焊接温度场及残余应力测量方法总结

焊接温度场及残余应力测量方法总结
焊接温度场及残余应力测量方法总结

焊接温度场及残余应力测量方法总结

一、焊接温度场测量方法

多年来,基于物体的某些物理化学性质(例如,物体的几何尺寸、颜色、电导率、热电势和辐射强度等)与温度的关系,开发了形式多样的温度测量方法和装置,综合温度测量的现状,按测量方式可分为接触式和非接触式两大类。

1、接触式测温方法

接触式测温方法的感温原件直接置于被测温度场或介质中,不受到黑度、热物理性参数等性质的影响,具有测温精度高、使用方便等优点。但是对于瞬态脉动特性的对象,接触式测温方法难以作为真正的温度场测量手段。主要是由于接触法得到的是某个局部位置的信号,如果要得到整个温度场的信号,必须在温度空间内进行合理的布点,才可以根据相应的方法(如插值法等)获得对温度场的近似。

常用的接触式测温方法有,电偶测温法。热电偶是用两种不同的导体(或者半导体)组成的闭合回路,两端接点分别处于不同温度环境中,与当地达成热平衡时会产生热电势,标定后可用来测量温度。理想的热电偶测温方法,是将参比端

E,再查分度表反置于0℃的恒温槽中,通过测量2个不同导体A和B的热电动势ab

求出被测温度t。由于让参比端保持0℃有时比较困难,实际应用中常常需要参比端恒温处理或温度补偿。热电偶测温法有几个优点:精度比较高,因为热电偶直接与被测对象接触,不受中间介质的影响;测量范围大,通常可在-50~1600℃范围内连续测量;结构简单,使用方便。但是,热电偶测温法也有一定的缺点:每次测量的点数有限(最多几个点),难以反映整个焊接温度场的情况;此外,金属的电阻和熔池中液体的流动会阻碍热传导,从而给热电偶的测量带来一定的误差。

2、非接触式测温法

非接触测温法分为两大类:一类是通过测量介质的热力学性质参数,求解温度场(如声学法);另一类是通过高温介质的辐射特性,通过光学法来测量温度场。非接触式测温方法由于测温元件不与被测介质接触,不会破坏被测介质的温度场和流场;同时,感温元件传热惯性很小,因此可用于测量不稳定热力过程的温度。其测量上限不受材料性质的影响,可在焊接等高温场合应用。目前常用的测试方法主要有以下几种:

2.1、红外热像法

随着红外技术和计算技术的发展,红外热象法测定焊接温度场成为近代一种新技术。红外热成像测温技术为非接触式测温,响应快,不破坏被测物体的温度场,可以检测某些不能接触或禁止接触的目标,红外热像技术显示出其在测试物体温度场方面的优势。在实际的测量过程中,一般先采用热电偶标定被测物体的发射率,然后再用红外热像仪测定物体的温度场。

图1 红外热像法测量焊接温度场

2.2 红外测温法

红外测温技术是利用红外辐射的测量来确定物体的温度,主要是利用红外测温仪来实现的。非接触的红外测温仪,使用附件少,安装方便,可快速对物体温度进行非接触测量,且不破坏被测温度场的均衡性,为高频焊管的在线温度监控提供了一种有效的技术手段。

图2 红外测温示意图

红外热成像与红外测温,虽然都能测量温度,其区别在于:都可以测量温度,但热像仪还可以获得热图像;红外测温仪测量一个点的温度,红外热像仪测量一个面积或一个温度分布区;红外测温仪用距离系数比,红外热像仪采用视场角FOV的概念;由第2点形成了许多性能指标的不同称呼,如红外测温仪没有空间分辨率,而红外热像仪有空间分辨率,如此等等;红外测温仪最小可测目标直径很难达到0.2mm,红外热像仪最小可以测量到5微米。

2.3 基于彩色CCD温度测量法

利用彩色图像测量焊接温度场的温度,主要测量依据是热辐射理论,包括:普朗克定律、维恩公式以及斯蒂芬-波尔茨曼定律等。此外灰体概念也应用其中。

图3 CCD测温示意图

3、焊接测量时的一些要求

根据GB/T 18591-2001 idt ISO 13916:1996标准规定,对于熔化焊预热温度、道间温度及预热维持温度的测量(其他焊接方法也可参照采用本标准,但不包括焊后热处理温度的测量),有以下要求:

3.1 测量点

温度一般在正对着焊工的工件表面,距坡口边缘4倍板厚,且不超过50mm 的距离处测量(见图4)。这一规定适用于焊缝处工件厚度t不超过50mm的场合。当工件厚度超过50mm时,要求的测温点应位于至少75mm距离的母材或坡口任何方向上的相应位置。条件允许时,温度应在加热面的背面上测定。否则,应在加热面上移开热源一段时间,使母材厚度上的温度均匀后测定温度。使用固定的永久性加热器且无法在背面测量温度时,应从靠近焊缝坡口处暴露的母材表面上测取温度。温度均匀化的时间按每25mm母材厚度2min的比例计。道间温度应在焊缝金属或相邻的母材金属处测得。

3.2 测量时间

道间温度应在电弧经过之前的焊接区域内瞬时测得。如果对预热维持温度有规定时,应在焊接中断期间予以监测。

图4 测点的距离

二、焊接残余应力测量方法

残余应力问题一直受到人们的关注,残余应力的测量技术始于20世纪30年代,发展至今共形成了数十种测量方法。目前,残余应力的测试方法很多,按其对于被测构件是否具有破坏性,可分为有损测试方法和无损测试方法两大类。有损测试方法,又称机械释放测量法,主要原理是破坏性的应力释放,使其释放部分产生相应的位移与应变,测量出这些位移和应变,经换算得到构建原有的应力。它主要包括钻孔法、分割切条法、逐层铣削法、切槽法等。其优点是测量的精度

较高,但对构件的损伤较大。无损测试方法是多年来科研人员一直探索的方法,目

前无损测试的方法包括X 射线衍射法、中子衍射法、磁性法、超声波法、电子散

斑干涉法等。它对被测构件无损害,但一般只能测量物体表面的应力和应变,成本

高。目前,国内外常用测定残余应力的方法和原理如下:

