完整的推荐系统架构设计(精)

完整的推荐系统架构设计(精)
完整的推荐系统架构设计(精)

完整的推荐系统架构设计推荐系统是移动互联网时代非常成功的人工智能技术落地场景之一。

本文我们将从架构设计的角度回顾和讨论推荐系统的一些核心算法模块,重点从离线层、近线层和在线层三个架构层面讨论这些算法。

1 架构设计概述

架构设计是一个很大的话题,本文这里只讨论和推荐系统相关的部分。更具体地说,我们主要关注的是算法以及其他相关逻辑在时间和空间上的关系——这样一种逻辑上的架构关系。

下面介绍的是一些经过实践检验的架构层面的最佳实践,以及对这些最佳实践在不同应用场景下的分析。除此之外,还希望能够通过把各种推荐算法放在架构的视角和场景下重新审视,让读者大家对算法间的关系有更深入的理解,从全局的角度看待推荐系统,而不是只看到一个个孤立的算法。

架构设计的本质之一是平衡和妥协。一个推荐系统在不同的时期、不同的数据环境、不同的应用场景下会选择不同的架构,在选择时本质上是在平衡一些重要的点。下面介绍几个常用的平衡点。

▊个性化 vs 复杂度

个性化是推荐系统作为一个智能信息过滤系统的安身立命之本,从最早的热榜,到后来的公式规则,再到著名的协同过滤算法,最后到今天的大量使用机器学习算法,其主线之一就是为用户提供个性化程度越来越高的体验,让每个人看到的东西都尽量差异化,并且符合个人的喜好。为了达到这一目的,系统的整体复杂度越来越高,具体表现为使用的算法越来越多、算法使用的数据量和数据维度越来越多、机器学习模型使用的特征越来越多,等等。同时,为了更好地支持这些高复杂度算法的开发、迭代和调试,又衍生出了一系列对应的配套系统,进一步增加了整个系统的复杂度。可以说整个推荐逻辑链条上的每一步都被不断地细化分析和优化,这些不同维度的优化横纵交织,构造出了一个整体复杂度非常高的系统。从机器学习理论的角度来类比,如果把推荐系统整体看作一个巨大的以区分用户为目标的机器学习模型,则可以认为复杂度的增加对应着模型中特征维度的增加,这使得模型的VC维不断升高,对应着可分的用户数不断增加,进而提高了整个空间中用户的个性化程度。这条通过不断提高系统复杂度来提升用户个性化体验的路线,也是近年来推荐系统发展的主线之一。

▊时效性 vs 计算量

推荐系统中的时效性概念体现在实时服务的响应速度、实时数据的处理速度以及离线作业的运行速度等几个方面。这几个速度从时效性角度影响着推荐系统的效果,整体上讲,运行速度越快,耗时越少,

得到的效果越好。这是因为响应速度越快,意味着对用户行为、物品信息变化的感知越快,感知后的处理速度越快,处理后结果的反馈就越快,最终体现到用户体验上,就是系统更懂用户,更快地对用户行为做出了反应,从而产生了更好的用户体验。但这些时效性的优化,带来的是更大的计算量,计算量又对应着复杂的实现逻辑和更多的计算资源。在设计得当的前提下,这样的付出通常是值得的。

时效性优化是推荐系统中非常重要的一类优化方法和优化思路,但由此带来的计算压力和系统设计的复杂度也是必须要面对的。

▊时间 vs 空间

时间和空间之间的平衡关系可以说是计算机系统中最为本质的关系之一,在推荐系统中也不例外。时间和空间这一对矛盾关系在推荐系统中的典型表现,主要体现在对缓存的使用上。缓存通常用来存储一些计算代价较高以及相对静态变化较少的数据,例如用户的一些画像标签以及离线计算的相关性结果等。但是随着越来越多的实时计算的引入,缓存的使用也越来越广泛,常常在生产者和消费者之间起到缓冲的作用,使得二者可以解耦,各自异步进行。例如实时用户兴趣计算这一逻辑,如果没有将之前计算的兴趣缓存起来,那么在每次需要用户兴趣时都要实时计算一次,并要求在较短的时间内返回结果,这对计算性能提出了较高的要求。但如果中间有一层缓存作为缓冲,则需求方可以直接从缓存中取来结果使用。这在结果的实时性和新鲜度上虽然做了一定的妥协,但却能给性能提升带来极大的帮助。

这样就将生产和消费隔离开来,生产者可以根据具体情况选择生产的方式和速度。当然,仍然可以努力提高生产速度,生产速度越快,缓存给时效性带来的损失就越小,消费者不做任何改动就可以享受到这一提升效果。所以说,这种利用缓存来解耦系统,带来性能上的提升以及开发的便利,也是在推荐系统架构设计中需要掌握的一种通用的思路。

上面介绍的一些基本性原则贯穿着推荐系统架构设计的方方面面,是一些具有较高通用性的思路,掌握这些思路,可以产生出很多具体的设计和方法;反过来,每一种设计技巧或方法,也都可以映射到一个或几个这样的高层次抽象原则上来。这种自顶向下的思维学习方法对于推荐系统的架构设计是非常重要的,并且可以推广到很多其他系统的设计中。

2 系统边界和外部依赖

架构设计的第一步是确定系统的边界。

所谓边界,就是区分什么是这个系统要负责的,也就是边界内的部分,以及什么是这个模型要依赖的,也就是边界外的部分。划分清楚边界,意味着确定了功能的边界以及团队的边界,能够让后期的工作都专注于核心功能的设计和实现。反之,如果系统边界没有清晰的定义,可能会在开发过程中无意识地侵入其他系统中,形成冗余甚至矛盾,或者默认某些功能别人会开发而将其忽略掉。无论哪种情况,都会影响系统的开发乃至最终的运转。

系统边界的确定,简单来说,就是在输入方面确定需要别人给我提供什么,而在输出方面确定我要给别人提供什么。

在输入方面,就是判断什么输入是需要别人提供给我的,要把握的主要原则包括:

这个数据或服务是否与我的业务强相关

在推荐业务中用到的每个东西,并不是都与推荐业务强相关,例如电商推荐系统中的商品信息,只有与推荐业务强相关的服务才应该被纳入推荐系统的边界中。

?这个数据或服务除了我的业务在使用,是否还有其他业务也在使用

例如上面说到的商品信息服务,除了推荐系统在使用,其他子系统也在广泛使用,那么显然它应该是一个外部依赖。也有例外情况,例如推荐系统要用到一些其他系统都用不到的商品信息,这时候,虽然理论上应该升级商品信息服务来支持推荐系统,但由于其他地方都用不到这些信息,因此很多时候可能需要推荐系统的负责团队来实现这样一个定制化服务。

依照此原则,下图展示了推荐系统的主要外部依赖。

▊1、数据依赖

推荐系统作为一个典型的数据算法系统,数据是其最重要的依赖。这里面主要包括用户行为数据和物品数据两大类,前面介绍的各种算法几乎都是以这两种数据作为输入进行计算的。这些数据除了为推荐系统所用,它们也是搜索、展示等其他重要系统的输入数据,所以作为通用的公共数据和服务,显然不应该在推荐系统的边界内部,而应该是外部依赖。需要特别指出的是,虽然有专门的团队负责行为数据的收集,但是收集到的数据是否符合推荐系统的期望却不是一件可以想当然的事情。例如,对于结果展示的定义,数据收集团队认为前端请求到了结果就是展示,但对于推荐系统来说,只有用户真正看见了才是真实的展示。其中的原因在于数据收集团队并不直接使用数据,那么他们就无法保证数据的正确性,这时就需要具体使用数据的业务方,在这里是推荐团队,来和他们一起确认数据收集的逻辑是正确的。如果数据收集的逻辑不正确,后面的算法逻辑就是在做无用功。花在确保数据正确上的精力和资源,几乎总是有收益的。

▊2、平台工具依赖

推荐系统是一个计算密集型的系统,需要对各种形态的数据做各种计算处理,在此过程中,需要一整套计算平台工具的支持,典型的如机器学习平台、实时计算平台、离线计算平台、其他平台工具等。在一个较为理想的环境中,这些平台工具都是由专门的团队来构建和维护的。而在一些场景下,推荐系统可能是整个组织中最早使用这些技术的系统,推荐业务也还没有重要和庞大到需要老板专门配备一个平台团队为之服务的程度,在这种情况下,其中的一些平台工具就需要推荐系统的团队自己负责来构建和维护了。为了简化逻辑,下面我们假设这些平台工具都是独立于推荐系统存在的,属于推荐系统的外部依赖。

在对外输出方面,系统边界的划定会根据公司组织的不同有所差异。例如,在一些公司中,推荐团队负责的是与推荐相关的整个系统,在输出方面的体现就是从算法逻辑到结果展示,这时候系统的边界就要延伸到最终的结果展示。而在另外一些公司中,前端展示是由一个大团队统一负责的,这时候推荐系统只需要给出要展示的物品ID和相关展示信息即可,前端团队会负责统一展示这些物品信息。这两种模式没有绝对的好坏之分,重要的是要与整个技术团队的规划和架构相统一。在本书中,为了叙述简便,我们不讨论前端展示涉及的内容,只专注于推荐结果的生产逻辑。

