统中汲取一定数量的电荷δQ。电池在一段时间间隔δt内的向外提供一定数量的电荷δQ,就形成了恒定的信号电流。正的电流会从电池流入信号线,而与此同时同样大小的负电流会流经信号的返回路径。流经信号返回通路的负电流同流入信号线的正电流大小完全一致。而且,就在信号波前的位置,AC电流流经由信号线和信号返回通路构成的电容,完成了信号环路。传输线的特征阻抗从电池的角度来看,一旦设计工程师将电池的引线连入传输线的前端,就总有一个常量值的电流从电池中流出,并且保持电压信号的稳定不变。也许有人会问,是什么样的电子元器件具有这样的行为?加入恒

电缆的阻抗原理与计算(摘录)

电缆的阻抗原理与计算(摘录) 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频

下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416 L=单位长度电缆的电感量

PCB特性阻抗简介

PCB特性阻抗简介 今就电子学的领域出发解译影响高频特性阻抗品质〝谐振(resonance)〞。所谓的谐振意指可发生于任一物理系统中,只要该系统具有相对形式之贮能零件。当贮存于这些零件中之能量作相互交换时,就不需再自能源取得额外之能量,而将有谐振存在。 我们都知道当驾驶一前轮不平衡之车辆时,在某些特定速率下,不平衡的轮子之振动率等于前端悬吊者之自然谐振频率,则存在在一系统中之弹簧及质量中之能量可彼此互作交换导致一大的振动及方向盘之移动,这些情形司机常见到之。 在此文中,我们将讨论在电路中之谐振特性及一些应用。电路中之谐振,要求电抗量必须能互相抵销。在一串联RLC电路中,此需电抗性电压降抵消:在一并联RLC电路中,则需电抗性电流互相抵消。 一串联电路的阻抗,为电阻值及电抗值之向量和。在一串联RLC电路中,将有一频率,在该频率下可使其电感抗及电容抗相等,此频率称为谐振频率。可使电抗值互相抵销,导致净电抗值为0,在谐振频率(f0),|XL|=|XC|。 其中所言的RLC电路即指电阻、电感、电容组件所组合而成的电子回路,所以了解何为特性阻抗之前,甚至何谓谐振频率应先就其材料特性加以了解。 就电阻而言:电阻器(resistor)在高频电路中应用甚广,但是一般对电阻特性的了解,仍多局限于电阻在直流电路中所呈现的阻尼特性。实际上,电阻在高频电路中,因受信号频率的影响,不仅电阻值会随之改变,更可能会呈现电感或电容的特性。 如图所示电阻器在高频时的等效电路,R为电阻器的电阻值,L为其两端引线的电感,C为存在于电阻器内所有杂散电容的总和。杂散电容形成的原因,随电阻器结构的不同而异。以碳粒合成电阻(carbon composite resistor)为例,由于其结构为以微小碳粒压合而成,故在各碳粒之间都存有电容。此即为等效电路中杂散电容C的来源之一。由此可以推知碳粒合成电阻的高频特性甚差。 另外就TDR测量空板上的传输线而言亦可依上述的方式解译,其中上述所提L的效应来自电阻的两端引线,同理推验可知,TDR所使用探棒的测头如接于导通孔时即产生传输路径,此输入信道愈长则L效应相对愈大,此现象将如同业先前

射频同轴连接器特性阻抗的计算

射频同轴连接器特性阻抗的计算 文章介绍了射频同轴连接器特性阻抗的计算方法之一,快速简便的获得阻抗值,方便采购与检验等环节。 标签:同轴连接器;射频转接器;特性阻抗;阻抗匹配 1 前言 微波技术在新世纪得到更广泛的发展,作为微波技术的重要器件射频同轴连接器显得至关重要,选择匹配的连接器可以提高系统的性能。而作为选择连接器的重要因素,阻抗匹配显得很重要,了解和掌握阻抗的计算方法可以一定程度的保证器件选择、产品进货检验等。 2 射频同轴连接器简介 用于射频同轴馈线系统的连接器通称为射频同轴连接器。 射频同轴连接器按连接方式分类为:螺纹式连接器,卡口式连接器,推入式连接器,推入锁紧式连接器。 常用的射频同轴连接器有SMA型、SMB型、SSMB型、N型、BNC型、TNC型等。 射频同轴连接器电气性能方面包括特性阻抗、耐压、最高工作频率等因素,特性阻抗是连接器与传输系统及电缆的阻抗匹配,是选择射频同轴连接器的主要指标,阻抗不匹配会导致系统性能的很大下降。通过计算的阻抗来选择匹配的连接器,方便采购、检验及设计。利用射频同轴连接器的结构尺寸计算其阻抗值的方法,快速简便。 3 射频同轴连接器特性阻抗的计算 射频同轴连接器的特性阻抗主要依据其外导体的内直径和内导体的外直径以及和填充的介质共同决定的。如图1所示 3.3 实例2 BNC 型连接器的特性阻抗: BNC 型连接器使用于低功率,按特性阻抗分为50Ω和75Ω两种。不同于其它类型连接器的特点是50Ω与75Ω的内导体与外导体的尺寸一样,构成特性阻抗不同的区别在是否填充介质,也就是说有一种阻抗的连接器的填充是空气。75Ω特性阻抗的连接器没有填充介质,即空气介质(εr=1)。50Ω特性阻抗的在