1、有损测试方法

1.1 钻孔法

这种方法的测量精度高,对构件的破坏性小,操作简单方便,在工业实际中得到

广泛的应用。假定物体表面存在残余应力,此应力处于平面应力状态,在该平面某

点上钻一个小孔,孔边的径向应力下降为0,孔区附近应力重新分布。若在钻孔之前,

在该点贴上三向应变计,如图5所示

图5 钻孔法示意图

钻孔之后,应变计便感受到应力释放产生的应变,通过测量应变计的应变,并进

行相应的计算,便可求得该点的2个主应力σ1、σ2和1个主方向角θ,计算公式为 ()[]121232213221212,122t an )(41

42εεεεεθεεεεεεεσ---=+-+-±+=B

A

式中:1ε,2ε,3ε分别为由应变计测得到的应变;A,B 为释放系数;θ为残余主

应力σ1方向与应变计1轴向的夹角。由于该方法易于现场操作、工件创伤面积

小、精度较高以及设备较便宜,因此在工程上测量表面残余应力常采用此法。

1.2 分割切条法

(1)单轴焊接残余应力测量。假设残余应力主要是单轴作用的,在要测量的

残余应力的方向,把构件切成大量的窄条,并由释放的应变求得应力。

x x E εσ-=

可用锯条进行切条,释放应变由可拆御的应变计或粘贴的电阻应变计测量。坚

固耐用的可拆卸应变计上的测量球托靠在构建表面测量基线端点的测量球印中。

测量基线长100到250mm ,采用这样的基线是设定在该长度内的残余应力不变。

采用更敏感的电阻应变计可缩短测量基线的长度,但是连续可能妨碍切割。

(2)双轴焊接残余应力切割。双轴残余应力的确定是不可缺少的技术,在切

块法中,给出相互垂直的x 和y 方向要测量的正应力σx 和σy,假定在板厚方向应力不变,测量基线或应变计通常设置在板两侧,然后把板切成若干方块,残余应力σx 和σy 可由释放的应变εx 和εy 求得,

()()x y y y x x νεενσνεενσ+-E -=+-E -

=2211 在确定整个平面应力状态时至少需要3个测量方向,可采用由3个应变片组成的应变花,其原理与钻孔法相似。

图6工字型截面切条法 图7 用于对接焊缝板的切块法

1.3 逐层铣削法

是采用铣、研磨抛光、腐蚀、电解腐蚀或电火花剥蚀等对已磨削表面进行剥 层,使表面残余应力释放,引起试件产生变形,由此变形量的大小,再根据弹性理论可以推算出被削层内的应力。这种方法的优点是可以测定厚度上梯度较大的内应力。如图8,具有不均匀单轴纵向残余应力分布的杆件,剥层在平面夹紧状态进行,剥层去除工序之间松开杆件,因弹性变形而使杆件弯曲,弯曲的测量由回味弹簧的偏斜,剥层侧反面的曲率或应变确定,沿杆件高度Z 的杆件纵向初始残余应力为x σ,可用下式计算

????????-+=?0)(24322h h x dz z h dh d h l

E ωωωσ 其中0h 为梁的初始高度,h 为随剥层的可变高度,l 是发生挠曲线ω梁的长度,E 为弹性模量。

图8逐层铣削法中曲率测量

1.4 环形槽法

对于与深度无关或有关的体形构件的残余应力测量可以用环形槽法代替钻孔法,如图9所示,深度合适的环形槽可完全释放环形内表面的应力状态,再加大环形槽的深度也不改变测量信号。由胡克定律: ()()()()b a d c d c b a d c b a E E εεεεφεεεεμσσεεεεμ

σσ--=+++--=+-+-+=-2tan )()

1(21

-212221

图9 环形槽法

2、无损测试方法

2.1 X 射线衍射

该方法检测残余应力的根据是弹性力学和X 射线晶体学理论。对于理想的多晶体,在无应力的状态下,不同方位的同族晶面间距是相等的,而当受到一定的表面残余应力σ时,不同晶粒的同族晶面间距随晶面方位及应力的大小发生有规律的变化,从而使X 射线衍射谱线发生位偏移,根据位偏移的大小可以计算出残 余应力。

X 射线的波长为λ,衍射晶面间距为d ,衍射角为2θ,三者遵循布拉格定律λθn d =sin 2(n=1,2,3....),对于各项同性的多晶材料,在平面应力状态下,依据布拉格定律和弹性力学理论可以导出,应力值σ满足

ψ

θσ2sin 2???=K ,

其中K为应力常数,可以通过资料查出或者通过实验测出,这样测定应力的实质就变成了,选定若干个ψ角,测定对应的衍射角2θ,要测定衍射角就一定有寻

ψ法和固定ψ法,如图10

峰扫描范围,按照扫描方式,又可分为固定

图10 X射线衍射法

由于X射线的穿透深度极浅,它只能在表层深度30μm左右的范围测量。它的优点是可以测量出应力的绝对值。但该方法对试件表面要求十分严格,且设备昂贵,操作复杂。

2.2 中子衍射法

以中子流为入射束,照射试样,当晶面符合布拉格条件时,产生衍射,得到衍射峰并通过研究衍射束的峰值位置和强度,可获得应力或应变及结构的数据。该方法的原理与普通X射线衍射方法类似。主要差别在于X射线是由电子壳层散射的,而中子射线是由原子核散射的,中子的穿透深度比X射线大得多,对于钢可达50mm,可以用来测量钢的焊接结构沿层深的残余应力。为了获取高分辨率,需要高强度中子束,因此,只有反应堆或中子加速度器才能满足要求。

图11 中子衍射方法测定电子束焊管的残余应力

2.3 磁测法

利用磁致伸缩效应来测定应力,当应力变化时,由于物体的伸缩引起磁路中磁通的变化,并使感应器线圈的感应电流发生变化,由此变化可以测出应力的变化。

目前市场上较成熟的有邯郸爱华机械电子厂生产的CCYL型磁测仪。其基本原理是通过传感器和一定电路将磁导率的变化转变为电流量的变化,建立应力和电流量的函数关系,通过电流量的测量来确定应力,它的最大特点是测量速度快,非接触测量,适合现场,但测试结果受很多因素影响,可靠性和精度差,量值标定困难,对材质较敏感,且仅能用于铁磁材料。磁性法都是需要外部激励磁场来工作,因此带来了磁化不均匀,设备笨重,消耗能源,剩磁和磁污染等问题。

2.4 超声波法

超声波法超声应力测量是建立在声弹性理论基础上,利用受应力材料中的声双折射现象。当没有应力作用时,超声波在各向同性的弹性体内传播速度与有应力作用时传播速度不同,利用超声波波速与应力之间的关系来测量残余应力。

从理论上讲,只要发射超声波功率足够大,可穿透任意厚度的工作,因此它适合测量大型构件的三维残余应力,但测量精度低,只能测试高值残余应力,该方法目前还处于试验研究阶段。

2.5 电子散斑干涉法

它是一种激光干涉技术。当构件有应力作用时,材料表面产生形变,干涉条纹图形即发生变化,通过干涉条纹的变化可知构件的应力变化情况。它只能测量构件表面的应力情况。测量时对抗震性要求很高,且在暗室条件下工作,工作环境受到很大的限制。

2.6 激光超声检测法

激光超声是最近发展起来的无损检测技术,其显著优点是非接触、高的空间和时间分辨率,容易实现高精度测量,已被成功用来表征材料的表面特性。激光超声法的原理是用Nd:YAG(钕钇铝石镏石)脉冲激光激发声表面波,并用外差激光干涉仪接收。并通过测得的表面波声速在不同位置上的相对变化来反映材料的残余应力分布。对无残余应力、有压缩残余应力、有拉伸残余应力的3个试样应力分布,进行了实验测定。结果证实了试样的残余应力分布可引发声表面波在不同位置上声速的相对变化,也证实了激光激发声表面波及其接收技术是一种无损检测材料内残余应力分布的有效方法。