推荐系统的效果和性能在一定程度上取决于这些依赖系统,所以在寻求推荐系统的优化目标时,目光不能只看到推荐系统本身,很多时候这些依赖系统也是重要的效果提升来源。例如,物品信息的变更如果能被更快地通知到推荐系统,那么推荐系统的时效性就会更好,给到用户的结果也就会更好;再如,用户行为数据收集的准确性能有所提高的话,对应的相关性算法的准确性也会随之提高。在有些情况下,外部系统升级会比优化算法有更大的效果提升。当然,推荐系统的问题也可能来自这些外部的依赖系统。例如,前端渲染展示速度的延迟会导致用户点击率的显著下降,因为这会让用户失去耐心。所以,当推荐系统指标出现下降时,不光要从内部找问题,也要把思路拓展到系统外部,从全局的角度去找问题。综合来讲,外部依赖的存在启发我们要从全链条、全系统的角度来看问题,找问题,以及设计优化方法。

3 离线层、在线层和近线层架构

架构设计有很多不同的切入方式,最简单也是最常用的一种方式就是先决定某个模块或逻辑是运行在离线层、在线层还是近线层。这三层的对比如下。

任何使用非实时数据、提供非实时服务的逻辑模块,都可以被定义为离线模块。其典型代表是离线的协同过滤算法,以及一些离线的标签挖掘类算法。离线层通常用来进行大数据量的计算,由于计算是离线进行的,因此用到的数据也都是非实时数据,最终会产出一份非实时的离线数据,供下游进一步处理使用。与离线层相对的是在线层,也常被称为服务层,这一层的核心功能是对外提供服务,实时处理调用方的请求。这一层的典型代表是推荐系统的对外服务接口,接受实时调用并返回结果。在线层提供的服务是实时的,但用到的数据却不一定局限于实时数据,也可以使用离线计算好的各种数据,例如相关性数据或标签数据等,但前提是这些数据已经以对实时友好的形态被存储起来。

近线层则处于离线层和在线层的中间位置,是一个比较奇妙的层。这一层的典型特点就是:使用实时数据(也会使用非实时数据),但不提供实时服务,而是提供一种近实时的服务。所谓近实时指的是越快越好,但并不强求像在线层一样在几十毫秒内给出结果,因为通常在近线层计算的结果会写入缓存系统,供在线层读取,做了一层隔离,因此对时效性无强要求。其典型代表是我们前面讲过的实时协同过滤算法,该算法通过用户的实时行为计算最新的相关性结果,但这些计算结果并不是实时提供给用户的,而是要等到用户发起请求时才会把最新的结果提供给他使用。

下面详细介绍每一层的特点、案例和具体分析。

4 离线层架构

离线层是推荐系统中承担最大计算量的一个部分,很大一部分的相关性计算、标签挖掘以及用户画像挖掘工作都是在这一层进行的。这一层的任务具有的普遍特点是使用大量数据以及较为复杂的算法进行计算和挖掘。所谓大量数据,通常指的是可以使用较长时间段的用户行为数据和全量的物品数据;而在算法方面,可以使用较为复杂的模型或算法,对性能的压力相对较小。对应地,离线层的任务也有缺点,就是在时间上存在滞后性。由于离线任务通常是按天级别运行的,用户行为或物品信息的变更也要等一天甚至更久才能够被反映到计算结果中。在离线层虽然进行的是离线作业,但其生产出来的数据通常是被实时使用的,因此离线数据在生产出来之后还需要同步到方便在线层读取的地方,例如数据库、在线缓存等。

在具体实践中,经常放在离线层执行的任务主要包括:协同过滤等行为类相关性算法计算、用户标签挖掘、物品标签挖掘、用户长期兴趣挖掘、机器学习模型排序等。仔细分析这些任务,会发现它们都符合上面提到的特点。这些任务的具体流程各不相同,但大体上都遵循一个共同的逻辑流程。

离线层逻辑架构图

在这个逻辑架构图中,离线算法的数据来源主要有两大类:一类是HDFS/Hive这样的分布式文件系统,通常用来存储收集到的用户行为日志以及其他服务器日志;另一类是RDBMS这样的关系数据库,通常用来存储商品等物品信息。离线算法会从输入数据源获取原始数据并进行预处理,例如,协同过滤算法会先把数据处理成两个倒排表,LDA算法会先对物品文本做分词处理,等等,我们将预处理后的数据统一称为训练数据(虽然有些离线算法并不是机器学习算法)。预处理这一步值得单独拿出来讲,这是因为很多算法用到的预处理是高度类似的,例如,文本标签类算法需要先对原始文本进行分词或词性标注,行为类相关性算法需要先将行为数据按用户聚合,点击率模型需要先将数据按照点击/展示进行聚合整理,等等。所以在设计离线挖掘的整体架构时,有必要有针对性地将数据预处理流程单独提炼出来,以方便后面的流程使用,做到更好的可扩展性和可复用性。下一步是各种推荐算法或机器学习模型基于各自的训练数据进行挖掘计

算,得到挖掘结果。离线计算用到的工具通常包括Hadoop、Spark等,结果可能是一份协同过滤相关性数据,可能是物品的文本主题特征,也可能是结果排序模型。接下来,为了让挖掘结果能够被后面的流程所使用,需要将挖掘结果同步到不同的存储系统中。一般来说,如果挖掘结果要被用作下游离线流程的输入,是一份中间结果,那么通常它会被再次同步到Hive或HDFS这样的分布式文件系统中;如果挖掘结果要被最终的推荐服务在线实时使用,那么它就需要被同步到Redis或RDBMS这样对实时访问更为友好的存储系统中。至此,一个完整的离线挖掘流程就完成了。

上面讲到离线任务通常以天为单位来执行,但是在很多情况下,提高作业的运行频率以及对应的数据同步频率,例如从一天一次提升到一天多次,都会对推荐系统的效果有提升作用,因为这些都可以被理解为在做时效性方面的优化。一种极限的思想是,当我们把作业的运行频率提高到极致时,例如每分钟甚至每几秒钟运行一次作业,离线任务就变成了近线任务。当然,在这种情况下就需要对离线算法做相应的修改以适应近线计算的要求,例如前面介绍过的实时协同过滤算法就是对原始协同过滤算法的修改,以及将机器学习的模型训练过程从离线改为在线。

所以,虽然我们会把某些任务放到离线层来执行,但并不代表这些任务就只能是离线任务。我们要深入理解为什么将这些任务放在离线层来执行,在什么情况下可以提高其运行频率,甚至变为近线任务,

以及这样做的好处和代价是什么。只有做到这一点,才能够做到融会贯通,不被当前的表象迷住眼睛。一种典型的情况是,当实时计算或流计算平台资源不足,或者开发人力资源不足时,我们倾向于把更多的任务放到离线层来执行,因为离线计算对时效性要求较低,出错之后影响也较小。综合来说,就是容错度较高,适合在整体资源受限的情况下优先选择。而随着平台的不断完善,以及人力资源的不断补充,就可以把一些对时效敏感的任务放到近线层来执行,以获得更好的收益。

5 近线层架构

有了上面的铺垫,近线层的存在理由和价值就比较明确了,从生产力发展的角度来看,可以认为它是实时计算平台工具发展到一定程度对离线计算的自然改造;而从推荐系统需求的角度来看,它是各种推荐算法追求实时化效果提升的一种自然选择。

近线层和离线层最大的差异在于,它可以获取到实时数据,并有能力对实时数据进行实时或近实时的计算。也正是由于这个特点,近线层适合用来执行对时效比较敏感的计算任务,例如实时的数据统计等,以及实时执行能够获得较大效果提升的任务,例如一些实时的相关性算法计算或标签提取算法计算。近线层在计算时可使用实时数据,也可使用离线生成的数据,在提供服务时,由于无须直接响应用户请求,因此也不用提供实时服务,而是通常会将数据写入对实时服

务友好的在线缓存中,方便实时服务读取,同时也会同步到离线端做备份使用。

通常放在近线层执行的任务包括实时指标统计、用户的实时兴趣计算、实时相关性算法计算、物品的实时标签挖掘、推荐结果的去重、机器学习模型统计类特征的实时更新、机器学习模型的在线更新等,这些任务通常会以如下两种方式进行计算。

个体实时:所谓个体实时,指的是每个实时数据点到来时都会触发一次计算,做到真正意义上的实时。典型的工具代表是Storm和Flink。

批量实时:很多时候并不需要到来一个实时数据点就计算一次,因为这会带来大量的计算和I/O,而是可以将一定的时间窗口或一定数量的数据收集起来,以小批次为单位进行计算,这可以有效减少I/O量。这种妥协对于很多应用来说,只要时间窗口不太大,就不会带来效果的显著下降。典型的工具代表是Spark Streaming。