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来与大家说明下阻抗就是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来与意义: 传输线阻抗就是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗与波阻抗的概念上的差异(具体查瞧平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出、 Ok,理解特性阻抗理论上就是怎么回事情,瞧瞧实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等、在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来、 叠层(stackup)的定义 我们来瞧如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,与厂家打交道经常会使用的 Oz 的概念 Oz 本来就是重量的单位Oz(盎司)=28、3 g(克) 在叠层里面就是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状与尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 就是种介质材料,由玻璃纤维与环氧树脂组成,core 其实也就是pp 类型介质,只不过她两面都覆有铜箔,而pp 没有、 传输线特性阻抗的计算

特性阻抗计算

对特性阻抗的一种浅显易懂的解释 抽象又复杂的数位高速逻辑原理,与传输线中方波讯号的如何传送,以及 如何确保其讯号完整性(Signal Integrity),降低其杂讯(Noise)减少之误动 作等专业表达,若能以简单的生活实例加以说明,而非动则搬来一堆数学公式与 难懂的物理语言者,则对新手或隔行者之启迪与造福,实有事半功倍举重若轻之 受用也。 然而,众多本科专业者,甚至杏坛为师的博士教授们,不知是否尚未真正进 入情况不知其所以然?亦或是刻意卖弄所知以慑服受教者则不得而知,或是二者 心态兼有之!坊间大量书籍期刊文章,多半也都言不及义缺图少例,确实让人雾 里看花,看懂了反倒奇怪呢! 笔者近来获得一份有关阻抗控制的简报资料,系电性测试之专业日商HIOKI 所提供。其内容堪称文要图简一看就懂,令人爱不释手。正是笔者长久以来所追 求的境界,大喜之下乃征得原著“问港建”公司的同意,并经由港建公司廖丰莹 副总的大力协助,以及原作者山崎浩(Hiroshi Yamazaki)及其上司金井敏彦(Toshihiko Kanai)等解惑下,得以完成此文,在此一并感谢。并欢迎所有前辈先进们,多 多慨赐类似资料嘉惠学子读者,则功在业界善莫大焉。 一 .将讯号的传输看成软管送水浇花 1.1 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。 一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰 好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命, 岂非一种得心应手的小小成就? 1.2 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至 还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任 务失败横生挫折,而且还大捅纰漏满脸豆花呢! 1.3反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。 过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。 1.4 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。 此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver) 元件所并联到Gnd的电阻器一般(是五种终端技术之一,请另见TPCA会刊第13 期“内嵌式电阻器之发展”一文之详细说明),可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。 二. 传输线之终端控管技术(Termination) 2.1由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件 (如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特 性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失 败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一

阻抗计算软件POLAR SI9000 V7.1 软件介绍

POLAR SI9000 V7.1 阻抗计算软件破解版,站长已安装破解成功,现在免费放出给大家,望大家多多支持本站。压缩包内有安装说明和破解License。如果有问题可以联系本人。因文件比较大,所以放到网盘里面,免费供大家下载。 随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。 在实际情况中,需要在数字边际速度高于1ns 或模拟频率超过300Mhz时控制迹线阻抗。PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。 阻抗控制 阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为“阻抗控制”。 PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、

焊盘的厚度、地线的路径、走线周边的走线等。PCB 阻抗的范围是 25 至120 欧姆。 在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。迹线和板层构成了控制阻抗。PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定: ?信号迹线的宽度和厚度 ?迹线两侧的内核或预填材质的高度 ?迹线和板层的配置 ?内核和预填材质的绝缘常数 PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。 微带线(Microstrip): 微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板的表面之上,以电源或接地层为参考。如下图所示: 注意:在实际的PCB制造中,板厂通常会在PCB板的表面涂覆一层绿油,因此在实际的阻抗计算中,通常对于表面微带线采用下图所示的模型进行计算:

相关文档
最新文档