2.7 磁记忆应力检测方法

磁记忆检测方法是一种全新的铁磁金属材料诊断检测技术,其原理为:处于地磁环境下的铁制构件受工作荷载的作用,内部会发生具有磁致伸缩性质的磁畴组织定向的和不可逆的重新取向,并在应力与应变集中区形成最大的漏磁场的变化。这种磁状态的不可逆变化在工作荷载消除后继续保留,增强后的磁场“记忆”了构件应力集中的位置,这就是磁记忆效应。从而通过测定漏磁场法向分量,便可准确地推断构件的应力集中区。研究表明,铁磁性金属构件表面上的磁场分布与

其内部应力有一定的关系,因此可通过检测构件表面的磁场分布情况间接地对部件应力集中位置进行诊断。

除了以上测量方法外,近年来有一批新的测试技术应用而生,如用屈服条件确定残余应力,无损电测法,脆性涂层法,云纹法,反向叠加应力法,热评估法,硬度法,数字散斑法以及压良叠加应力测量法等,有时也可根据具体情况将各种测试方法综合起来应用。

表面残余应力测试方法

表面残余应力测试方法 由于X射线的穿透深度极浅,对于钛合金仅为5μm,所以X射线法是一种二维平面残余应力测试方法。现在暂定选择钛靶,它与钛合金的晶面匹配较好。(110)晶面 一、试样的表面处理 X射线法测定的是试件的表面应力,所以试件的表面状况对测量结果也有很大的影响。试件表面不应有油污、氧化皮或锈蚀等;测试点附近不应被碰、擦、刮伤等。 (1)一般可以使用有机溶剂(汽油)洗去表面的油泥和脏污。 (2)去除氧化皮可以使用稀盐酸等化学试剂(根据试样选择合适浓度,如Q235钢用10%的硝酸酒精溶液浸蚀5min)。 (3)然后依据测试目的和测试点表面实际情况,正确进行下一步的表面处理。如果测量的是切削、磨削、喷丸、光整、化铣、激光冲击等工艺之后的表面应力,以及其它表面处理后引起的表面残余应力,则绝不应破坏原有表面不能进行任何处理,因上述处理会引起应力分布的变化,达不到测量的目的。必须小心保护待测试样的原始表面,也不能进行任何磕碰、加工、电化学或化学腐蚀等影响表面应力的操作。对于粗糙的表面层,因凸出部分释放应力,影响应力的准确测量,故对表面粗糙的试样,应用砂纸磨平,再用电解抛光去除加工层,然后才能测定。 (5)若被测件的表面过于粗糙,将使测得的应力值偏低。为了提高试件的表面光洁度,又不产生附加产力,比较好的办法是电解抛光法。该法还可用于去除表面加工层或进行试件表层剥除。 (6)若单纯为了进行表层剥除,亦可以用更为简单的化学腐蚀法,较好的腐蚀剂是浓度为40%的(90%H202+10%HF)的水溶液。但化学腐蚀后的表面光洁度不如电解抛光。为此可在每次腐蚀前用金相砂纸打磨试件表面,但必须注意打磨的影响层在以后的腐蚀过程中应全部除去。 二、确定测量材料的物相,选定衍射晶面。 被测量的衍射线的选择从所研究的材料的衍射线谱中选择哪一条(hkl)面干涉线以及相应地使用什么波长的X射线是应力测定时首先要决定的。当然事先要知道现有仪器提供的前提条件:一是仪器配置了哪几种靶材的x射线管,它决定了有哪几个波长的辐射可以选用;二是测角仪的2θ范围。一般选用尽可能高的衍射角,使得⊿θ的增大可以准确测得。 在一定的应力状态下具有一定数值的晶格应变εφ,ψ对布拉格角θ0值越大的线条造成的衍射线角位移d(2θ)φ.ψ必也越大,因此测量的准确度越高。同时,在调整衍射仪时不可避免的机械调节误差对高角线条的角位置2θ的影响相对地也比较小。正因为如此X射线应力测定通常在2θ>90°的背反射区进行,并尽量选择多重性因子较高的衔射线。举例来说,对铁基材料常选用Cr靶的Ka线,α—Fe的(211)晶面的衍射线。 若已知X射线管阳极材料和Ka线波长,利用布拉格方程可计算出各条衍射线的2θ值,从中选择出高角线条。可以从《材料中残余应力的X射线衍射分析和作用》的附录中查得常用重要的金属材料和部分陶瓷材料在Cu,Co,Fe,Cr四种Kal线照射下的高角度衍射线。由于非立方晶系材料受波长较短的X射线照射时出现较多的衍射线,因此最好选择那些弧立的、不与其它线条有叠合的高角衍射线作为测量对象。

焊接考试试题

焊接考试试题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

大连中远船务工程有限公司中级焊工考试试题 姓名:职号:成绩: 一、选择题: 1、( A )是防止低合金钢产生冷裂纹、热裂纹和热影响区出现淬硬组织的最有效的措施。 A. 预热 B. 减小热输入 C. 用直流反接电源 D. 焊后热处理 2、低合金结构钢焊接时,最常出现的缺陷是( A )。 A. 裂纹 B. 气孔 C. 未熔合 D. 未焊透 3、低合金结构钢焊接时,最常见的裂纹是( D )。 A. 热裂纹 B. 冷裂纹 C. 再热裂纹 D. 热应力裂纹 4、采用( C )方法焊接珠光体耐热钢时,焊前不需要预热。 A. 焊条电弧焊 B. CO2气体保护焊 C. 氩弧焊 D. 埋弧焊 5、马氏体不锈钢焊接接头,产生晶间腐蚀的倾向( B ). A. 很大 B. 很小 C. 无倾向 6、( D )是使不锈钢产生晶间腐蚀的最有害的元素。 A. 铬 B. 镍 C. 铌 D. 碳 7、防止不锈钢焊接时产生的热裂纹的措施,是通过焊接材料向焊 缝中加入形成( A )的元素。

A. 奥氏体 B. 马氏体 C. 铁元素 D. 珠光体 8、( C )不锈钢具有强烈的淬硬倾向。 A. 奥氏体 B. 马氏体 C. 铁元素 D. 珠光体 9、焊接不锈钢复合板的过渡层时,一般采用( A)焊接方法进行。 A. 焊条电弧焊 B. 埋弧焊 C. 氩弧焊 D. CO2气体保护焊 10、焊前将铸件预热至(B )℃。 A. 100 B. 200 C. 300 D. 400 二、填空题: 1、电弧焊时,熔滴过渡的形式主要有(短路过渡)、小颗粒过渡和大颗粒过渡。 2、焊机的外特性是指在规定运行范围内,其稳态(输出电流)和端电压之间的关系。 3、产生焊接点呼磁偏吹的原因有:(接地线位置不正确),焊条和焊件的位置不对称及焊接电流较大等。 4、合金钢按其用途,可以分为:结构钢,工具钢和(特殊性能刚)三大类。