下面展示了典型的近线层计算架构图。

从数据源接入的角度来看,近线层主要使用实时数据进行计算,这就引出了近线层和离线层的一个主要区别:近线层的计算通常是事件触发的,而离线层的计算通常是时间触发的。事件触发意味着对计算拥有更多的主动权和选择权,但时间触发则无法主动做出选择。事件触发意味着每个事件发生之后都会得到通知,但是否要计算以及计算什么是可以自己选择的。例如,可以选择只捕捉满足某种条件的事件,或者等事件累积到一定程度时再计算,等等。所以,当某个任务的触发条件是某个事件发生之后进行计算,那么这个任务就很适合放在近线层来执行。例如推荐结果的去重,需要在用户浏览过该物品之后将其加入一个去重集合中,这就是一个典型的事件触发的计算任务。此外,近线层的计算是可以使用离线数据的,但前提是需要提前将这些数据同步到对实时计算友好的存储系统中。

在近线层中执行的典型任务包括但不限于:

?特征的实时更新。例如,根据用户的实时点击行为实时更新各维度的点击率特征。

?用户实时兴趣的计算。根据用户实时的喜欢和不喜欢行为计算其当下实时兴趣的变化。

?物品实时标签的计算。例如,在第6章用户画像系统中介绍过的实时提取标签的流程。

?算法模型的在线更新。通过实时消息队列接收和拼接实时样本,采用FTRL等在线更新算法来更新模型,并将更新后的模型推送到线上。

?推荐结果的去重。用户两次请求之间是有时间间隔的,所以无须在处理实时请求时进行去重,而是可以将这个信息通过消息队列发送给一个专门的服务,在近线层中处理。

?实时相关性算法计算。典型的如实时协同过滤算法,按照其原理,也可以把随机游走等行为类算法改写为实时计算,放到近线层中执行。

总结起来,凡是可以和实时请求解耦,但需要实时或近实时计算结果的任务,都可以放到近线层中执行。

近线层的实时计算虽然没有响应时间的要求,但却存在数据堆积的压力。具体来说,近线层计算用到的数据大部分是通过Kafka这样的消息队列实时发送过来的,在接收到每一个消息或消息窗口之后,如果对消息或消息窗口的计算速度不够快,就会导致后面的消息堆

积。这就像大家都在排队办理业务,如果一个业务办理得太慢,那么排的队就会越来越长,长到一定程度就会出问题。所以,近线层的计算逻辑不宜过于复杂,而且近线层读取的外部数据,例如离线同步好的Redis中的数据,也不宜过多,还有I/O次数不宜过多。这就要求近线层的计算逻辑和用到的数据结构都要经过精心的设计,共同保证近线层的计算效率,以免造成数据堆积。

除了纯数据统计类型的任务,以及结果去重这样的无数据产出的任务,近线层的大多数任务在离线层都有对应的部分,二者有着明显的优势和劣势,因此应该结合起来使用。典型的如实时协同过滤算法,由于引入了实时性,使得它在一些新物品和新用户上的效果比原始的协同过滤算法的效果好;但由于它只使用实时数据,所以在稀疏性和不稳定性方面的问题也是比较大的,要使用离线版本的协同过滤算法作为补充,才能形成更全面的覆盖。再比如在近线层执行的用户实时兴趣预测,能够捕捉到用户最新鲜的兴趣,准确率会比较高;但由于短期兴趣易受展示等各种因素影响发生较大的波动,如果完全根据短期兴趣来进行推荐的话,则很有可能会陷入局部的信息茧房,产生高度同质的结果,影响用户的整体体验。而如果将离线计算的长期兴趣和短期兴趣相结合,就可以有效避免这个问题,既能利用实时数据取得高相关性,又能利用长期数据取得稳定性和多样性。从这些例子可以看出,离线层和近线层之间并没有不可逾越的鸿沟,二者更多的是在效率、效果、稳定性、稀疏性等多个因素之间进行权衡得到的不同

选择,一个优秀的工程师应该做到“码中有层,心中无层”,才算是对算法和架构做到了融会贯通。

上面讲到离线层的任务在一定条件下可以放到近线层来执行,那么类似地,近线层的任务是否可以放到在线层来执行呢?这个问题其实涉及离线层、近线层这两层作为整体和在线层的关系。如果把推荐系统比作一支打仗的军队,那么在线层就是在前方冲锋陷阵的士兵,直接面对敌人的攻击,而离线层和近线层就是提供支持的支援部门,离线层就像是生产粮食和军火的大后方,近线层就像是搭桥修路的前方支援部门,二者的本质都是让前线士兵能够最高效、最猛烈地打击敌人,但其业务本质导致它们无法到前线去杀敌。离线层和近线层是推荐系统的生产者,在线层是推荐系统的消费者(也会承担一定的生产责任),它们有着截然不同的分工和定位,是无法互换的。

6 在线层架构

在线层与离线层、近线层最大的差异在于,它是直接面对用户的,所有的用户请求都会发送到在线层,而在线层需要快速给出结果。如果抽离掉其他所有细节,这就是在线层最本质的东西。在线层最本质的东西并不是在线计算部分,因为在极端情况下,在接收到用户请求之后,在线层可以直接从缓存或数据库中取出结果,返回给用户,而不做任何额外计算。而事实上,早年还没有引入机器学习等复杂的算法技术时,绝大多数计算都是在离线层进行的,在线层就起到一个数

据传递的作用,很多推荐系统基本都是这么做的,甚至时至今日,这种做法仍然是一种极端情况下的降级方案。

推荐系统发展到现在,尤其是各种机器学习算法的引入,使得我们可以使用的信息越来越多,可用的算法也越来越复杂,给用户的推荐结果通常是融合了多种召回策略,并且又加了重排序之后的结果,而融合和重排序现在通常是在在线层做的。那么问题来了:这些复杂计算一定要放到在线层做吗?为了回答这个问题,不妨假设:如果将所有计算都放在离线层做,在线层只负责按照用户ID查询返回结果,是否可行?如果将所有计算都放在离线层做,由于不知道明天会有哪些用户来访问系统,所以就需要为每个用户都计算出推荐结果,这要求我们计算出全平台所有用户的推荐结果,而对于那些明天没有来访问系统的用户,今天的计算就浪费掉了。但这仍然不够,因为明天还会有新来的用户,这些用户的信息在当前计算时是拿不到的,所以,即使今天离线计算出了所有当前用户的推荐结果,明天也还会有大量覆盖不到的用户。这就是将上面提到的复杂计算一定要放在在线层做的第一个主要原因:只有按需实时计算才能覆盖到所有用户,并且不会产生计算的浪费。从另一个角度来看,如果今天就把用户的推荐结果完全计算出来,若用户明天的实时行为表达出来的兴趣和今天的不相符,或者机器学习模型中一些关键特征的取值发生了变化,那么推荐结果就会不准确,并且无法及时调整。例如,用户昨天看的是手机,今天打算买衣服,但我们昨天计算出的推荐结果是以手机为主的,那么用户今天的需求是无法满足的。这就是需要在在线层做复杂计算的

第二个主要原因:只有在线实时计算,才能够充分利用用户的实时信息,包括实时兴趣、实时特征以及其他近线层计算的结果等。除此以外,还有其他原因,比如实时处理可以快速应对实时发生的业务请求等。以上这些原因共同决定了在线层存在的意义。

从目前的趋势来看,在线层承担的工作越来越多,因为大家希望利用的信息越来越多地来自实时计算结果。如果说离线层和近线层是厨房里的小工,负责一切食材和配料的前期准备工作,那么在线层就是最后掌勺的大厨,它需要将大家准备好的材料进行组合装配,最终形成一盘菜。

在线层的典型形态是一个RESTful API,对外提供服务。调用方传入的参数在不同公司的设计中差异较大,但基本都会包含访问用户的ID标识和推荐场景这两个核心信息,其他信息推荐系统都可以通过这两个信息从其他地方获取到。在线层接收到请求后会启动一套流程,将离线层和近线层生成的数据进行串联,在毫秒级响应时间内返回给调用方。这套流程的典型步骤包括:

?AB实验分流

根据用户ID或请求ID,决定当前用户要执行的策略版本。?获取用户画像

根据传入的用户ID信息和场景信息,从Redis等缓存中获取用户的画像信息,用在后面的流程中。

云计算平台设计参考架构

云计算平台设计参考架构 在私有云当中,主要包含以下几个组件:物理基础架构、虚拟化层、服务自动化层、服务门户、安全体系、云API和可集成的其它功能。(如图私有云参考架构) 图3.4 私有云参考架构 a) 物理基础架构 物理架构的定义是组成私有云的各种计算资源,包括存储、计算服务器、网络,无论是云还是传统的数据中心,都必须基于一定的物理架构才能运行。

在私有云参考架构中的物理基础架构其表现形式应当是以资源池模式出现,也就是说,所有的物理基础架构应当是统一被管,且任一设备可以看成是无状态,或者说并不与其它的资源,或者是上层应用存在紧耦合关系,可以被私有云根据最终用户的需求,和预先定制好的策略,对其进行改变。 b) 虚拟化层 虚拟化是实现私有云的前提条件,通过虚拟化的方式,可以让计算资源运行超过以前更多的负载,提升资源利用率。虚拟化让应用和物理设备之间采用松耦合部署,物理资源状态的变更不影响到虚拟化的逻辑计算资源。且可以根据物力基础资源变化而动态调整,提升整体的灵活性。 c) 服务自动化层 服务自动化层实现了对计算资源操作的自动化处理。它可以集中的监控目前整体计算资源的状态,比如性能、可用性、故障、事件汇总等等,并通过预先定义的自动化工作流进行

相关的处理。 服务自动化层是计算资源与云计算服务门户相关联的重要部件,服务自动化层拥有自动化配置和部署功能,可以进行服务模板的制定,并将服务内容和选择方式在云计算服务门户上注册,用户可以通过服务门户上的服务目录来选择相应的计算资源请求,由服务自动化层实现服务交付。 d) 云API 云应用开发接口提供了一组方法,让云服务门户和不同的服务自动化层进行联系,通过云API,可以在一个私有云当中接入多个不同地方的计算资源池,包括不同架构的计算资源,并通过各自的服务自动化体系去进行服务交互。 e) 云服务门户 云服务门户是用户使用私有云计算资源的接口,云服务门户上提供了所有可用服务的目录,并提供了完善的服务申请流程,用户可以执行申请、变更、退回等计算资源使用服务。

系统的架构设计文档

xxx系统架构设计说明书 2013-12-12

修订历史记录

目录 1.简介错误! 未定义书签 目的 错误! 未定义书签 范围 错误! 未定义书签 定义、首字母缩写词和缩略语 错误! 未定义书签 参考资料 错误! 未定义书签概述错误! 未定义书签 2.整体说明 错误! 未定义书签简介 错误! 未定义书签 构架表示方式 错误! 未定义书签构架目标和约束错误! 未定义书签 3.用例说明 错误! 未定义书签核心用例 错误! 未定义书签用例实现错误! 未定义书签 4.逻辑视图 错误! 未定义书签逻辑视图 错误! 未定义书签 分层 错误! 未定义书签 应用层 错误! 未定义书签 业务层 错误! 未定义书签 中间层 错误! 未定义书签 系统层 错误! 未定义书签 架构模式 错误! 未定义书签设计机制错误! 未定义书签

5. 进程视图 6. 部署视图 7. 数据视图 8. 大小和性能 9. 质量 10. 其它说明 公用元素及服务 错误! 未定义书签 错误! 未定义书签 错 误! 未定义书签 错误! 未定义书签 错误! 未 定义书签 错误! 未定 义书签 错误! 未定义 书签

系统架构设计文档 1. 简介 系统构架文档的简介应提供整个系统构架文档的概述。它应包括此系统构架文档的目的、范围、定义、首字母缩写词、缩略语、参考资料和概述 1.1 目的 本文档将从构架方面对系统进行综合概述,其中会使用多种不同的构架视图来描述系统的各个方面。它用于记录并表述已对系统的构架方面做出的重要决策, 以便于开发人员高效的开发和快速修改和管理。 1.2 范围 本文档用于oto 项目组目前正在开发的android app 电器管家和已经发布的的开发或修改 1.3 定义、首字母缩写词和缩略语 参考系統需求文档电器管家 1.4 参考资料 1、系統需求文档电器管家 2、品牌品类及映射建议App 数据结构及数据样例 2. 整体说明 2.1 简介 在此简单介绍系统架构的整体情况,包括用例视图、逻辑视图、进程视图、实施视图的简单介绍。另外,简要介绍各种视图

云计算平台架构及分析

一、业务挑战 无锡华夏计算机技术有限公司于2000年1月成立,是无锡软件出口外包骨干企业。公司主要以面向日本的软件外包开发为中心,致力于不断开拓国内市场、为客户提供优质的系统集成等业务。随着企业的发展,IT投入不断加大,随之而来的PC管理问题也越来越突出。 华夏目前PC总拥有数1000台,主要用于研发和测试,由于项目多、任务紧,一台PC经常要用于不同的项目开发,而每次更换都要对PC系统进行重新安装和环境搭建。根据实际统计,华夏一个员工平均每年参与4个项目的开发,也就是每年要重新搭建四次开发环境,对测试人员来说这个数量还要更多;平均每次更换环境花费时间10个小时,华夏每年大约花费4万小时用于PC系统和环境搭建,按照人均工资15元/小时,每年花费在60万左右。 除此之外,由于PC的使用寿命较短,更新升级频繁,大量的PC就意味着每年都要有很多PC需要淘汰和更新,现在这个数字大约是10台/月,而随着华夏的发展壮大,这个数字会进一步增加,这就意味着华夏每年花在PC升级和更新的费用最少在50~60万。与此同时,大量的PC也是的企业的能源消耗巨大,电力花费居高不下;按照平均180W/台,一台PC工作8小时/天,工业用电0.9元/度,华夏每年的电费就将近15万元。 与巨大的IT投入相对应的就是IT资源利用率较低,PC分布在企业各个项目小组的开发人员手中,很难进行统一的管理调度,也无从得知PC的使用情况。软件开发的各个阶段对IT的需求都是不同的,我们无法得知某个正在进行的项目使用的PC资源是否有多余,无法将项目完成用不到的PC资源及时收回,以便给下一个项目小组使用,造成大量的IT资源浪费。

软件设计师知识点

·在输入输出控制方法中,采用DMA可以使设备与主存之间的数据块传送无须CPU干预。 ·内存容量为4GB,即内存单元的地址宽度为32位;字长为32位,即要求数据总线的宽度为32位。 ·ARP攻击造成网络无法跨网段通信的原因是:伪造网关ARP报文使得数据包无法发送到网关。 ·软件商标权的权利人是:软件注册商标所有人。 ·利用商业秘密权可以对软件的信息、经营信息提供保护。(管理方法、经营方法、产销策略、客户情报、软件市场的分析、预测报告、和对未来的发展规划、招投标中的标底以及标书内容)。 ·某项目组拟开发了一个大规模系统,且具备了相关领域以及类似规模系统的开发经验,则瀑布模型最适合开发此项目。 ·编译程序分析源程序的阶段依次是:词法分析、语法分析、语义分析。 ·结构冗余:按其方法可以分为静态、动态和混合冗余。 信息冗余:为了检测或纠正信息在运算或传输中的错误另外加的一部分信息。时间冗余:以重复执行指令或程序来消除瞬时错误带来的影响。 冗余附加技术:是指为实现上述冗余技术所需要的资源和技术。 ·软件过程的改进框架:过程改进基础设施、过程改进线路图、软件过程评估方法、软件过程改进计划。每一次改进要经历4个步骤:评估、计划、改进和监控。 ·软件复杂性度量的参数:软件的规模、软件的难度、软件的结构、软件的智能度。 ·软件系统的可维护性评价指标包括可理解性、可测试性、可修改性、可靠性、可移植性、可使用性和效率,不包括可扩展性。 ·开-闭原则是面向对象的可复用设计的基石。开-闭原则是指一个软件实体应当对扩展开放,对修改关闭;里氏代换原则是指任何基类对象可以出现的地方,子类对象一定可以出现。依赖倒转原则就是要依赖于抽象,而不依赖于实现,或者说要针对接口编程,不要针对实现编程。 ·汇编语言的指令语句必须要有操作码字段,可以没有操作数字段。 ·贪心算法不能保证求得0-1背包问题的最优解。

软件架构设计文档

软件架构设计文档 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

密级:内部公开 文档编号:1002 版本号: 测测(基于安卓平台的测评软件) 软件架构设计文档 计算机与通信工程学院天师团开发团队

修订历史记录 目录

1.文档介绍 文档目的 本文档是对于测测软件系统进行详细设计和编码的重要依据。对该软件的整个系统的结构关系进行了详细描述,阐述了系统的总体框架,包括物理、逻辑结构,说明了体系结构所采取的设计策略和所有技术,并对相关内容做出了统一的规定。为今后的设计、编码、测试都提供了可以参考的模版并且提高效率,使整个开发过程做到资源利用最大化,减少由于需求变更而修改的时间,大大的降低了成本,节约了时间,也使得客户更加的满意。 文档范围 本文档包含以下几个部分: 1、架构设计思想 2、架构体系描述 3、系统模块化分 4、系统模块描述 5、模块接口设计 读者对象 本文档主要读者包括:

1、本系统的设计人员:包括模块设计人员(理解用户需求,在设计时把握用户需求)。 2、本系统的系统开发人员:编码人员(了解用户需求,为编码提供模版)。 3、本系统的测试人员(了解用户需求,为测试提供参考)。 4、客户(检查是否满足要求)。 参考文献 《软件工程讲义》 《测测需求规格说明书》 2.架构设计思想 为了降低系统耦合度,增加系统内聚性,在需求发生更改时能在较短的时间内对系统做出修改,并重新投入使用,我们决定以分层体系架构风格作为整个系统的体系风格,严格按照一定的规则来进行接口设计,并以之为根据进行详细设计。分为数据层、业务逻辑层、表示层。 3.架构体系描述 整个系统顶层架构采用分层的风格,整个系统的体系结构非常清晰,使得后期易于详细设计、编码、维护以及适应需求变更。通过分层,定义出层与层之间的接口,使得在更加规范的同时拥有更为多台花的接口描述,使得层与层之间的耦合度降低,增强了模块的服用型和可

广告投放方法及系统与设计方案

图片简介: 本申请涉及一种广告投放方法及系统,广告投放方法包括获取用户经纬度信息;根据经纬度信息确定用户密集区域;向用户密集区域定向投放广告。本申请不仅可以实现实时广告投放,还可以提升广告的曝光效果,避免资源浪费。 技术要求 1.一种广告投放方法,其特征在于,包括: 获取用户经纬度信息; 根据所述经纬度信息确定用户密集区域; 向所述用户密集区域定向投放广告。 2.根据权利要求1所述的广告投放方法,其特征在于,还包括: 绘制人群密度图; 将所述人群密度图进行展示。 3.根据权利要求1所述的广告投放方法,其特征在于,还包括:

判断所述用户密集区域是否进行密集活动; 若所述用户密集区域正在进行密集活动,根据所述密集活动精准投放广告。 4.根据权利要求1所述的广告投放方法,其特征在于,还包括: 获取所述密集区域内用户的用户行为; 根据所述用户行为精准投放广告。 5.根据权利要求4所述的广告投放方法,其特征在于,所述获取所述密集区域内用户的用户行为,包括: 通过用户访问历史记录获取用户行为,所述历史记录包括网站、电视、手机和应用程序中的一种或多种。 6.根据权利要求1所述的广告投放方法,其特征在于,所述获取用户经纬度信息,包括: 通过用户终端主动上报获取所述用户经纬度信息; 和\或, 通过地图类应用程序获取所述用户经纬度信息; 和\或, 通过电信运营商获取所述用户经纬度信息。 7.一种广告投放系统,其特征在于,包括: 定位模块,用于获取用户经纬度信息; 确定模块,用于根据所述经纬度信息确定用户密集区域; 定向投放模块,用于向所述用户密集区域定向投放广告。 8.根据权利要求7所述的广告投放系统,其特征在于,还包括: 绘图模块,用于绘制人群密度图。 9.根据权利要求7所述的广告投放系统,其特征在于,还包括: 第一精准投放模块,用于在所述用户密集区域正在进行密集活动,根据所述密集活动精准投放广告。

云计算资源池平台架构设计

云计算资源池平台架构设计

目录 第1章云平台总体架构设计 (4) 第2章资源池总体设计 (5) 2.1 X86计算资源池设计 (6) 2.1.1 计算资源池设计 (6) 2.1.2 资源池主机容量规划设计 (8) 2.1.3 高可用保障 (9) 2.1.4 性能状态监控 (12) 2.2 PowerVM计算资源池设计 (14) 2.2.1 IBM Power小型机虚拟化技术介绍 (14) 2.2.2 H3Cloud云平台支持Power小型机虚拟化 (16) 2.2.3 示例 (18) 2.3物理服务器计算资源池设计 (19) 2.4网络资源池设计 (20) 2.4.1 网络虚拟化 (20) 2.4.2 网络功能虚拟化 (34) 2.4.3 安全虚拟化 (36) 2.5存储资源池设计 (37) 2.5.1 分布式存储技术方案 (37) 2.6资源安全设计 (46) 2.6.1安全体系 (46) 2.6.2 架构安全 (47) 2.6.3 云安全 (52) 2.6.4 安全管理 (59)

2.6.5 防病毒 (62)

第1章云平台总体架构设计 基于当前IT基础架构的现状,未来云平台架构必将朝着开放、融合的方向演进,因此,云平台建议采用开放架构的产品。目前,越来越多的云服务提供商开始引入Openstack,并投入大量的人力研发自己的openstack版本,如VMware、华三等,各厂商基于Openstack架构的云平台其逻辑架构都基本相同,具体参考如下: 图2-1:云平台逻辑架构图 从上面的云平台的逻辑架构图中可以看出,云平台大概分为三层,即物理资源池、虚拟抽象层、云服务层。 1、物理资源层 物理层包括运行云所需的云数据中心机房运行环境,以及计算、存储、网络、安全等设备。 2、虚拟抽象层 资源抽象与控制层通过虚拟化技术,负责对底层硬件资源进行抽象,对底层硬件故障进行屏蔽,统一调度计算、存储、网络、安全资源池。 3、云服务层 云服务层是通过云平台Portal提供IAAS服务的逻辑层,用户可以按需申请

软考系统架构设计师教程考点精讲(四)

软考系统架构设计师教程考点精讲(四)软考系统架构设计师属于软考中的一项高级资格考试,考试分综合知识、案例分析和论文3个科目。系统架构设计师考试作为一项高级资格考试,有一定的考试难度,那么该如何备考才能顺利通过考试呢?面对系统架构设计师教程无从下手的同学,希赛为您准备了几个重要的教程章节考点精讲,希望对您的学习有所帮助。 第四章 4.1软件开发方法 4.1.1软件开发生命周期 传统的软件生命期是指软件产品从形成概念(构思)开始,经过定义、开发、使用、维护、废弃,的全过程。 可以把软件生命期划分为软件定义、软件开发、软件运行与维护,三个阶段。 1、软件定义时期 1.问题定义,目标系统“是什么”,系统的定位以及范围。 2.可行性研究,技术可行性、经济可行性、操作可行性、社会可行性。 3.需求分析,确定软件系统的功能需求、性能需求、运行环境的约束,写出需求规格说明书、软件系统测试大纲、用户手册概要。 充分理解用户的需求,并以书面形式写出规格说明书,这是以后软件设计和验收的依据;用户也许很难一次性说清楚系统应该做什么。 系统分析员、软件开发人员、用户,共同完成,逐步细化、一致化、完全化等。 软件需求规格说明SRS,内容可以有系统(或子系统)名称、功能描述、接口、

基本数据结构、性能、设计需求、开发标准、验收原则等。 2、软件开发时期 软件开发时期就是软件的设计与实现,概要设计、详细设计、编码、测试等。 概要设计是在软件需求规格说明的基础上,建立系统的总体结构(含子系统的划分)和模块间的关系,定义功能模块及各功能模块之间的关系。 详细设计对概要设计产生的功能模块逐步细化,包括算法与结构、数据分布、数据组织、模块间接口信息、用户界面等,写出详细设计报告。 测试可分成单元测试、集成测试、确认测试、系统测试等。通常把编码和测试称为系统的实现。 3、软件运行和维护 软件维护就是尽可能地延长软件的寿命,没有维护的价值时,宣告退役,软件的生命结束。 4.1.2软件开发模型 软件生存周期模型又称软件开发模型或软件过程模型,模型的特点是简单化,是软件开发实际过程的抽象与概括。 为软件工程管理提供里程碑和进度表,为软件开发过程提供原则和方法。软件过程有各种各样的模型。 1、瀑布型 瀑布型的特点是因果关系紧密相连,前一个阶段工作的结果是后一个阶段工作的输入,前一个阶段的错漏会隐蔽地带到后一个阶段,每一个阶段工作完成后,都要进行审查和确认, 它的出现有利于人员的组织管理,有利于软件开发方法和工具的研究。

软件系统的架构设计方案

软件系统的架构设计方 案 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

软件系统的架构设计方案 架构的定义 定义架构的最短形式是:“架构是一种结构”,这是一种正确的理解,但世界还没太平。若做一个比喻,架构就像一个操作系统,不同的角度有不同的理解,不同的关切者有各自的着重点,多视点的不同理解都是架构需要的,也只有通过多视点来考察才能演化出一个有效的架构。 从静态的角度,架构要回答一个系统在技术上如何组织;从变化的角度,架构要回答如何支持系统不断产生的新功能、新变化以及适时的重构;从服务质量的角度,架构要平衡各种和用户体验有关的指标;从运维的角度,架构要回答如何充分利用计算机或网络资源及其扩展策略;从经济的角度,架构要回答如何在可行的基础上降低实现成本等等 软件系统架构(SoftwareArchitecture)是关于软件系统的结构、行为、属性、组成要素及其之间交互关系的高级抽象。任何软件开发项目,都会经历需求获取、系统分析、系统设计、编码研发、系统运维等常规阶段,软件系统架构设计就位于系统分析和系统设计之间。做好软件系统架构,可以为软件系统提供稳定可靠的体系结构支撑平台,还可以支持最大粒度的软件复用,降低开发运维成本。如何做好软件系统的架构设计呢 软件系统架构设计方法步骤 基于体系架构的软件设计模型把软件过程划分为体系架构需求、设计、文档化、复审、实现和演化6个子过程,现逐一简要概述如下。