盲孔法测残余应力原理及几种打孔方式简介[1]

第15届全国残余应力学术交流会论文 盲孔法测残余应力原理及几种打孔方式简介 王晓洪赵怀普 (郑州机械研究所河南郑州450052) 引言 机械零部件和构件在制造加工的过程中由 于不同的制造工艺,例如铸造、切削、焊接、热 处理等,都会在材料中产生残余应力。残余应力 的存在,一方面工件会降低强度,使工件在制造 时产生变形和开裂等工艺缺陷;另一方面又会在 制造后的自然释放过程中使工件的尺寸发生变 化或者使其疲劳强度等力学性能降低,从而影响 到它们的使用安全性。因而,了解残余应力的状 态对于确保工件的安全性和可靠性有着非常重 要的意义。 目前,比较成熟且普遍应用的残余应力测试方法分为两大类:无损检测法和机械检测法。无损法在检测过程中不对工件产生创伤,机械法在测量的过程中要对工件体做全部或部分的破坏,例如切割法(又称剖分法)和环芯法对工件的破坏较大,而盲孔法对工件的破坏较小,因而盲孔法又称半无损法。本文主要针对盲孔法的原理和几种打孔方式给于介绍。 一、盲孔法测残余应力的基本原理 盲孔法最早由由德国人J.Mathar于1934年首先提出,以后经长期不断地改进和完善,目前已成为应用最广泛的残余应力测量方法之一。美国材料试验协会ASTM已于1981年制订了测量标准(2)。 盲孔法测量残余应力的原理如图1所示,假设一个各向同性材料上某一区域内存在一般状态的残余应力场,其最大、最小主应力分别为σ1和σ2,在该区域表面上粘贴一专用应变花,在应变花中心打一小孔,引起孔边应力释放,从而在应变花丝删区域内产生释放应变,根据应变花测量的释放应变就可以计算出残余应力: 图1 盲孔法残余应力测量原理图 () () () () ? ? ? ? ? ? ?? ? ? ? ? ? - - - = - - + - + + = - - + - - + = 1 3 3 1 2 2 3 1 2 2 3 1 3 1 2 2 3 1 2 2 3 1 3 1 1 2 2 2 ) ( 4 4 2 ) ( 4 4 ε ε ε ε ε θ ε ε ε ε ε ε ε σ ε ε ε ε ε ε ε σ tg B E A E B E A E (1) 式(1)中: ε1、ε2、ε3—三个方向释放应变; σ1、σ2 —最大、最小主应力; θ—σ1与1号片参考轴的夹角; E —材料弹性模量; A、B —两个释放系数。 其中A、B系数与钻孔的孔径、应变花尺寸、孔深有关(1)。 盲孔法测残余应力的误差主要有以下几个因素: 1、应变片的粘贴质量。应变片粘贴不好会引起数据漂移和精度下降。 σ 1 1 2

残余应力检测方法概述

第1 页 共 2页 残余应力检测方法概述 目前国际上普遍使用的残余应力检测方法种类十分繁多,为便于分类,人们往往根据测试过程中被测样品的破坏与否将测试方法分为:应力松弛法(样品将被破坏)和无损检测法(样品不被破坏)两类。以下我们简单归纳了现阶段较为常用的一些残余应力检测方法。 一、常见的残余应力检测方法: 1. 应力松弛法 (1) 盲孔法 该方法最早由Mather 于1934年提出,其基本原理就是通过孔附近的应变变化,用弹性力学来分析小孔位置的应力,孔的位置和尺寸会影响最终的应力数值。由于这类设备操作起来非常简单,近年来被广泛使用。 (2) 切条法 Ralakoutsky 在1888年提出了采用该方法测量材料的残余应力。在使用这种方法时需要沿特定方向将试件切出一条,然后通过测量试件切割位置的应变来计算残余应力。 (3) 剥层法 该方法是通过物理或化学的方法去除试件的 一层并测量其去除后的曲率,根据测定的试件表面曲率变化就能计算出残余应力。该方法常用于形状简单的试件,且测试过程快捷。 2. 无损检测方法 (1) X 射线衍射法 X 射线方法是根据测量试件的晶体面间距变化来确定试件的应变,进而通过弹性力学方程推导计算得到残余应力,目前最被广泛使用的是Machearauch 于1961提出的sin2ψ方法。日本最早研制成功了基于该方法的X 射线残余应力分析仪,为该方法的推广做出了巨大的贡献。 (2) 中子衍射法。 中子衍射方法的原理和X 射线方法本质上是一样的,都是根据材料的晶体面间距变化来求得应变,并根据弹性力学方程计算残余应力。但中子散射能量更高,可以穿透的深度更大,当然中子衍射的成本也是最昂贵的。 (3) 超声波法。 该方法的物理和实验依据是S.Oka 于1940年发现的声双折射现象,通过测定声折射所导致的声速和频谱变化反推出作用在试件上的应力。试件的晶体颗粒及取向会影响数据的准确度,尽管超声波方法也属无损检测方法,但其仍需进一步完善。 二、最新的残余应力检测方法 cos α方法早在1978年就由S.Taira 等人提出, 但真正应用于残余应力测试设备中还是近几年的事情。日本Pulstec 公司于2012年研制出了世界上首款基于cos α方法的X 射线残余应力分析仪,图1是设备图片(型号:μ-x360n )。

焊接考试试题

大连中远船务工程有限公司中级焊工考试试题 姓名:职号:成绩: 一、选择题: 1、(A )是防止低合金钢产生冷裂纹、热裂纹和热影响区出现淬硬组织的最有效的措施。 A. 预热 B. 减小热输入 C. 用直流反接电源 D. 焊后热处理 2、低合金结构钢焊接时,最常出现的缺陷是(A )。 A. 裂纹 B. 气孔 C. 未熔合 D. 未焊透 3、低合金结构钢焊接时,最常见的裂纹是(D )。 A. 热裂纹 B. 冷裂纹 C. 再热裂纹 D. 热应力裂纹 4、采用( C )方法焊接珠光体耐热钢时,焊前不需要预热。 A. 焊条电弧焊 B. CO2气体保护焊 C. 氩弧焊 D. 埋弧焊 5、马氏体不锈钢焊接接头,产生晶间腐蚀的倾向(B ). A. 很大 B. 很小 C. 无倾向 6、(D )是使不锈钢产生晶间腐蚀的最有害的元素。

A. 铬 B. 镍 C. 铌 D. 碳 7、防止不锈钢焊接时产生的热裂纹的措施,是通过焊接材料向焊缝 中加入形成( A )的元素。 A. 奥氏体 B. 马氏体 C. 铁元素 D. 珠光体 8、(C )不锈钢具有强烈的淬硬倾向。 A. 奥氏体 B. 马氏体 C. 铁元素 D. 珠光体 9、焊接不锈钢复合板的过渡层时,一般采用(A)焊接方法进行。 A. 焊条电弧焊 B. 埋弧焊 C. 氩弧焊 D. CO2气体保护焊 10、焊前将铸件预热至(B )℃。 A. 100 B. 200 C. 300 D. 400 二、填空题: 1、电弧焊时,熔滴过渡的形式主要有(短路过渡)、小颗粒过渡和大颗粒过渡。 2、焊机的外特性是指在规定运行范围内,其稳态(输出电流)和端电压之间的关系。 3、产生焊接点呼磁偏吹的原因有:(接地线位置不正确),焊条和焊件的位置不对称及焊接电流较大等。 4、合金钢按其用途,可以分为:结构钢,工具钢和(特殊性能刚)