体系架构需求:即将用户对软件系统功能、性能、界面、设计约束等方面的期望(即“需求”)进行获取、分析、加工,并将每一个需求项目抽象定义为构件(类的集合)。 体系架构设计:即采用迭代的方法首先选择一个合适的软件体系架构风格(如C/S、B/S、N层、管道过滤器风格、C2风格等)作为架构模型,然后将需求阶段标识的构件映射到模型中,分析构件间的相互作用关系,最后形成量身订做的软件体系架构。 体系架构文档化:即生成用户和研发人员能够阅读的体系架构规格说明书和体系架构设计说明书。 体系架构复审:即及早发现体系架构设计中存在的缺陷和错误,及时予以标记和排除。 体系架构实现:即设计人员开发出系统构件,按照体系架构设计规格说明书进行构件的关联、合成、组装和测试。 体系架构演化:如果用户需求发生了变化,则需相应地修改完善优化、调整软件体系结构,以适应新的变化了的软件需求。 以上6个子过程是软件系统架构设计的通用方法步骤。但由于软件需求、现实情况的变化是难以预测的,这6个子过程往往是螺旋式向前推进。 软件系统架构设计常用模式

容器云平台监控架构设计及优化

容器云平台监控架构设计及优化

目录 1. 概述 (1) 2. 价值和意义 (1) 3. 监控方案选型 (1) 3.1 容器云监控方案有哪些 (1) 3.2 方案对比并确定 (3) 4. 基于prometheus的容器云平台监控架构设计 (4) 4.1 prometheus介绍 (4) 4.2 架构设计 (5) 4.3 监控点有哪些 (7) 4.4 重要组件介绍 (10) 4.5 数据可视化 (14) 4.6 高可用设计 (16) 4.7 性能优化与容量预估 (22)

1 概述 随着容器化的大力发展,容器云平台已经基本由Kubernetes作为统一的容器管理方案。当我们使用Kubernetes进行容器化管理时,传统监控工具如Zabbix无法对Kubernetes做到统一有效的全面监控,全面监控Kubernetes也就成为我们需要探索的问题。使用容器云监控,旨在全面监控Kubernetes集群、节点、服务、实例的统计数据,验证集群是否正常运行并创建相应告警。本章旨在于介绍容器云平台监控的架构设计及优化。 2 价值和意义 监控是运维体系中是非常重要的组成部分,通过监控可以实时掌握系统运行状态,对故障提前预警,以及历史状态的回放,还可以通过监控数据为系统的容量规划提供辅助决策,为系统性能优化提供真实的用户行为和体验。为容器云提供良好的监控环境是保证容器服务的高可靠性、高可用性和高性能的重要部分,通过对本章的学习,能够快速认识当前容器环境下都有哪些监控方案,并对主流的监控方案有一个系统的了解和认识。 3 监控方案选型 3.1 容器云监控方案有哪些 (1)Zabbix Zabbix是由Alexei Vladishev开源的分布式监控系统,支持多种采集方式和采集客户端,同时支持SNMP、IPMI、JMX、Telnet、SSH等多种协议,它将采集到的数据存放到数据库中,然后对其进行分析整理,如果符合告警规则,则触发相应的告警。 Zabbix核心组件主要是Agent和Server,其中Agent主要负责采集数据并通过主动或者被动的方式采集数据发送到Server/Proxy,除此之外,为了扩展监控项,Agent还支持执行自定义脚本。Server主要负责接

软考系统架构师

目录 第1章操作系统 (3) 1.1考点分析 (3) 1.2试题精解 (3) 试题1 (2009年11月试题1) (3) 试题2 (2009年11月试题2-4) (4) 试题3 (2010年11月试题1) (5) 试题4 (2010年11月试题2) (6) 试题5 (2010年11月试题3-4) (6) 试题6 (2011年11月试题1) (8) 试题7 (2011年11月试题2-4) (9) 试题3 (2010年11月试题1) (10) 第2章数据库系统 (11) 2.1考点分析 (11) 2.2试题精解 (11) 试题3 (2010年11月试题1) (11) 第3章计算机硬件基础及嵌入式系统设计 (12) 3.1考点分析 (12) 3.2试题精解 (12) 试题3 (2010年11月试题1) (12) 第4章数据通信与计算机网络 (13) 4.1考点分析 (13) 4.2试题精解 (13) 试题3 (2010年11月试题1) (13) 第5章系统安全性与保密性设计 (14) 5.1考点分析 (14) 5.2试题精解 (14) 试题3 (2010年11月试题1) (14) 第6章信息化基础 (15) 6.1考点分析 (15) 6.2试题精解 (15) 试题3 (2010年11月试题1) (15) 第7章系统开发基础 (16) 7.1考点分析 (16) 7.2试题精解 (16) 试题3 (2010年11月试题1) (16) 第8章软件架构设计 (17) 8.1考点分析 (17) 8.2试题精解 (17) 试题3 (2010年11月试题1) (17) 第9章应用数学 (18) 9.1考点分析 (18)

系统架构设计文档

仅供个人参考 For personal use only in study and r esearch; not for commercial use xxx系统架构设计说明书 2013-12-12 v0.1

仅供个人参考 修订历史记录 目录 1.简介错误!未定义书签。 1.1目的错误!未定义书签。 1.2范围错误!未定义书签。 1.3定义、首字母缩写词和缩略语错误!未定义书签。 1.4参考资料错误!未定义书签。 1.5概述错误!未定义书签。 2.整体说明错误!未定义书签。 2.1简介错误!未定义书签。 2.2构架表示方式错误!未定义书签。 2.3构架目标和约束错误!未定义书签。 3.用例说明错误!未定义书签。 3.1核心用例错误!未定义书签。 3.2用例实现错误!未定义书签。 4.逻辑视图错误!未定义书签。 4.1逻辑视图错误!未定义书签。 4.2分层错误!未定义书签。 4.2.1应用层错误!未定义书签。 4.2.2业务层错误!未定义书签。 4.2.3中间层错误!未定义书签。 4.2.4系统层错误!未定义书签。 4.3架构模式错误!未定义书签。 4.4设计机制错误!未定义书签。 4.5公用元素及服务错误!未定义书签。 5.进程视图错误!未定义书签。 6.部署视图错误!未定义书签。 7.数据视图错误!未定义书签。 8.大小和性能错误!未定义书签。 9.质量错误!未定义书签。

10.其它说明错误!未定义书签。 系统架构设计文档 1.简介 系统构架文档的简介应提供整个系统构架文档的概述。它应包括此系统构架文档的目的、范围、定义、首字母缩写词、缩略语、参考资料和概述 1.1目的 本文档将从构架方面对系统进行综合概述,其中会使用多种不同的构架视图来描述系统的各个方面。它用于记录并表述已对系统的构架方面做出的重要决策,以便于开发人员高效的开发和快速修改和管理。 1.2范围 本文档用于oto项目组目前正在开发的android app电器管家2.0和已经发布的1.0的开发或修改 1.3定义、首字母缩写词和缩略语 参考系统需求文档电器管家APP2.0 1.4参考资料 1、系统需求文档电器管家APP2.0 2、品牌品类及映射建议App数据结构及数据样例 2.整体说明 2.1简介 在此简单介绍系统架构的整体情况,包括用例视图、逻辑视图、进程视图、实施视图的简单介绍。另外,简要介绍各种视图的作用和针对的用户 2.2构架表示方式 本文档将通过以下一系列视图来表示4In1系统的软件架构:用例视图、逻辑视图、部署视图。本文档不包括进程视图和实施视图。这些视图都是通过PowerDesigner工具建立的UML模型。 2.3构架目标和约束 系统架构在设计过程中有以下设计约束: 1、安全性:通讯协议采用加密的方式、存放app端数据要进行混淆器加密、电话号码和logo不能通过反 编译批量拿走。