(完整版)盲孔法测残余应力

关于构件的残余应力检测(盲孔法检测) 一、前言 (1)应力概念通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。按照德国学者马赫劳赫提出的分类方法,内应力分为三类: 第I类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。当一个物体的第I类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。 第U类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。第川类内应力是存在于极小范围(几个原子间距)的内应力。 在工程上通常所说的残余应力就是第I类内应力。到目前为止,第I类内应 力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第I类内应力。 (2)应力作用机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。 (3)应力的产生 在机械制造中,各种工艺过程往往都会产生残余应力。但是,如果从本质上讲,产生残余应力的原因可以归结为: 1.不均匀的塑性变形; 2.不均匀的温度变化; 3.不均匀的相变 (4)应力的调整 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能 不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%-10%但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效 热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500-650 °C进行较长时间的保温后再缓慢冷却至室温。在热作用下通过原子扩散及塑性变形使内应力消除。从理论上讲采用热时效,只要退火温度和时间适宜,应力 可以完全消除。但在实际生产中通常可以消除残余应力的70?80%但是它有工 件材料表面氧化、硬度及机械性能下降等缺陷。 ③振动时效振动时效是使工件在激振器所施加的周期性外力作用下产生共振,松弛

残余应力及如何测量

为什么会有残余应力 金属材料在产生应力的条件消失后,为什么有部分的应力会残留在物体内?为什么这些应力不会随外作用力一起消失? 金属材料在外力作用下发生塑性变形后会有残余应力出现!而只发生弹性变形时却不会产生残余应力. 原因:金属在外力作用下的变形是不均匀的,有的部位变形量大,而有的部位小,它们相互之间又是互相牵连在一起的整体,这样在变形量不同的各部位之间就出现了一定的弹性应力-----当外力去除后这部分力仍然存在,就是所谓的残余应力.根据它们存在的范围可分为:宏观应力\微观应力和晶格畸变应力.注意它们是在一定范围存在的弹性应力. 残余应力不只是金属有,非金属也存在,比如混凝土构件。残余应力的根源在于卸载后受力物体变形的不完全可逆性。 金属残留在物体内的应力是由分子间力的取向不同导致的。外力撤销后,外力所造成的残余变形导致了残余应力。通常用热处理、时效处理来消除残余应力。因为材料受外力作用后,金属的组织产生晶格变形,并不会随外力消失而恢复。所以会产生残余应力。组织产生晶格变形了,自身储存了一些能量但级别又克服不了别的晶格的能量。所以就回有残余应力。 我们真正关心的是零件加工后的质量。由于毛坯制造过程中会造成较大的残余应力,而这些零件毛坯中处于“平衡”状态的残余应力在加工之前不引起毛坯明显变形。当零件加工之后,原来毛坯中残余应力的“平衡状态”被打破,应力释放出来,会造成零件很快变形而失去应有的加工精度。减小毛坯中因制造而残留在毛坯内部残余应力对零件加工质量的影响,通常要进行消除应力的热处理,对要求精度高的零件要在粗加工后进行人工时效处理,加快残余应力的重新分布面引起的变形过程,然后再精加工。不仅对细长轴,而且包括所有要经过冷校直的零件(如型钢、导轨),应当注意残余应力对零件加工精度的影响。影响高精度零件质量的残余应力主要是在加工过程中产生的。在切削过程中的残余应力由机械应力和热应力两种外因引起。机械应力塑性变形是切削力使零件表层金属产生塑性变形,切削完成后又受到里层未变形金属牵制而残留拉应力(里层金属产生残余压应力)。第三变形区内后刀面与已加工表面的挤压与摩擦又使表面金属产生残余压应力(里层金属产生残余拉应力)。如果第一变形区内应力造成的残余应

焊接残余应力

焊接残余应力 残余应力是什么? 残余应力是指在没有外力或外力矩作用的条件下,构件或材料内部存在并且自身保持平衡的宏观应力。 一、残余应力是哪种内应力? 1内应力的分类 根据作用范围大小可分为三类: 第一类内应力(又称“宏观应力”)贯穿于整个物体内部; 第二类内应力存在于单个晶粒的内部,当这种平衡遭到破坏时,晶粒尺寸会发生变化; 2残余应力所属类别 残余应力是第一类内应力的工程名称。 残余应力形成的根本原因是微观上不同原子或者同种原子不同排列方式造成材料成分或者结构上的不均匀性导致的原子间相互作用力的变化在宏观上的体现。 二、哪些加工成型过程会导致残余应力? 铸造、锻压、焊接、喷涂以及各类机械加工成型过程中都会导致材料出现残余应力。 本文关注的对象是焊接残余应力。焊接残余应力是焊件产生变形、开裂等工艺缺陷的主要原因,焊接变形在制造过程中危及形状与尺寸公差、接头安装偏差和增加坡口间隙,使制造过程更加困难;焊接残余应力可使焊缝特别是定位焊缝部分或完全断开;机械加工过程中释放的残余应力也会导致工件产生不允许的变形。同时,焊接残余力可能引起结构的脆性断裂,拉伸残余应力会降低疲劳强度和腐蚀抗力,压缩残余应力会减小稳定性极限。因此,焊接残余应力一直是焊接界关注的重点问题之一。

三、焊接残余应力的控制方法 在制造过程中的工艺措施和方法 采用线能量小的工艺参数和焊接方法及强制冷却措施 采用合理的焊接顺序和方向,调整残余应力分布 1)先焊收缩量大的焊缝和应力较大的焊缝; 2)焊缝交叉时,先焊短焊缝,后焊直通长焊缝; 采取降低焊缝拘束度的工艺措施,补偿焊缝收缩量; 锤击多层焊缝中间各层,使之延展,降低应力和拘束度; 预拉伸补偿焊缝收缩(机械拉伸或热拉伸) 局部加热,在构件的相应部分形成可补偿焊缝收缩的变形; 低应力无变形焊接法 四、焊接残余应力的消除方法 1)利用机械力或冲击能分为焊缝滚压法、机械拉伸法、锤击法、振动法、爆炸法。 2)热处理整体高温退火、局部高温退火、温差拉伸法(低温消除应力法)、拟焊接加热法。