软件设计与体系结构知识点

软件设计与体系结构知识点 1.软件设计的特征 (1)软件设计的开端是出现某些新的问题需要软件来解决,这些需要促使设计工作的开始,并成为整个设计工作最初的基础 (2)软件设计的结果是给出一个方案,它能够用来实现所需的、可以解决问题的软件,方案的描述可能是文字、图表,甚至数学符号、公式等组成的文档或模型 (3)软件设计包含一系列的转换过程,即把一种描述或模型转换为另一种描述或模型,转换后的形态可能更加具体,或更接近于实现 (4)产生新的想法或思路对软件设计非常重要,因为设计也是一个创造性的过程,不同的问题或需求总会存在各自的特点,即使同样的问题在不同时期和环境下也会存在区别,因此设计不会是一成不变的 (5)软件设计的过程是不断解决问题和实施决策的过程,因为整个设计是解决一个大的问题,在设计过程中将会分解成众多小问题,涉及真需要一次解决这些小的问题,并在出现多种方案或策略时进行决策,选择其中最合适的 (6)软件设计也是一个满足各种约束的过程,因为软件可能在性能、运行环境、开发时间、成本、人员技术水平等各个方面存在约束,设计必须在满足这些约束的情况下给出最佳的设计方案 (7)大多数的软件实际是一个不断演化的过程,因为需求在一开始很可能是不完整或不精确的,在设计过程中还会不断发生变化并逐步稳定下来,因此设计需要根据需求的变化而不断演化。 2.软件设计的要素 (1)目标描述(2)设计约束(3)产品描述(4)设计原理(5)开发规划(6)使用描述3.软件设计体系的定义 (1)软件设计体系结构是软件系统的结构,包含软件元素、软件元素外部可见的属性以及这些软件元素之间的关系 (2)软件体系结构是软件系统的基本组织,包含构建、构件之间、构件与环境之间的关系,以及相关的设计与演化原则 4.软件设计的主要活动 (1)软件设计计划(2)体系结构设计(3)界面设计(4)模块/子系统设计(5)过程/算法设计(6)数据模型设计 5.体系结构“4+1”多视图建模 (1)逻辑视图:该视图关注功能需求,即系统应该为最终用户提供什么服务,它与应用领域精密相关 (2)进程视图:该视图捕获设计中关于并发和同步的内容,重视一些非功能需求,例如性能、可扩展性等,定义了运行实体和它们的属性。 (3)开发视图:该试图主要描述软件在开发环境中的静态结构,开发人员和项目经理对比都会感兴趣。 (4)物理视图:该视图描述软件到硬件的映射关系,反映了软件的分布特征。 (5)场景:可以使用一组重要场景也就是用例的实例,把上述四种视图紧密的联系起来6.什么是软件产品线方法 软件产品线是软件复用发展的一个更高阶段,它并不仅仅局限于以前人们在软件复用中考虑的对函数、模块、类、体系结构甚至子系统的重用。 软件产品线指一组具有公共的、可管理特征(系统需求)的软件系统,这些系统满足特定的

架构设计文档

架构设计文档 版本号:XXX

XX项目组

修订状况

目录 1. 引言5 1.1 目的 (5) 1.2 范围 (5) 1.3 定义、首字母缩写词和缩略语. (5) 1.4 参考资料 (5) 2. 软件系统架构设计概述5 2.1 背景 (5) 2.2 软件系统架构设计策略与原则. (5) 2.3 关键功能性需求 (6) 2.4 非功能性需求及解决方案. (6) 2.5 软件系统架构设计蓝图. (7) 3. 软件系统架构设计7 3.1 系统分层架构视图. (8) 3.2 用例视图 (8) 3.3 逻辑视图 (8) 3.4 部署视图 (8) 3.5 进程视图(可选) (9) 3.6 实现视图(可选) (9) 4. 关键技术设计9 4.1 公共构件设计 (9) 4.2 接口设计 (9) 4.3 数据架构设计 (9) 4.4 安全架构设计 (10) 4.5 UI 架构设计 (10) 4.6 运维架构设计 (10)

[ 说明:文档模板中蓝字部分为模板说明和示例,黑字部分为内容要求。黑字部分不允许删除,对于对项目不适用的部分,在相应的章节中进行说明]引言 目的 [ 阐明此软件系统架构设计文档的目的。] 范围 [ 简要说明此软件系统架构设计文档的范围:它的相关项目,以及受到此文档影响的任何其他事物。] 定义、首字母缩写词和缩略语 [ 本小节应提供正确解释此软件系统架构设计文档所需的全部术语的定义、首字母缩写词和缩略语。这些信息可以通过引用项目术语表来提供。]参考资料 [ 本小节应完整列出此软件系统架构设计文档中所明确引用的任何文档。每个文档应标有标题、来源。这些信息可以通过引用附录或其他文档来提供。]软件系统架构设计概述 背景 [ 简要说明此软件系统架构设计文档的背景,描述系统解决方案如何适应组织的发展前景。] 软件系统架构设计策略与原则 [ 描述软件系统架构设计的策略与原则,如应用框架、开放性原则, 应用XML作为规范传输数据等。] 关键功能性需求

爱奇艺广告平台的架构设计分析

爱奇艺广告平台的架构设计分析

近年来爱奇艺快速发展,优质内容层出不穷,爱奇艺广告也随之发展和壮大,广告在线服务同时服务于品牌、中小、DSP 等不同客户,形成了可以满足不同需求类型的较为完善的商业广告变现布局,广告库存涵盖视频、信息流、泡泡社交(爱奇艺的社交平台)和开机屏等多种场景。 爱奇艺效果广告是2015 年开始全新搭建的一个广告投放平台,随着信息流业务的增长,整个投放平台也经历了一次大的架构调整和多次重要的升级优化。 爱奇艺广告投放平台的概要架构如下图所示。本文主要介绍在线服务相关的内容,在线投放服务即图中虚线所框出的部分,主要包括在线的投放和计费服务。 架构背后的业务需求 架构肯定是为业务需求而生的,先来看看我们面对的业务需求及其特点。 爱奇艺效果广告投放平台目前采用代理商模式,平台主要满足两大类业务需求:面向代理商(广告主)的和面向产品及运营团队的需求。具体来看看。 1、面向代理商的需求:本质上是要帮助代理商降低转化成本 ?支持多种广告位:贴片、暂停、浮层、信息流、视频关联位和推荐位等 ?支持多种结算类型:支持CPC、CPM 和CPV 等广告结算类型,oCPC 结算方式在规划中?丰富的定向功能:常用定向维度(平台、地域等)及人群精准定向(地域定向- 支持区县级别、人群属性定向和DMP 人群定向),关键词定向

?灵活的排期及预算设置:支持分钟粒度的排期设置,支持日预算的任意增减 ?特殊的业务功能:广告去重功能、动态创意、创意优选和平滑消耗等,都是为了提升广告的转化效果 ?频次控制:避免对相同用户短时间的大量曝光 2、面向产品及运营团队:主要是提升产品控制能力,促进整体系统的良好运转 ?流量控制:通过黑白名单控制某些流量上不可以/ 可以投放哪些广告 ?AB 测试功能:影响较大的功能全量发布之前需要进行AB 测试以确认效果符合预期 ?计费相关:延迟曝光不计费,曝光、点击异常检测及过滤 ?负反馈:根据用户反馈自动调整广告投放策略优化用户体验,同时也是对广告主的一种制约从上面描述的业务需求可以看出,业务的特点有: 1.业务逻辑复杂:流程包括很多环节(场景信息获取,广告召回,预算控制,频次控制,点击率 预估,创意优选,平滑消耗,广告去重,结果排序,结果筛选,概率投放,AB 测试);下图

最全的云计算平台设计方案

1.云计算参考架构 在私有云当中,主要包含以下几个组件:物理基础架构、虚拟化层、服务自动化层、服务门户、安全体系、云API和可集成的其它功能。(如图私有云参考架构) 图3.4 私有云参考架构 a) 物理基础架构 物理架构的定义是组成私有云的各种计算资源,包括存储、计算服务器、网络,无论是云还是传统的数据中心,都必须基于一定的物理架构才能运行。 在私有云参考架构中的物理基础架构其表现形式应当是以资源池模式出现,也就是说,所有的物理基础架构应当是统一被管,且任一设备可以看成是无状态,或者说并不与其它的资源,或者是上层应用存在紧耦合关系,可以被私有云根据最终用户的需求,和预先定制好的策略,对其进行改变。 b) 虚拟化层 虚拟化是实现私有云的前提条件,通过虚拟化的方式,可以让计算资源运行超过以前更

多的负载,提升资源利用率。虚拟化让应用和物理设备之间采用松耦合部署,物理资源状态的变更不影响到虚拟化的逻辑计算资源。且可以根据物力基础资源变化而动态调整,提升整体的灵活性。 c) 服务自动化层 服务自动化层实现了对计算资源操作的自动化处理。它可以集中的监控目前整体计算资源的状态,比如性能、可用性、故障、事件汇总等等,并通过预先定义的自动化工作流进行相关的处理。 服务自动化层是计算资源与云计算服务门户相关联的重要部件,服务自动化层拥有自动化配置和部署功能,可以进行服务模板的制定,并将服务内容和选择方式在云计算服务门户上注册,用户可以通过服务门户上的服务目录来选择相应的计算资源请求,由服务自动化层实现服务交付。 d) 云API 云应用开发接口提供了一组方法,让云服务门户和不同的服务自动化层进行联系,通过云API,可以在一个私有云当中接入多个不同地方的计算资源池,包括不同架构的计算资源,并通过各自的服务自动化体系去进行服务交互。 e) 云服务门户 云服务门户是用户使用私有云计算资源的接口,云服务门户上提供了所有可用服务的目录,并提供了完善的服务申请流程,用户可以执行申请、变更、退回等计算资源使用服务。 云服务门户收到最终用户的请求时,将根据预先定义好的策略对该请求进行立刻供应、预留或者排队。 不同的用户通过同一个云服务门户当中,将会看到只属于自己的应用、计算资源和服务目录,这是云计算当中的多租户技术,用户使用的资源在后台集中,但是在前端是完全的逻