《焊接结构学》期末考试试卷

《焊接结构学》期末考试试卷 一、名词解释 1.内应力:是指在没有外力的条件下平衡于物体内部的力。 2.解理断裂:是沿晶内一定结晶学平面分离而形成的断裂,是一种晶内断裂。 3.应力腐蚀开裂:是指在拉应力和腐蚀共同作用下产生裂纹的现象。 4.温差拉伸法:是利用在焊接结构上进行的不均匀加热造成的适当的温度差,来使焊缝及其附近区域产生拉伸塑性变形,从而抵消焊接时所产生的压缩塑性变形,达到消除部分焊接残余应力的目的。 5.焊接结构:用焊接的方法生产制造出来的结构。 6.焊接温度场:是指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 7.应力集中:是指接头局部区域的最大应力值比平均应力值高的现象。 8.焊接变形:由于焊接而引起的焊件尺寸的改变称为焊接变形。 9.联系焊缝:是一种焊缝与被连接的元件是并联的,它仅传递很小的载荷,焊缝一旦断裂结构不会立即失效,这种焊缝称为联系焊缝。 10.工作焊缝:是一种焊缝与被连接的元件是串联的,它承担着传递全部载荷的作用,即焊缝一旦断裂结构就立即失效,这种焊缝称为工作焊缝。 11.动应变时效:金属和合金在塑性变形时或塑性变形后所发生的时效过程 12.焊接残余应力:焊件在焊接过程中,热应力、相变应力、加工应力等超过屈服极限, 以致冷却后焊件中留有未能消除的应力。这样焊接冷却后的残余在焊件中的宏观应力称为残余焊接应力。 13. 焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变 化,温度随时间由低而高,达到最大值后,又由高而低的变化称为焊接热循环。14.延性断裂:伴随明显塑性变形而形成延性断口(断裂面与拉应力垂直或倾斜,其上具有细小的凹凸,呈纤维状)的断裂。 二、简答题 1.焊接结构的优点? 焊接结构的优点:(1)焊接可以把不同形状,不同厚度,不同材料的工件连接起来,且可与母材相当,同时可使产品重量减轻,生产成本明显降低。(2)焊接是一种金属原子间的结合,刚度大,整体性好,不像机械连接那样有间隙,可以减少变形,且能保证容器类结构的气密性和水密性。(3)与铸、锻等其它加工方法相比,生产焊接产品一般不需要大型贵重设备。投资少,见效快。(4)大多数焊接结构生产工艺简单,设备的操作比较容易,应用面非常广泛。(5)焊接特别适用于几何尺寸大,而材料较分散的制品。(6)焊接结构的生产可实现全过程的质量跟踪。比如生产过程中的声发射检测技术,焊前的材料检验,焊后的多种检测手段(X射线,超声波)等。 2.简述焊接残余变形的分类及特点? ①纵向收缩变形,即构件焊后在焊缝长度方向上发生收缩。②横向收缩变形,即构件

残余应力测试

2.测试方法 目前常用的残余应力测试方法主要有三种:一是盲孔法,二是X射线衍射法,三是磁弹性法。 盲孔法需在工件表面测量部位钻φ1.5~2mm深2mm的小孔(粘贴专用应变花),通过测读释放应变确定残余应力的大小,所测应力为孔深范围内的平均应力,同一测点无法重复测量比较; X射线衍射法可以做到无损测试,但由于X射线穿透力有限,一般只能测出几个微米范围内平均应力; 磁弹性法是近几年发展较快应用比较成熟的一种残余应力测试方法,具有方便、无损、快速、准确的特点。 对采用盲孔法和X射线衍射法检测残余应力,施工强度大,测量精度难以保证。尤其盲孔法不能对同一位置进行重复性测量,测量数据的符合性差。因此,三峡发电机组转子圆盘支架焊缝残余应力的测试采用了磁弹法技术。 残余应力的测量方法 残余应力的测量方法可以分为有损和无损两大类。 有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。 机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。 物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性 法和超声法。 X射线衍射法依据X射线衍射原理,即布拉格定律。布拉格定律把宏观上可以准确测 定的衍射角同材料中的晶面间距建立确定的关系。材料中的应力所对应的弹性应变必然表征 为晶面间距的相对变化。当材料中有应力σ存在时,其晶面间距d 必然随晶面与应力相对 取向的不同而有所变化,按照布拉格定律,衍射角2θ也会相应改变。因此有可能通过测量 衍射角2θ随晶面取向不同而发生的变化来求得应力σ。从这里可以看出X射线衍射法测定 应力的原理是成熟的,经过半个多世纪的历程,在国内外,测量方法的研究深入而广泛,测 试技术和设备已经比较完善,不但可以在实验室进行研究,可且可以应用到各种实际工件, 包括大型工件的现场测量。

消除残余应力的方法

消除残余应力的方法(金属)——时效处理 消除残余应力的方法(金属)——时效处理 金属工件(铸件、锻件、焊接件)在冷热加工过程中都会产生残余应力,残余应力值高者(单位为Pa)在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。因此降低和消除工件的残余应力就十分必要了,特别是在航空航天、船舶、铁路及工矿生产等应用的,由残余应力引起的疲劳失效更不容忽视。 目前的针对残余应力的不同处理方法有:自然时效方法和人工时效方法(包括热处理时效、敲击时效、振动时效、超声冲击时效) 1、自然时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 自然时效是最古老的时效方法。它是把构件露天放置于室外,依靠大自然的力量,经过几个月至几年的风吹、日晒、雨淋和季节的温度变化,给构件多次造成反复的温度应力。再温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。 自然时效降低的残余应力不大,但对工件尺寸稳定性很好,原因是工件经过长时间的放置,石墨尖端及其他线缺陷尖端附近产生应力集中,发生了塑性变形,松弛了应力,同时也强化了这部分基体,于是该处的松弛刚度也提高了,增加了这部分材质的抗变形能力,自然时效降低了少量残余应力,却提高了构件的松弛刚度,对构件的尺寸稳定性较好,方法简单易行,但生产周期长.占用场地大,不易管理,不能及时发现构件内的缺陷,已逐渐被淘汰。 2、热处理时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 热时效处理是传统的消除残余应力方法。它是将构件由室温缓慢,均匀加热至550℃左右,保温4-8小时,再严格控制降温速度至150℃以下出炉。 热时效工艺要求是严格的,如要求炉内温差不大于±25℃,升温速度不大于50℃/小时,降温速度不大于20℃/小时。炉内最高温度不许超过570℃,保温时间也不易过长,如果温度高于570℃,保温时间过长,会引起石墨化,构件强度降低。如果升温速度过快,构件在升温中薄壁处升温速度比厚壁处快的多,构件各部分的温差急剧增大,会造成附加温度应力。如果附加应力与构件本身的残余应力叠加超过强度极限,就会造成构件开裂。 热时效如果降温不当,会使时效效果大为降低,甚至产生与原残余应力相同的温度应力(二次应力、应力叠加),并残留在构件中,从而破坏了已取得的热

焊接应力与变形试题汇总

第一章焊接应力和变形 一、判断题(在题末括号内,对的画√,错的画×) 1、焊接接头在焊接热循环过程中,形成拉伸应力应变,并随温度降低而降低。() 2、焊缝的纵向收缩量,随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减小。() 3、同样厚度的焊件,一次就填满焊缝时产生的纵向收缩量比多层焊大。() 4、横向收缩量随焊接热输入的提高而增加,随板厚的增加而减小。() 5、挠度f 是指焊件在焊后的中心轴偏离焊件原始中心轴的最大距离。() 6、焊缝纵向收缩量随焊缝及其两侧的压缩塑性变形区的面积和焊件长度的增加而增加。() 7、焊接对接接头的横向收缩量比较大。() 8、当焊缝不在焊件截面中性轴上时,只有纵向收缩才能引起挠曲变形。() 9、同样的板厚和坡口形式,多层焊要比单层焊角变形大,焊接层数越多,角变形越大。() 10、不同的焊接顺序焊后将产生不同的变形量,如焊缝不对称时,应先焊焊缝少的一侧,这样可以减小整个焊件的焊接变形。() 11、火焰校正角变形时,采用正面线状热源,背面跟踪水冷的效果最好。() 12、火焰校正横向收缩变形时,采用正面线状热源加热,同时再配以正面跟踪水冷的效果最好。() 13、采用火焰加热与水冷却联合校正时,要在受加热的钢材没失去红热态前浇水。() 14、角焊缝的纵向收缩量,与角焊缝横截面积有关,与焊接接头总横截面无关。() 15、铝比钢的导热率和线膨胀系数大,所以,铝的横向收缩量也较大。() 16、角焊缝与对接焊缝相比,其横向收缩量大。() 17、角变形是焊接过程中焊接区内沿板材厚度方向不均匀的纵向收缩而引起的回转变形()

18、角变形是由于坡口形状不对称,是纵向收缩在厚度方向上分布不均匀造成的。() 19、坡口角度对角变形影响很大。() 20、焊缝截面形状对角变形量的影响不大。() 21、T型接头角焊缝所引起的角变形,主要取决于焊角尺寸大小,与焊件厚度无关。() 22、偏离焊件截面中性轴的纵向焊缝,只能引起焊件的纵向收缩,不会引起弯曲变形。() 23、工字梁的弯曲变形,与焊件的长度成正比,与焊缝距中性轴的偏心距成反比。() 24、工字梁的弯曲变形,与焊件截面惯性距成正比,与材料的弹性模量成反比。() 25、为减小波浪变形,可采取措施:降低焊接压应力和降低临界应力。() 26、焊前装配不良,在焊接过程中会产生错边变形。() 27、焊接接头两侧金属受热不平衡是产生错边的主要原因。() 28、扭曲变形是由于焊件装配不良,施焊顺序或方向不当,使焊缝纵向或横向收缩变形或角变形产生不均匀、不对称而引起的。() 29、焊缝在焊件中的不对称布置,容易引起角变形。() 30、焊接接头重心与焊件截面重心不重合,容易引起角变形。() 31、焊缝在焊件中的对称布置,不仅引起收缩变形,而且还引起角变形。() 32、焊件抵抗弯曲变形的刚性主要取决焊件的截面积。() 33、非对称布置的焊缝,应先焊焊缝长的一侧,后焊焊缝短的一侧。() 34、焊接过程中采用的热输入越大,产生的热压缩塑性变形也越大,焊接变形也大。() 35、焊件坡口尺寸越大,填充金属越多,变形就越大。() 36、1m 以上的长焊缝,采用从中心向两端焊或逐段跳焊,焊后变形最小。() 37、采用间断角焊缝代替连续角焊缝,可显著的减小纵向弯曲变形。() 38、园筒体纵向焊缝横向收缩引起的直径误差,可通过预留收缩余量法加以克服。

盲孔法测残余应力

盲孔法测残余应力(总8页)本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

关于构件的残余应力检测(盲孔法检测) 一、前言 (1)应力概念 通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。 按照德国学者马赫劳赫提出的分类方法,内应力分为三类: 第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。 第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。 第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。 在工程上通常所说的残余应力就是第Ⅰ类内应力。到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。 除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。 (2)应力作用 机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。 (3)应力的产生 在机械制造中,各种工艺过程往往都会产生残余应力。但是,如果从本质上讲,产生残余应力的原因可以归结为: 1.不均匀的塑性变形; 2.不均匀的温度变化; 3.不均匀的相变 (4)应力的调整 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效 把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效

焊接应力产生的原因及处理方法

1.焊接应力的分类 焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 2.焊接残余应力对结构性能的影响 (1)对结构静力强度的影响:焊接应力不影响结构的静力强度。 (2)对结构刚度的影响:焊接残余应力降低结构的刚度。 (3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。 (5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本 原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量。根据理论计算和实践经验,在焊件备料及加工时预先考 虑收缩余量, 以便焊后工件达到所要求的形状、尺寸。 二、反变形法。根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。 五、锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 六、加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。 七、焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和 保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本

焊接温度场及残余应力测量方法总结

焊接温度场及残余应力测量方法总结 一、焊接温度场测量方法 多年来,基于物体的某些物理化学性质(例如,物体的几何尺寸、颜色、电导率、热电势和辐射强度等)与温度的关系,开发了形式多样的温度测量方法和装置,综合温度测量的现状,按测量方式可分为接触式和非接触式两大类。 1、接触式测温方法 接触式测温方法的感温原件直接置于被测温度场或介质中,不受到黑度、热物理性参数等性质的影响,具有测温精度高、使用方便等优点。但是对于瞬态脉动特性的对象,接触式测温方法难以作为真正的温度场测量手段。主要是由于接触法得到的是某个局部位置的信号,如果要得到整个温度场的信号,必须在温度空间内进行合理的布点,才可以根据相应的方法(如插值法等)获得对温度场的近似。 常用的接触式测温方法有,电偶测温法。热电偶是用两种不同的导体(或者半导体)组成的闭合回路,两端接点分别处于不同温度环境中,与当地达成热平衡时会产生热电势,标定后可用来测量温度。理想的热电偶测温方法,是将参比端 E,再查分度表反置于0℃的恒温槽中,通过测量2个不同导体A和B的热电动势ab 求出被测温度t。由于让参比端保持0℃有时比较困难,实际应用中常常需要参比端恒温处理或温度补偿。热电偶测温法有几个优点:精度比较高,因为热电偶直接与被测对象接触,不受中间介质的影响;测量范围大,通常可在-50~1600℃范围内连续测量;结构简单,使用方便。但是,热电偶测温法也有一定的缺点:每次测量的点数有限(最多几个点),难以反映整个焊接温度场的情况;此外,金属的电阻和熔池中液体的流动会阻碍热传导,从而给热电偶的测量带来一定的误差。 2、非接触式测温法 非接触测温法分为两大类:一类是通过测量介质的热力学性质参数,求解温度场(如声学法);另一类是通过高温介质的辐射特性,通过光学法来测量温度场。非接触式测温方法由于测温元件不与被测介质接触,不会破坏被测介质的温度场和流场;同时,感温元件传热惯性很小,因此可用于测量不稳定热力过程的温度。其测量上限不受材料性质的影响,可在焊接等高温场合应用。目前常用的测试方法主要有以下几种: 2.1、红外热像法 随着红外技术和计算技术的发展,红外热象法测定焊接温度场成为近代一种新技术。红外热成像测温技术为非接触式测温,响应快,不破坏被测物体的温度场,可以检测某些不能接触或禁止接触的目标,红外热像技术显示出其在测试物体温度场方面的优势。在实际的测量过程中,一般先采用热电偶标定被测物体的发射率,然后再用红外热像仪测定物体的温度场。