系统架构设计师考试考点突破、案例分析、试题实战一本通

系统架构设计师考试考点突破、案例分析、试题实战一本通 本书介绍:本书由希赛教育软考学院组织编写,作为计算机技术与软件专业技术资格(水平)考试中的系统架构设计师级别的考试辅导指定教材。内容紧扣考试大纲,通过对历年试题进行科学分析、研究、总结、提炼而成。每章内容分为考点突破、典型试题分析、实战练习题、练习题解析四个部分。基于历年试题,利用统计分析的方法,科学做出结论并预测以后的出题动向,是本书的一大特色。本书可以保证既不漏掉考试必需的知识点,又不加重考生备考负担,使考生轻松、愉快地掌握知识点并领悟系统架构设计师考试的真谛。本书适合参加计算机技术与软件专业技术资格(水平)考试中的系统架构设计师级别的考生参考学习,也可作为相关培训班的教材。 目录: 第1章操作系统 ? 1.1考点突破 ? 1.1.1历年考试情况分析 ? 1.1.2操作系统概论 ? 1.1.3进程管理 ? 1.1.4存储管理 ? 1.1.5文件管理 ? 1.2典型试题分析 ? 1.2.1试题1 ? 1.2.2试题2 ? 1.2.3试题3 ? 1.2.4试题4 ? 1.2.5试题5 ? 1.2.6试题6 ? 1.2.7试题7 ? 1.2.8试题8

? 1.2.9试题9 ? 1.2.10试题10 ? 1.2.11试题11 ? 1.2.12试题12 ? 1.2.13试题13 ? 1.2.14试题14 ? 1.2.15试题15 ? 1.3实战练习题 ? 1.4练习题解析 第2章数据库系统 ? 2.1考点突破 ? 2.1.1历年考试情况分析? 2.1.2数据库模式 ? 2.1.3E-R模型 ? 2.1.4关系代数 ? 2.1.5完整性约束 ? 2.1.6规范化理论 ? 2.1.7SQL语言 ? 2.1.8分布式数据库 ? 2.1.9数据仓库与数据挖掘? 2.2典型试题分析 ? 2.2.1试题1 ? 2.2.2试题2 ? 2.2.3试题3 ? 2.2.4试题4 ? 2.2.5试题5 ? 2.2.6试题6 ? 2.2.7试题7 ? 2.2.8试题8 ? 2.2.9试题9 ? 2.2.10试题10 ? 2.2.11试题11 ? 2.2.12试题12

植入式广告平台策划

植入式广告平台策划

企业宣传片,广告片 新媒体渠道的兴起,给企业带来更多的推广方式和渠道,其中企业视频宣传片成为最有影响力的传播内容和形式。 宣传片将使企业提高自身的形象和加深客户对企业的认识。 新媒体植入式广告 我们将用户的产品根据其特点植入到视频短剧中,让网络用户在娱乐中享受到新的内容和产品传播,轻松愉快的接受 产品信息,不是单纯的贴片。 6000元可以为企业带来什么? 1、一份最直观的企业成长的详细讲述 2、一个唯美的企业传记 3、一个最省钱的宣传推广机会 4、一个最经济的媒体发布机会 5、一个最安全的资料存档方法 6、一个连带捆绑宣传的机会 公司介绍 视觉时代,创建于2005年12月,是目前国内最具有创意潜力的新媒体内容制作商之一,经过新媒体内容制作的发展创新,目前已由创 始之初单纯为新媒体提供内容的制作公司,逐步成长为拥有创意制作能力和媒体发布渠道和广告全案代理的综合型新传媒企业。我们 身处创意与新媒体传播行业,切实创造客户价值,在服务流程上规X。为客户提供“务实、精彩、创新”的服务这是我们不懈的追求 。 联系方式 联系人:徐赫 :xuhe788yepop. 公司地址:市XX区XX路67号财满街5号楼705室

植入式广告需20万 leslie458(2007-5-28 16:57:38)点击:271回复:0 IP:121.23.110.* 植入式广告商业计划书(简介) 项目联系人:田浩 : :lovexn1982sina. 概要 什么是“植入式广告” 植入式广告又称植入式营销是指将产品或品牌及其代表性的视觉符号甚至服务内容策略性融入电影、电视剧或电视节目内容中,通过场景的再现,让观众留下对产品及品牌印象,继而达到营销的目的。 随着互联网技术的发展植入式广告不仅运用于电影、电视,而且被“植入”各种媒介,报纸、杂志、网络游戏、手机短信,甚至小说以及夏令营活动之中。 市场前景 植入式广告的发展呈全球化趋势,好莱坞的电影产业使植入式广告成为一种令人注目的成功商务运作模式。但是在中国,随着经济全球化的发展,尤其电影、娱乐、传媒产业的全球化发展,植入式广告正从欧美迅速向全球蔓延,作为一种营销方式,植入式广告随着好莱坞大片进入中国观众的视野。电影广告也随着电影市场化步伐的提升而不断升温,近年来实现了植入式广告零的突破,正在被资金紧缺而烦恼的中国电影人学习、掌握、利用。只不过到目前为止,这种方式还没有在商家中得到推广。 目前在电影行业中华谊兄弟广告和冯小刚的在这种广告营销模式上面的结合最为成功,但是在其他的行业,如网络游戏,杂志,活动,图书等方面还处于空白状态。 二.产品及服务 公司的主要产品是“植入式广告”这种新兴的广告商业行销模式。 1.“植入式广告优劣势”

2016系统架构师考试知识点总结

2016系统架构师考试知识点总结

1操作系统 操作系统是计算机系统中的核心系统软件,负责管理和控制计算机系统中硬件和软件资源,合理组织计算机工作流程和有效利用资源,在计算机与用户之间起接口的作用 1.1 操作系统的类型 操作系统的类型(依据使用环境和对作业的处理方式)分为批处理、分时、实时、网络和分布式等。 1、批处理:把作业分类,把一批作业编成一个作业执行序列。可分联机和脱机。特征为脱机使用计算机、成批处理和多道程序运行。 2、分时:采用分时技术,使多个用户同时以会话控制自己程序的运行,每个用户都认为拥有各自独立的、支持自己请求服务的系统。特征有交互性、多用户同时性和独立性。 3、实时:专用,系统与应用难分离。并不强调资源利用率,更关心及时性、可靠性和完整性。分实时过程控制和实时信息处理。特征有即时响应、高可靠性。 4、网络:按网络架构的各个协议标准制订,包括网络管理、通信、资源共享、系统安全和多种网络应用,实现协同工作和应用集成。特征有互操作性、协作处理。 5、分布式:要求一个统一的操作系统,实现系统操作的统一性,负责全系统的资源分配和调度,为用户提供统一的界面。 6、操作系统的5项基本功能,包括处理器管理、存储管理、设备管理、文件管理和作业管理。 1.2 操作系统的结构 结构分为无序、层次、面向对象、对称多处理和微内核。 1、无序:又称整体或模块结构。以大型表格和队列为中心,操作系统各个部分围绕着表格运行,整个系统是一个程序。模块结构相对独立,模块之间通过规定的接口相互调用。优点为缩短开发周期。缺点是模块之间调用关系复杂、相互依赖,使分析、移植和维护系统较易出错。 2、层次:操作系统分解成若干个单向依赖的层次,由多层正确性保证操作系统的可靠性。优点层次结构清晰,简化了接口设计,有利于系统功能的增加或删改,易于保证可靠性,便于维护和移植。 3、面向对象:基于面向对象程序设计的概念,采用了各种不同的对象技术。把对象最为系统中的最小单位,由对象、对象操作、对象保护组成的操作系统。优点适用于网络操作系统和分布式操作系统。 4、对称多处理:所有多处理运行且共享同一内存(内存储器、主存、实存)。优点适合共享存储器结构的多处理机系统。 5、微内核:把系统的公共部分抽象出来,形成一个底层核心,提供最基本的服务,其他功能以服务器形式建立在微内核之上。具有良好的模块化和结构化特征,模块之间和上下层之间通过消息来通信。 操作系统大多拥有两种工作状态:核心态和用户态。一般的应用程序工作在用户态,内核模块和最基本的操作系统核心工作在核心态。 微内核结构由一个简单的硬件抽象层和一组比较关键的原语(仅仅为建立系统必须的部分,包括线程管理、地址空间和进程间通信)或系统调用组成。 微内核的目标将系统服务的实现和系统的基本操作规则分离开来。

相关文档
最新文档