焊工练习试题四和答案

理论考试题四 姓名:工号:得分:—————————————————————————————————— 一、判断题(下列判断题中,正确的打“√”,错误的打“×”;每题1分) 1.弧光中的紫外线可造成对人眼睛的伤害,引起白内障。() 2.焊工尘肺是指焊工长期吸入超过规定浓度的烟尘或粉尘所引起的肺组织纤维 化的病症。() 3.铸件补焊前应准确确定缺陷的位置、性质和形状。() 4.不锈钢复合板焊接时,坡口一般都开在基层(低碳钢)上。() 5.异种钢焊接接头的抗拉强度按抗拉强度规定值下限较高一侧的母材规定值进 行评定。() 6.焊接接头弯曲试验结果的合格标准按钢种而定。() 7.焊接接头冲击试验的目的是用以测定焊接接头各区域的冲击吸收功。() 8.焊接接头冲击试验的缺口只能开在焊缝上。() 9.灰铸铁焊接时不容易产生白铸铁组织。() 10.管子水平固定位置焊接时,有仰焊、立焊、平焊位置,所以焊条的角度随着 焊接的位置的变化而变换。()11.焊接方向对控制梁的焊接变形时很重要的。不同的焊接方向引起的焊接变形 不同。() 12.焊接十字形钢柱的第一道焊缝时,必须进行分段焊接,分段越多越好。() 13.荧光探伤是一种利用紫外线照射某些荧光物质,使其产生荧光的特性来检查 表面缺陷的方法。() 14.着色探伤是用来发现各种材料焊接接头,特别是非磁性材料的各种内部缺陷。() 15.利用反变形发可以用来克服梁的角变形和弯曲变形。() 16.对梁变形的矫正方法有机械矫正法和火焰矫正法。() 17.气焊停止时应先关乙炔阀后关氧气阀。() 18.碳弧气刨刨削电流增加时,刨宽和刨深都增加,其中尤以槽宽增加更为显著。()

盲孔法测残余应力培训资料

盲孔法测残余应力

关于构件的残余应力检测(盲孔法检测) 一、前言 (1)应力概念 通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。 按照德国学者马赫劳赫提出的分类方法,内应力分为三类: 第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。 第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。 第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。 在工程上通常所说的残余应力就是第Ⅰ类内应力。到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。 除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。 (2)应力作用 机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用

寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。 (3)应力的产生 在机械制造中,各种工艺过程往往都会产生残余应力。但是,如果从本质上讲,产生残余应力的原因可以归结为: 1.不均匀的塑性变形; 2.不均匀的温度变化; 3.不均匀的相变 (4)应力的调整 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效 把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效 热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。在热作用下通过原子扩散及塑性变形使内应力消除。从理论上讲采用热时效,只要退火温度和时间适

焊接残余应力的消除方法

焊接残余应力的消除方法 焊接残余应力是焊接技术带来的一个几乎无法避免的缺陷,其危害众所周知。当焊接造成的残余应力会影响结构安全运行时,还需设法消除焊接残余应力,改善焊接接头的塑性和韧性,以提高焊件结构性能。 一、焊接的应力与应变: 在接过程中,由于焊接件产生温度梯度,接头组织和性能的不均匀,就会在焊件内产生应力和应变。焊后残留在焊件内的焊接应力就是焊接残余应力,它是没有外载荷作用时就存在的应力。 二、焊接残余应力的危害: 焊接残余应力与外载荷产生的应力叠加,局部区域应力过高,使结构承载能力下降,引起裂纹和变形,使焊件形状和尺寸发生变化,需要进行矫形。变形过大会因无法矫形而报废甚至导致结构失效。 三、减少焊接残余应力和变形的措施: ①设计 ②焊接工艺 如: 尽量减少焊接接头数量 相邻焊缝间应保持足够的间距 尽可能避免交叉,避免出现十字焊缝 焊缝不要布置在高应力区 焊前预热等等 四、焊后残余应力的消除方法 消除焊接残余应力的方法有:热处理、锤击、振动法和预载法等。 1、热处理消除法 焊后热处理是一种消除焊接残余应力常用的方法。工程上我们主要用退火处理,火温度越高、保温时间越长,消除焊接残余应力的效果就越好。但是温度过高,使工件表面氧化比较严重,组织可能发生转变,影响工件的使用性能,存在弊端。蠕变应力松弛理论为热处理消除焊接残余应力提供了另一条思路,工件在较低温度时会发生蠕变,材料内部的残余应力会因应力松弛而得到释放,只要保温时间

足够长,理论上残余应力可完全消除。在低温消除焊接残余应力时,材料的组织和性能变化甚微,几乎不影响材料的使用性能,而且低温处理材料表面的氧化和脱碳也比较小,这就可以在材料的力学性能和组织基本不变的情况下达到降低材料焊接残余应力的目的。 2、锤击消除法 焊后采用带小圆头面的手锤锤击焊缝及近缝区,使焊缝及近缝区的金属得到延展变形,用来补偿或抵消焊接时所产生的压缩塑性变形,使焊接残余应力降低。 锤击时要掌握好打击力量,保持均匀、适度,避免因打击力量过大造成加工硬化或将焊缝锤裂。另外,焊后要及时锤击,除打底层不宜采用锤击外,其余焊完每一层或每一道都要进行锤击。锤击铸铁时要避开石墨膨胀温度。 3、振动消除法 振动消除法是利用由偏心轮和变速马达组成的激振器,使焊接结构发生共振所产生的循环应力来降低内应力的。 如截面为30mm×50mm一侧堆焊的试件,经过σmax=128N/mm2和σmin=5.6N/mm2多次应力循环后,残余应力的变化情况。当变载荷达到一定数值,经过多次循环加载后,焊接结构中的残余应力逐渐降低。 这种方法所用的设备简单,处理成本低,时间比较短,没有高温回火给金属表面造成的氧化问题,目前在施工中广泛使用。 4、预载消除法 残余应力也可采用机械拉伸法(预载法)来消除或调整,例如对压力容器可以采用水压试验,也可以在焊缝两侧局部加热到200℃,造成一个温度场,使焊缝区得到拉伸,以减小和消除焊接残余应力。 焊接残余应力的消除和调整应采取合理的焊接顺序,先进的焊接工艺,焊接时适当降低焊件的刚度,并在焊件的适当部位局部加热,使焊缝能比较自由地收缩,在焊接的每一个环节都减小残余应力,大大提高材料的使用寿命和性能,在工程施工上具有重要的意义。

相关文档
最新文档